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Synopsis

The pioneering works of Prof. Leon O. Chua constructing electrical cir-

cuit (named Chua’s circuit) which can display chaotic behaviors open

a period with fruitful researches about nonlinear circuits. A consid-

erable amount of different nonlinear circuits has been introduced and

their numerous applications have developed instantaneously. Complex

dynamical characteristics of nonlinear circuits are used to model com-

plex systems, to generate random numbers or to secure informations.

There are three nonlinear systems which have received much attention

recently: time–delay system, Cellular Neural Network and memristive

system. In this thesis we investigate how the properties of these nonlin-

ear systems can be efficiently exploited to build novel chaotic systems

and to observe novel complex phenomena.
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1

Introduction

This chapter briefly presents the background of the three non-

linear systems which constitute the framework in which our

new nonlinear circuits have been built and new phenomena

have been observed. After that, objectives of the thesis are

introduced. Finally we introduce an overview of the content

and the contribution of this thesis.

1.1 Problem statements

There are amounts of phenomena that could be described as nonlinear

systems. There, firstly we review three widely–used systems in the lit-

erature: time–delay system, Cellular Neural Network (CNN) and mem-

ristive system.

The systems with time–delays have been observed in various fields

from physical systems, biological systems to engineering systems. In

addition, the use of delay differential equations to model these systems

has a long history. On one hand, with the presence of time–delay, the
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dynamics of time–delay systems are more complex than ones without

delays. Using this feature, chaos can be created by using a system de-

scribing by only one delay differential equation. Applications of the

time–delay chaotic systems can be found in random generator, secure

communication, modelling complex system and so on. On the other

hand, the presence of time–delay is able to reduce the dynamics of sys-

tems. Noticeable application is time–delay feedback control which can

stabilize the chaotic behavior to one of unstable fixed points (UFPs)

or unstable periodic orbits (UPOs) embedded within chaotic attrac-

tor. Time–delay feedback control has become one of the most popular

methods applied successfully in a variety of biological systems, elec-

trical circuits, lasers and magneto–elastic systems. For these reasons,

design of autonomous time–delay chaotic circuits has received a signif-

icant amount of attention, the authors of many works on this subject

however often built separate circumstances by changing the nonlinear-

ities. Thus, a general design procedure is required. Moreover, although

a network of T–type LCL filters was often used as the delay unit in

recorded circuits, the drawbacks of parasitic resistive effects of induc-

tances and large size make the difficulties in design progress. As the

result, finding other ways to implement precise time–delay units, for

example operational amplifier–based circuitries or solutions based on a

digital circuitry, are open problems.

CNN is a nonlinear system which combines the advanced features of

neural networks and cellular automata, hence its architecture is suit-

able to VLSI implementation. Applications of CNN grow continuously,
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for instance in fields like signal processing, pattern formation, or mod-

elling of complex systems. There are a lot of generalizations of CNN

architectures such as State Controlled–CNN, discrete–time CNN, uni-

versal machine CNN introduced just to this aim etc. . However, finding

new effective architectures is still an attractive area.

Although memristor and memristive systems have been introduced

a long time ago by Chua, applications of them have developed recently

after the invention of the nano–scale HP memristor. As the result,

the discovery of novel memristive systems, and especially chaotic ones,

is an interesting topic. While some implemented memristive circuits

have exhibited chaotic behaviors, the question if it is possible to find

simpler memristive chaotic circuits, i.e., 2–element circuit including a

memristor and a capacitor, because of the rich of dynamics of memristor

is open and very interesting.

In addition, noise can effect and modify the dynamics of original

systems. Hence estimating the influence of noise on nonlinear systems,

in particular novel systems or complex networks, is a very important

area of research which is still ongoing.

1.2 Objectives

The aim of our thesis is to study nonlinear circuits built starting from

devices or architectures with special features. Models of new systems

are proposed and analysed. Then theoretical models are confirmed

by numerical simulations and circuital experiments using off–the–shelf
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analog components or Field Programmable Gate Array. Because of the

rich variety of dynamics, these systems are able to be used in various

applications like chaotic circuits, autowave generators or investigation

of other complex phenomena. Starting from the conventional systems

such as time–delay system, CNN, and memristor system, novel systems

are discovered by two approaches. Changing or improving conventional

systems is the method pursued in the first approach, for instance, we

investigate the general methodology to design time–delay continuous–

time chaotic circuit or the procedure to realize chaotic circuits with

a digital time–delay block. Combining conventional systems into new

ones is the main idea of the second approach, for example, the thesis

focuses on studying the characteristics of memristive CNN and memris-

tive time–delay systems. Furthermore, the presences of noise in chaotic

systems are also examined.

1.3 Contributions and contents

The thesis presents the obtained results relating to the novel nonlinear

circuits. The structure of the thesis is illustrated in Fig. 1.1.

Chapter 2 reviews time–delay systems based on first–order delay

differential equation. We summarize the nonlinearities and time-delay

blocks which were employed in the literature. The design procedure for

time–delay chaotic circuits is also repeated to provide a general way

for construction of different time–delay circuits in the next chapter.
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Time-delay

systems
CNN

Memristive

systems

Novel

time-delay

systems

Chapter 3

Memristive

CNN

Chapter 4

Memristive

time-delay

systems

Chapter 5

Noise in

chaotic

systems
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Fig. 1.1: Structure of the thesis which shows relations between three

conventional nonlinear systems and our novel studies.

A digital approach for the implementation of time–delay blocks in

chaotic circuits is discussed in Chapter 3. Because of the presence of

an ADC and a DAC in the scheme, the effects of these devices are also

analysed. Furthermore a general method to evaluate the effects of these

parameters and/or other sources of errors or parametric differences

between implementation and model are found.

CNN based on memristive cells consisting of three–component cir-

cuits is introduced in Chapter 4. Due to the fact that each cell is con-

nected with four neighbours by four linear resistors, a diffusion–reaction
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process is created. The simulations and experimental results show that

our memristive CNN is able to generate autowaves.

In Chapter 5, some simple memristive time–delay systems are pro-

posed. It is worth noting that chaos can be observed in very simple

circuit configurations, for example in the 2–element circuit.

Finally, results relating to effects of noise on chaotic systems are

presented in Chapter 6. There are two systems which have experimen-

tally investigated: a chaotic system with only one stable equilibrium

and a network of four Chua’s circuits.
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Design of time–delay chaotic electronic

circuits

This chapter summarises nonlinear blocks and delay blocks

which were used to construct time–delay chaotic circuits in

the literature. We also review the approach allows us to design

and implement a new class of time–delay chaotic circuits with

simple components, like resistors, capacitors, and operational

amplifiers.

2.1 Introduction

Dynamical systems with time delays are observed in various fields [118].

The presence of time delay is unavoidable because of the limit calcula-

tion speed, memory effects, finite transmission velocity etc.

On one hand, delay can be utilized to stabilize chaotic systems.

Time–delay feedback control (TDFC) [83] is a highly effective control

method which has applied in various systems [66, 52, 100]. The most

advantage of this method is that it does not require the prior knowl-

edge about the model. Different to the conventional feedback control,



8 2 Design of time–delay chaotic electronic circuits

the feedback signal is proportional to the difference of output signal and

its delayed version. TDFC can stabilize the chaotic behavior to one of

unstable fixed points (UFPs) or unstable periodic orbits (UPOs) em-

bedded within chaotic attractor. There are two control parameters: the

feedback gain and the feedback time delay. It is worth noticing that the

feedback time–delay is often different from the intrinsic delay of time–

delayed system. Two parameters have been selected by trial–and–error

procedures or Lyapunov stability analysis approaches. In particular, for

stabilizing of the UPO, the controller time delay has to be chosen as

an integer multiple of the period of the desired UPO.

On the other hand, delay could make complex behaviors which do

not exist in original systems. For example, the systems described by

first order delay differential equations (DDE) can exhibit chaos [65].

These systems have attracted more attention because of their com-

plex chaotic attractors as well as their feasibilities. Differential kinds of

time–delay chaotic systems [84, 73, 125, 97, 98] have been investigated

with the same structure as shown in Fig. 2.1, containing nonlinear

block, delay block, and a RC filter. Observe from Fig. 2.1 that nonlin-

ear unit has played a very important role in making diverse features

of designed systems. Moreover, the normal approaches to realize delay

block still faces some problems. For example, the implementation based

on T–type LCL filters has the drawback of parasitic resistive effects of

inductances which can not be neglected since they produce a strong

attenuation of the delayed signal. The aim of this chapter is to summa-

rize studied time–delay chaotic systems, concentrating on nonlinearity
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R

C

x

Delay

block

Nonlinear

block

Fig. 2.1: General architecture of the time–delay chaotic circuit.

block and time–delay block, and to review a new procedure to design

time–delay chaotic circuits. That provides the background to support

the next chapter where novel time–delay chaotic circuits are presented.

2.2 Nonlinear block

In the literature, time–delay chaotic oscillator is often presented by a

DDE

x (t) = −ax (t) + bF (x (t − τ)) , (2.1)

where a, b are parameters, τ is the time delay and F (x) is a nonlin-

ear function. Authors focused on constructing suitable nonlinear blocks

emulating F (x). Some typical nonlinear functions are reported as fol-

lows.
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Mackey–Glass model [66] for haematologic disorders was given by

F (x) =
Ax

1 + x10
, (2.2)

with A = 10. This function was produced by coupling in a special way

two complementary junction field–effect transistors [73].

Voss model [110] used a single–humped smooth nonlinearity

F (x) = A1x
3 + A2x

2 + A3x + A4, (2.3)

with A1 = −10.44, A2 = −13.95, A3 = −3.63, and A4 = 0.85. The

nonlinearity was built in essence from a transistor and four resistors

[51].

In Ucar’s works [106, 107], he developed a model containing cubic

nonlineariry

F (x) = Ax + Bx3, (2.4)

with A = 1 and B = −1. Obviously, the equation (2.4) is simpler than

Eq. (2.3). Two different methods [69] were tested in order to design the

cubic nonlinearity, using log–antilog operational amplifiers and analog

multipliers.

Banerjee [11] defined a nonlinearity with the function

F (x) = 0.5A (|x| + x) + B tanh (Cx) , (2.5)

where A = 1.15, B = 0.97 and C = 2.19. This function was realized

easily by a half–wave rectifier and an operational amplifier.

In the neural model of Duan [38], a non–monotonously increasing

transfer function was employed as activation function
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F (x) =

2∑

i=1

Ai [tanh (x + Bi) − tanh (x − Bi)], (2.6)

where A1, A2 = 1.5, B1 = 1, and B2 = 4/3. The active function was

implemented as a linear combinations of four translated hyperbolic

tangent functions obtained by dual–transistor pairs.

Lu and He [65] introduced an odd piecewise linear function as

F (x) =





0 x ≤ −4
3

Ax − 2 − 4
3

< x ≤ −0.8

Bx − 0.8 < x ≤ 0.8

Ax + 2 0.8 < x ≤ 4
3

0 x > 4
3
,

(2.7)

with A = −1.5 and B = 1. Similar to Mackey–Glass nonlinear function,

it saturates to zero at large |x|.
Another three–segment nonlinear function, which were obtained

from two diodes, and an operational amplifier, has been studied [103].

It was described as

F (x) =





B (x + 1) + A x < −1

Ax − 1 ≤ x ≤ 1

B (x − 1) + A x > 1,

(2.8)

where A = 2.15 and B = −4.3. In contrast to the previous function

(2.7), it does not saturate to zero at large |x|.
In order to increase the complex dynamics behaviours of chaotic os-

cillators, Wang [111] considered the activation function took a reflection

symmetric piecewise linear function of the form
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F (x) = Ax + 0.5 (A − B) [(|x + m| − |x − m|) − (|x + n| − |x − n|)] ,
(2.9)

where A = 4.3, B = −5.8, m = 1.1 and n = 3.3. The nonlinear func-

tion could be built conveniently by operational amplifiers and constant

voltage sources.

Interestingly, a piecewise linear function with a threshold controller

[97] was applied in the following form

F (x) = AF ∗ − Bx, (2.10)

where

F ∗ =






−x∗ x < −x∗

x − x∗ ≤ x ≤ x∗

x∗ x > x∗,

(2.11)

here A = 5.2, B = 3.5 and x∗ = 0.7 is the controllable threshold value.

The nonlinearity was implemented by using only two diodes and few

operational amplifiers.

Moreover, first–order DDE capable of creating multiscroll chaotic

attractors was researched [119, 56]. Yalcin [119] proposed a nonlinearity

based on a hard limited function

F (x) =

Mx∑

i=1

g(−2i+1)/2 (x) +

Nx∑

i=1

g(−2i+1)/2 (x), (2.12)

where

gθ (ζ) =






1 ζ ≥ θ, θ > 0

0 ζ < θ, θ > 0

0 ζ ≥ θ, θ < 0

1 ζ < θ, θ < 0,

(2.13)
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The system exhibited n–scroll chaotic attractor for suitable values of

Mx and Nx. For example, three–, four–, five–, and six–scroll attractors

obtained when {Mx = 1, Nx = 1}, {Mx = 1, Nx = 2}, {Mx = 0, Nx =

4}, and {Mx = 1, Nx = 4}, respectively. Nonlinear block comprised

voltage comparators whose total number depending on the number of

scrolls.

Recently, Kilinc [56] represented a oscillator employed the nonlin-

earity as a function of hysteresis series

F (x) =
N∑

i=1

(h (x − 2i) − i) +
M∑

j=0

(h (x + 2j) + j), (2.14)

where h(x) is the basic hysteresis function

h (x) =





−1 x < 0.5

1 x > −0.5.
(2.15)

Similar to the previous system (2.12), by choosing the appropriate val-

ues of M and N , N + M + 2 scrolls could be generated. For instance,

the three–, four–, and five–scroll attractors could be observed when

{N = 0, M = 1}, {N = 0, M = 2}, and {N = 0, M = 3}, respectively.

Here hysteresis comparators were realized employing positive feedback

around the classical operational amplifiers.

2.3 Time–delay block

In the reported low–frequency time–delay chaotic circuits, the typical

values of the delay were relatively large (in the order of magnitude of
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milliseconds). Therefore, time–delay blocks were implemented by delay

lines or analog circuits.

A bucket brigade delay–line device (MN3011 integrated circuit with

3328 stages) were employed [110, 51, 60] as illustrated in Fig. 2.2. The

delay time may be varied by changing the clock frequency which is pro-

vided by a function generator or a special integrated circuit MN3101

that is ideally suited for driving MN3011. In fact, due to the fact that

the voltages of the chaotic circuits are not within the input range of

MN3011, it required additional subparts to adapt voltages. Further-

more, as the delay–line has a high frequency switch operation, a low–

pass filter is required to remove the high frequency noise from the

delayed voltage.

Vin Vout

Clock MN3011

15V 15V

11

12

10

2

9

Fig. 2.2: General architecture of the delay bock based on a bucket

brigade delay–line device MN3011.
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A delay block consisting of T–type LCL filters (see Fig. 2.3) was of-

ten used. This approach was introduced firstly by Namajunas [73] with

matching resister at the input and output. The delay can be change

by increasing or decreasing the number of LCL filters. The total delay

can be calculated approximately as

Tdelay = n
√

2LC, (2.16)

if n filters are utilized. Because the delay unit is frequency dependent,

the cutoff frequency is only 3kHz.

C

L L

C

L L

Vin VoutR

R

+1 +2

Fig. 2.3: Delay block based on T–type LCL filter with R = 190Ω,

L = 9.5mH and C = 525nF [73].

The tuning delay block can be implemented by first order all pass

filter [11] as displayed in Fig. 2.4. The transfer function of an all pass

filter has the following form
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H(s) = −a1
s − ω0

s + ω0
, (2.17)

where the flat gain a1 = 1 is determined by R1, R2 and the frequency

at which the phase shift is π/2 is calculated as ω0 = 1
RC

. In this case,

the output power level does not depend upon input signal frequency;

however, the phase depends on the input signal frequency. Because each

all pass filter contributes with a delay of value equal to RC, the total

delay of the delay block is

Tdelay = nRC, (2.18)

where n is the number of all pass filters. It is clear to see that by

changing the value of resistor R, the amount of delay can vary, as the

results the resolution of the delay block can be controlled easily.

It is possible to implement the time–delay by using a cascade of n

low–pass second–order Bessel filters [21]. Each filter is characterized by

the Sallen–Key topology [89] as shown in Fig. 2.5 and by the following

transfer function:

H(s) =
1

1 + C1(R1 + R2)s + C1C2R1R2s2
(2.19)

The values of the filter components have been chosen in order to

realize a Bessel filter with 3dB frequency equal to fc ≃ 1kHz and

taking into account off–the–shelf component values. The time–delay

introduced by this filter in the band up to fc can be calculated as

τi = −dΦ(ω)
dω

. In the 3dB band, τi ≃ C1(R1 + R2). For the values of the
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R1

R

C

R2
Vin

Vout

Fig. 2.4: First–order all pass filter with R1 = R2 = 2.2kΩ and C =

10nF [11].

components in Fig. 2.5 τi ≃ 0.2ms. Larger delays are realized by taking

into account a cascade of n filters.

The approximation of an ideal delay through a cascade of multiple

second–order filters or all pass filters allowed to design an efficient and

simple circuitry which avoids the drawback of usual delay devices, like

delay lines and LCL T–type filters. Furthermore, the filter realization

with operational amplifiers, resistors and capacitors is more compact

compared to LCL filters as inductors are bulky for large time–delays,

although power dissipation is larger.
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R1 R2

C1

C2

Vin
Vout

Fig. 2.5: Schematic of the Sallen–Key low–pass active filter implement-

ing a low–pass Bessel filter, here R1 = R2 = 10 kΩ, C1 = 10nF and

C2 = 22nF .

2.4 Design procedure for time–delay chaotic

system

In this Section, we summarize the procedure to design time–delay

chaotic systems using only off–the–shelf common components [21]. The

core is the feedback scheme shown in Fig. 2.1 is investigated. It repre-

sents a simple feedback scheme of a nonlinear system containing all the

elements strictly needed to have the possibility that chaotic behavior

emerges. It consists of three blocks: a nonlinearity, a RC circuit, and

a time–delay block. It represents a minimal configuration to observe

chaotic dynamics in autonomous time–delay circuits. The nonlinear-

ity is needed since chaos is a prerogative of nonlinear circuits; the RC
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circuit implements the dynamics of the single state variable; and the

presence of the delay makes the system infinite–dimensional, allowing

chaos to be observed in a system with a single state variable.

In terms of dimensionless equations, the dynamics of the system

shown in Fig. 2.1 can be expressed as follows:

ẋ(t) = k(−ax(t) − bh(x(t − τ))) (2.20)

where x(t) ∈ R is the circuit state variable, h(x) : R → R is the

nonlinear function, τ ∈ R
+ is the time–delay, k is a scaling factor,

and a and b are system parameters. b represents the gain multiplying

the nonlinearity, while ka is the pole of the RC circuit. System (2.20)

represents a nonlinear system in Lur’e form with dynamical linear part

given by L(s) = ke−sτ

s+ka
and feedback nonlinear part given by N = bh(x).

For systems in Lur’e form, it is possible to analytically derive ap-

proximate conditions for the existence of chaotic behavior. They are

summarized in the following criterion [45]:

Criterion 2.1 (For the Existence of Chaos in Lur’e Systems): The

conditions required for the existence of chaos in a Lur’e system are:

1. existence of a stable predicted limit cycle;

2. existence of a separate unstable equilibrium point;

3. interaction between the unstable equilibrium point and the stable

predicted limit cycle.

Additionally, it is required that the linear part has filtering proper-

ties, which in our case is always satisfied, since L(s) = ke−sτ

s+ka
.
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The existence of a stable predicted limit cycle is derived by applying

the harmonic balance method [45]. A limit cycle solution of the type

y0(t) = A sin(ωt) + B exists if the amplitude A and the bias B of y0

satisfy the following equations:

1 + L(0)N0(A, B) = 0

1 + L(jω)N1(A, B) = 0
(2.21)

where N0 and N1 are static and dynamic describing functions [9] ap-

proximations of the nonlinearity N . Solving Eqs. (2.21) means to ex-

press A as a function of B, i.e., A(B) from the static equation, and,

then, to consider the intersections between the curve L(jω) and the

curve −1/N1(A(B), B) in the complex plane. Each intersection corre-

sponds to a limit cycle with a given frequency and amplitude.

The stability properties of the predicted limit cycle y0 are inferred

by applying the limit cycle criterion [93]:

Criterion 2.2 (Limit cycle criterion) Each intersection point of the

curve L(jω) and the curve −1/N1(A(B), B) corresponds to a limit cy-

cle. If the points near the intersection, corresponding to the considered

limit cycle, along the curve −1/N1(A(B), B) for increasing values of

B are not encircled by the curve L(jω), then the limit cycle is stable.

Otherwise the limit cycle is unstable.

Let focus on the second condition of criterion 2.1. The equilibrium

points x(t) = x(t − τ) = cost = x̄ of the system can be calculated by

solving:

ax̄ + bh(x̄) = 0 (2.22)
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The criterion for the existence of chaos in Lur’e systems requires

the existence of an equilibrium point which has to be separate from

the limit cycle and unstable. We now briefly discuss how the stability

properties of the equilibrium points can be checked. Since in the follow-

ing piece–wise linear (PWL) nonlinearities will be used, the stability of

the generic equilibrium point Ei can be analyzed taking into account

the following system:

ẋ(t) = k(−ax(t) − b′x(t − τ) + u) (2.23)

which represents the dynamics of the system (2.20) in the PWL region

to which the equilibrium point under examination belongs, i.e., b′ = bmi

where mi is the slope of the PWL nonlinearity in the region of the

equilibrium point Ei. u is a generic constant input. Alternatively, if h(x)

is not a PWL function, linearization around Ei could be considered.

For system (2.23) two different types of asymptotic stability can be

defined [74]: delay–independent (if the system (2.23) is stable for all

the values of τ ∈ R+) and delay–dependent (if the system (2.23) is

stable for some values of τ and unstable for other values of τ) stability.

To check them, the following criteria [74] can be applied.

Criterion 2.3 (Delay–independent stability): The equilibrium point

Ei is delay–independent stable if and only if a + b > 0 and a ≥ |b|.
Criterion 2.4 (Delay–dependent stability): The equilibrium point Ei

is delay–dependent stable if and only if b > |a|. The equilibrium point

Ei is stable for τ ≤ τ ∗ = cos−1(−a/b)

k
√

(b2−a2)
.



22 2 Design of time–delay chaotic electronic circuits

Finally, the third condition of criterion 2.1, i.e., the interaction be-

tween the stable predicted limit cycle and the unstable equilibrium

point E, can be expressed as follows:

A ≥ |E − B| (2.24)

The system represented in Fig. 2.1 thus exhibits chaotic behavior

if conditions 1)–3) of criterion 2.1 are satisfied, i.e., if Eqs. (2.21) and

(2.24) admit a solution and a separate equilibrium point satisfying nei-

ther criterion 2.3 nor criterion 2.4 exists. These conditions can be sat-

isfied by a proper choice of the nonlinearity h(x) and of the parameters

a, b and τ of system (2.20).

The time–delay τ plays an important role in conditions 1)–3) of

the criterion 2.1. τ may change the stability properties of equilibrium

points (if they are delay-dependent stable) and may also affect the

Nyquist diagram of L(s) (and thus the conditions on the existence of

the limit cycle and on its interaction with the equilibrium point). In

general, when criterion 2.1 admits a solution, for a given nonlinearity

and for fixed values of a and b, one obtains a range of values of τ , i.e.,

τmin ≤ τ ≤ τmax for which the system exhibits a chaotic behavior. Once

fixed τ in this range, i.e., τ = τ̄ , the problem of the implementation

of a circuitry introducing this delay arises. Taking into account the

typical scaling factor k in discrete–components circuit implementations,

this delay is in the order of magnitude of milliseconds and thus its

implementation requires the definition of an appropriate strategy.
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The idea underlying the approach is to implement the time–delay

block with a cascade of n Bessel filters which are low-pass filters with a

maximally flat magnitude and a maximally linear phase response [35].

Since a Bessel filter with transfer function H(s) introduces a time–delay

up to the 3dB frequency equal to τi = −dΦ(ω)
dω

, a given delay τ̄ can be

obtained with n blocks in cascade according to:

τ̄ ≃ nτi (2.25)

In this way, the time–delay can be easily tuned by changing the number

n of filters in cascade.

The Bessel filter implemented is an uncertain Bessel filter, since its

implementation is based on off–the–shelf components with standard

values, which additionally are subjected to tolerance. For this reason,

it is important to evaluate the error between the model and the circuit

implemented with a given n, and, if necessary, use a different number

of filters in cascade. Since the implemented system is chaotic and thus

sensitive to parameters, the introduced approach relies on the definition

of an error measure taking into account this property.

Let consider two chaotic circuits coupled through a master–slave

configuration [55]. If the two circuits are identical, in general, it is pos-

sible to synchronize them, obtaining state variables which asymptoti-

cally follow the same trajectory. In the case of non–identical circuits,

complete synchronization cannot be obtained, but the synchronization

error is kept small if the circuits have similar parameters. Therefore,
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the synchronization error can be used to evaluate the accuracy of the

approximation based on Bessel filters.

More in detail, let consider

ẋ(t) = k(−ax(t) − bh(x(t − τ)))

ẋn(t) = k(−axn(t) − bh(x̂(t)) + κ(x(t) − xn(t)))
(2.26)

where x(t) is the state variable of the ideal model (2.20), i.e., with

L(s) = ke−sτ

s+ka
, xn(t) is the corresponding state variable of the approxi-

mated model, i.e., with L̃(s) = k
s+ka

Hn(s), κ is the coupling strength,

and x̂(t) is the output of the n Bessel filters in cascade, which ideally

is x̂(t) = xn(t − τ).

Then let define the synchronization error between the ideal model

(with time–delay τ) and the approximated model (with a time–delay

given by n filters in cascade) as follows

δ(n) = 〈|x(t) − xn(t)|〉 (2.27)

where 〈·〉 represents the average with respect to time. The synchroniza-

tion error (2.27) is used to evaluate the accuracy of the approximated

model. Moreover, n is selected to minimize this error.

The accuracy of this procedure was confirmed by experimental ex-

amples [21].
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Implementation of chaotic circuits with a

digital time–delay block

In this chapter, we investigate how to implement the time–

delay block with a solution based on a digital circuitry. Using

available Field Programmable Gate Arrays, a programmable

time–delay block can be realized. Effect of this approach to

the accuracy of the whole implementation is estimated by the

synchronization error.

In some electronic circuits, delay blocks are intentionally introduced

to implement specific functions. For instance, in measurement applica-

tions, the highly integrated time–multiplexing device [18], the particle

detector [90], and the time analog–to–digital converter [76] make use of

time–delay blocks. In radio frequency applications, in high–speed mi-

croprocessors or in memories, delay circuits play an important role in

delay–locked loop [24] where they allows to enhance the performance

of the integrated circuits.

As noted in the previous chapter, the presence of time–delays in

nonlinear systems may also induce chaotic oscillations. In such sys-

tems, the typical values of the delay may also be relatively large. In
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order to create time–delay, two main methodologies can be taken into

account: analog methods and digital methods. In the former class, the

time–delay is implemented by an analog circuit (usually a long chain

of elementary blocks) made of resistors, capacitors, inductors, and/or

operational amplifiers [73, 110, 85]. However, one of the disadvantages

of these approaches is that they require a large number of components.

Furthermore, the design or the parameters of the circuit have to be

changed if other values of the delay should be implemented.

In order to overcome the drawbacks of analog methods, a few papers

have explored digital approaches for the implementation of relatively

small time–delays (in the order of magnitude of nanoseconds), e.g.,

[18, 90, 124].

The aim of this chapter is to investigate the use of time–delay digital

blocks for the implementation of chaotic circuits. The effects of some

parameters such as the sampling time and the number of bits used in

the converters are also investigated.

3.1 Design of chaotic circuits with digital

time–delay block

As mentioned in Chapter 2 the model of chaotic oscillator is a simple

one with only three blocks connected into a feedback configuration (see

Fig. 2.1). From the point of view of the physical realization, the time–

delay block implementation is not trivial, because of the typical values

of the time–delay used in such chaotic oscillators (order of magnitude
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of milliseconds). A digital approach is here applied for the realization

of this block, the alternative scheme can be represented as in Fig. 3.1

where an analog–to–digital converter (ADC) and a digital–to–analog

converter (DAC) interfacing the time–delay digital block with the re-

maining (analog) part of the circuit are included. The analog signal is

transformed into a digital one by the ADC, then the digital signal from

the ADC is delayed in the time–delay block before being fed through

the DAC to the remaining part of the circuit. A delayed analog signal is

obtained at the output of the DAC. The signal is delayed by a quantity

given by:

Tdelay = TADC + Td + TDAC (3.1)

where TADC , Td and TDAC are the delay of the ADC, the delay of the

digital time–delay block and that of the DAC, respectively. The total

delay can be approximated as Tdelay ≃ Td when TADC , TDAC ≪ Td.

The analog to digital conversion introduces some error sources whose

effects are also investigated in this chapter. In particular, the effects of

the sampling rate and of the number of bits used in the conversion

process have been studied, in order to obtain indications on how to

select the DAC and ADC devices in the implementation stage.

In general, the synchronization error grows up in the presence of

parametric or structural differences, so the synchronization error be-

tween the circuit with a digital time–delay and the circuit with an ana-

log time–delay can be used to evaluate the effects of the parameters of

the conversion process.
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Fig. 3.1: Block scheme of the time–delay chaotic oscillator with a

digital time–delay block.

In the case under investigation, larger time–delays are needed, shift

register–based approach has been here introduced and applied later to

the circuit implementation. Since the output of a D flip–flop holds the

value of the input until the next change of the clock, this device can be

considered a block with a time–delay equal to the clock duration Tclk.

A shift register made of N D flip–flops has been used in our approach.

On each rising edge of the clock, a new bit is shifted in from the input

and all the subsequent contents are shifted forward. The last bit in the

shift register is available at the output. According to the configuration

of the shift register, there are two parameters controlling the time–

delay: the clock duration Tclk and the number of shifted bits Nshift.

The time–delay introduced by a shift register is given by:

Tdelay = TclkNshift (3.2)



3.2 FPGA–based implementation 29

An advantage of this digital implementation, compared to analog

approach for delay implementation, is the possibility to use available

programmable hardware to realize the desired configuration and to

change its parameters on–the–fly. In the following, we describe one of

such implementations, in particular based on an FPGA, and show its

suitability for the implementation of chaotic circuits.

3.2 FPGA–based implementation

3.2.1 Implementation of the time–delay

High performance FPGAs containing millions of gates are currently

available in the market [70]. FPGAs can be used in almost all applica-

tions including communications, digital signal processing applications

or systems on chip, because of their advanced features such as embed-

ded microprocessor and digital signal processing cores. An FPGA can

be quickly configured to the desired application so that it is very con-

venient for the research and prototype development phase. For these

reasons, in this chapter for the implementation of the time–delay block,

an FPGA has been chosen. In this Section, the details of the imple-

mentation of the time–delay block are outlined.

The scheme of the time–delay block implemented in the FPGA is

illustrated in Fig. 3.2. It consists of one multiplexer and nine time–delay

subcircuits connected in cascade (including one subblock implementing

a delay of 1 ms, one subblock implementing a delay of 0.4 ms and seven

identical subblocks implementing a delay of 0.2 ms). The time–delay
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subcircuits utilize shift register configurations as described in Sect. 3.1.

The subcircuits are connected to the multiplexer so that a total delay

in the range from 1.4 ms to 2.8 ms can be set. The tuning of the time–

delay has been made accessible to the user, by implementing a routine,

which thanks to control buttons, allows the user to set the multiplexer

parameters, thus selecting the desired time–delay.

Fig. 3.2: Block diagram of the time–delay block implemented in the

FPGA.

The hardware platform used in this work is the ML405 board that is

based on the Virtex4 family of FPGAs. The main features of the board

are the following: Virtex–4 FPGA XC4VFX20–FF672, 128 MB DDR

SDRAM with a 32–bit interface running up to 400 MHz data rate, 100
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MHz clock oscillator plus one extra open 3.3 V clock oscillator socket.

The delay circuitry prototype has been realized in the Xilinx FPGA

chip programmed through a VHDL language. By employing the RTL

Viewer tool in Xilinx ISE, the schematic diagram of the delay block

could be obtained as in Fig. 3.3. The main resources of Virtex4 used

for our application are summarized in Table 3.1.

Fig. 3.3: Schematic of the time–delay block displayed by RTL Viewer

tool.

It is interesting to note that the time–delay block could be tested by

applying directly a digital signal input generated by the signal genera-

tor (see Fig. 3.4). Both the input and output signal were displayed on
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Table 3.1: Device utilization summary

Logic utilization Used Available Utilization

Number of Slice Flip Flops 442 17,088 2.62%

Number of 4 input LUTs 73 17,088 0.43%

the monitor of the oscilloscope, so it was convenient to see and compare

results.

Fig. 3.4: Connection of equipments to test the FPGA–based time–

delay block.
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3.2.2 Implementation of the chaotic circuit

In this Section, an example of a chaotic circuit obeying (2.1) is dis-

cussed. The chaotic circuit is described by the following state equation

[52]:

ẋ = −ax (t) − b sin (x (t − τ )) , (3.3)

where a and b are the parameters and τ is the dimensionless time–

delay. Equation (3.3) represents the dynamics of an optical bistable

resonator in which x is the lag of the phase of the electric field across

the resonator, b is the laser power intensity injected into the system,

and τ is the round trip time of the light in the resonator.

In the following, instead of implementing the sinusoidal nonlinearity

appearing in (3.3), a piecewise linear (PWL) approximation has been

used. PWL functions, in fact, have the advantage of ease of implemen-

tation [43].

In particular, the following PWL approximation has been used:

sin x ≃ g (x) =






− 2
π
x − 2, x ∈

[
−3π

2
;−π

2

]

2
π
x, x ∈

[
−π

2
; π

2

]

− 2
π
x + 2, x ∈

[
π
2
; 3π

2

]
(3.4)

The nonlinear in (3.4) is also presented in Fig. 3.5

The complete schematics of the designed time–delay chaotic circuit

including the PWL function (3.4), the time–delay block implemented

with the FPGA approach described in Sect. 3.2.1 and the RC circuit, is

shown in Fig. 3.6. The circuit makes use of TL084 operational amplifiers

(U1A, U2B, U3C, and U4D), eight resistors (from R1 to R8) with 5%
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Fig. 3.5: Piece–wise linear function g(x).

tolerance, one capacitor (C1), and the FPGA–based time–delay block.

The first three operational amplifiers are used to build the PWL

nonlinearity by letting the operational amplifiers U1A and U2B work-

ing in the nonlinear region according to the guidelines described in

[43]. The operational amplifier U4D is a buffer. The time–delay block

is obtained through the FPGA which implements a time–delay τ given

by:

τ =
Tdelay

R8C1
,

where Tdelay is tuned through control buttons that set the FPGA mul-

tiplexer configuration.

By applying the Kirchhoff’s laws and taking into account the pa-

rameter values reported in Fig. 3.6, the following differential equation
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Fig. 3.6: Electrical scheme of the time–delay chaotic circuit introduced

in this chapter. The delay block is implemented by means of a FPGA.

describing the circuit dynamics can be obtained:

dVC1

dt
= −aVC1

(t) − bg (VC1
(t − τ))

where a = 1, b = 5 and VC1
is the voltage across the capacitor C1.

In the range of t from 1.6 ms to 2.8 ms, the circuit displays a chaotic

regime, as theoretically expected [22]. Figure 3.7 shows some examples

of the waveforms experimentally obtained. These experimental results

confirm that the FPGA–based delay block performs effectively for gen-

erating chaos.
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(a)

(b)

(c)

Fig. 3.7: Waveforms generated by the chaotic circuit of Fig. 3.6 for

different values of the time–delay: (a) τ =2.0 ms; (b) τ =2.4 ms; (c) τ

=2.8 ms.
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3.3 Accuracy of the implementation

As mentioned in Sect. 3.1, the conversion process affects the accuracy

of the implementation. The accuracy of the implementation has been

investigated by assuming as a reference model an analog implemen-

tation based on Bessel filters and described in [22] and investigating

how the synchronization error between the analog implementation and

the FPGA–based one is affected by the parameters of the conversion

processes (the sampling rate and the number of the bits used).

In particular, an unidirectional coupling scheme [19] has been im-

plemented. The first chaotic system, referred as the master, sends a

scalar signal (i.e., the state variable x) to the second system, referred

as the slave. At the slave, the state variables of the two systems are

compared and used to build the error signal e(t) = xm(t)−xs(t) which

is then fed back to the slave, like in an observer. More in detail, the

master equation and the slave equation can be written as:

ẋm (t) = −amxm (t) − bm sin (xm (t − τ))

ẋs (t) = −asxs (t) − bs sin (xs (t − τ)) + K (xm − xs) .
(3.5)

The synchronization error has been defined as follows:

E =
1

N

N∑

i=1

e(ti) (3.6)

where t1, t2, . . . , tN are the sampling times for each time series and N

is the total number of samples.

To evaluate how these parameters affect the synchronization error,

both numerical simulations with respect to different parameters of the
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conversion process and experiments in different conditions have been

performed. As numerical simulations are concerned, two different cases

have been taken into account: identical and nonidentical systems. In the

case of identical systems, the parameters appearing in (3.3) have been

fixed equal for the two circuits am = as = a = 1 and bm = bs = b = 5. In

contrast, the case of nonidentical systems, the parameters have been

supposed to be affected by a tolerance in the order of magnitude of

5% of the nominal value, i.e., am = a, as = a(1 ± 0.05), bm = b,

and bs = b(1 ± 0.05). As it will be shown later, the introduction of the

tolerance in the numerical simulations is needed to obtain a good match

with the experimental simulations. In fact, the introduced tolerance is

in the range of parameter tolerance of the circuit components used.

The results obtained have been reported in Fig. 3.8 and Fig. 3.9

showing the synchronization error versus the sampling rate and the

number of bits, respectively. Figure 3.8 indicates that the sampling

rate has to be chosen higher than 100 kHz in order to guarantee a low

synchronization error. The synchronization error increases significantly

when the sampling rate goes under 100 kHz. As regards the number of

bits of the conversion process, when it increases, the synchronization

error shows small decreases as illustrated in Fig. 3.9. Therefore, it is

not convenient to increase the number of bits beyond 8–10 bits. The

synchronization error corresponding to a sampling frequency fs = 10

kHz is always higher than the synchronization error obtained with a

sampling frequency fs = 200 kHz, independently of the number of bits

used. Based on these considerations, the ADC and DAC used have been
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selected with a number of bits equal to 8 and fs = 200 kHz. The results

shown in Fig. 3.7 refer to this case.

Fig. 3.8: Numerical results: synchronization error (3.6) between model

with analog time–delay block and model with digital time–delay block

versus sampling rate.

The data in the experiments have been acquired by using a data

acquisition board (National Instruments USB–6255) with sampling fre-

quency fs = 300 kHz. As mentioned before, the accuracy of the im-

plementation was evaluated by assuming as reference model a totally

analog implementation in which the time–delay block has been realized

with Bessel filters [22]. This totally analog implementation has been

assumed as the master circuit, while the slave is the FPGA–based
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Fig. 3.9: Numerical results: synchronization error (3.6) between model

with analog time–delay block and model with digital time–delay block

versus number of bits.

time–delay chaotic circuit. Synchronization is observed, as shown in

Fig. 3.10(a) when the high speed analog–to–digital converter and high

speed digital–to–analog converter (maximum throughput of 200 kHz)

are used in the slave circuit. In contrast, when the ADC and DAC with

large conversion time (low throughput of 10 kHz) are utilized, a much

larger synchronization error occurs as shown in Fig. 3.10(b). It is worth

noting that the conversion process parameters, especially the sampling

rate, critically affect dynamical features of the circuits which were rep-

resented through the synchronization error. The synchronization errors
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in Fig. 3.10(a) and Fig. 3.10(b) are equal to E = 0.8948% and E =

5.1212%, respectively (they have been evaluated taking into account

an acquisition time window equal to 1 s). These experimental results

well fit the simulation results, in the case of nonidentical systems, i.e.,

when the parameter tolerance of the circuit components used is taken

into account, as it can be observed in Fig. 3.8.

The procedure described to evaluate the effects of the conversion

parameters can be applied when a reference model does exist, which

is obviously not the general case. Therefore, a more general strategy

is here described. The idea is to acquire a long trajectory from the

circuit and to use it to synchronize the slave circuit. Instead of the

master signal xm, the acquired signal is used. The experiment, previ-

ously described, was repeated by using this approach. First, a circuit

with high speed analog–to–digital and digital–to–analog converters has

been used. In this case, a low synchronization error (E = 0.9687%) has

been observed as shown in Fig. 3.10(c). On the opposite, when a low

sampling rate 10 kHz ADCs and DACs is used, the synchronization er-

ror (E = 5.2375%) grows up as shown in Fig. 3.10(d). The experimental

results obtained confirmed that investigating synchronization by using

a signal acquired from the chaotic circuit itself is a suitable strategy

for the evaluation of the effects of the conversion parameters (or more

in general of other parameters) on the accuracy of the implementation.
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Fig. 3.10: xs vs xm for (a) analog master/FPGA–based slave with

high speed ADC; (b) analog master/FPGA–based slave with low speed

ADC; (c) FPGA–based master with high speed ADC/FPGA–based

slave with high speed ADC; (d) FPGA–based master with low speed

ADC/FPGA–based slave with low speed ADC.



4

Memristive Cellular Neural/Nonlinear

Networks

Memristor has received a significant amount of attention after

a solid state implementation of it was realized in the Hewlett–

Packard laboratories, because of the potential applications

of such device in different areas. In this chapter, we intro-

duce a Cellular Neural/Nonlinear Network based on memris-

tive cells for autowave generation. The basic cell consists of a

three–component circuit (the parallel of a capacitor, an induc-

tor and an active memristor) and displays slow–fast dynam-

ics. Such circuit is then connected through passive resistors

to other identical cells to form a reaction–diffusion system.

Simulation results show that the system is able to generate

autowaves and open the way to the study of other complex

phenomena like spiral waves or pattern formation in memris-

tive circuits. Moreover, we also implement such a Memristive

Cellular Neural/Nonlinear Network (MCNN) by using Field

Programmable Gate Array (FPGA). Our system consisting of

a FPGA development board connected to a monitor allows us
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to emulate autowave propagation in an efficient way. Experi-

mental results show the feasibility of FPGA–based approach

to implement MCNN.

4.1 Autowaves in Cellular Neural Network

Cellular Neural/Nonlinear Networks (CNNs) were invented to process

real–time signals [33], especially image signals [32]. The classical CNN

configuration includes a number of cells which consist of linear capac-

itors, linear resistors, linear and nonlinear voltage–controlled current

sources and independent sources. Hence, VLSI implementation of the

CNN was realized conveniently with CMOS technique [31]. Because

CNNs have the ability to emulate partial differential equations, they

can be utilized to simulate complex phenomena in the space such as

autowaves [78], [6], spiral waves [77] or Turing patterns [48]. It is inter-

esting to note that chaotic circuits could be also realized by generalized

CNN cells [4], [5].

Recently, the nanoscale memristor has been found [99], [105], al-

though the fundamental theory of it was already introduced [27] and

generalized [30] some time ago. This discovery promised to apply for

biological models [79], adaptive filters [37] or programmable analog

integrated circuits [92, 28]. The potential applications of memristive

systems lead to one question. How complex systems made by inter-

acting memristor–based circuits can be constructed? There are a few

studies focusing on this question. In [54], a cellular automaton and
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a discrete–time CNN (DTCNN) using nonlinear passive memristors

were designed. One noticeable feature of memristive DTCNN was the

multitasking, since memristive DTCNN were shown to be able to per-

form more than one functions of the memristor cellular automaton at

the same time. Another approach was the use of standard CNNs to

implement memristive analog circuits which then can be utilized as

basic cells to realize chaotic circuits [20]. In another work [61], the role

of memristors in implementing programmable connections of the cells

was investigated. Following these discoveries, in this chapter we intro-

duce a novel memristive CNN, named MCNN, and we show that it

can exhibit autowaves. This MCNN represents an universal paradigm

following a process of generalization schematically shown in Fig. 4.1. In

fact, the invention of the memristor leads to a new paradigm in which

four components are at the basis of any electrical circuit, as shown

in Fig. 4.1. Based on this new component, novel dynamic, eventually

chaotic, circuits can be designed. In turn these can be used as basic

cells to define novel CNN architectures with general features. In the

following we describe one of such architectures and show that it can

generate autowaves.

4.1.1 Model of the memristive CNN

CNNs are usually based on first–order cells [31]. Cells are directly con-

nected with their neighbours, but the global interaction is guaranteed

because of indirect effects. CNN, in fact, includes both advanced fea-

tures of neural network and cellular automata such as asynchronous
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Fig. 4.1: Schematic representation of the four basic components of

electrical circuits.

parallel processing, continuous–time dynamics and practical implemen-

tation. CNNs have applied in various areas: image signal processing,

pattern recognition [32], bio–inspired robotic visions and biological

functions [41].

When CNNs are made up of more complex cells (the cell itself can

be a complex circuit, e.g., a Chua’s circuit), difficult computational

problems can be reformulated naturally by CNN. These CNN arrays

have been examined for the generation of Turing patterns and various

autowaves [29], where CNNs were used to approximate partial differ-
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ential equations, especially reaction–diffusion equations. In our case,

we adopt this second approach to explore complexity through memris-

tive CNN. In this Section we represent the details of the fundamental

memristive cell introduced as well as the overall configuration of our

MCNN.

The memristive cell

In their work, Itoh and Chua introduced a gallery of different memris-

tive oscillators [53]. Some of these oscillators are also able to display

chaotic dynamics. Among the oscillators introduced in [53], to con-

struct the basic cell used in our investigation, we choose a simple one,

the so–called memristor–based Chua oscillator with a flux controlled

memristor. The circuit of the cell is illustrated in Fig. 4.2, where it

can be observed that the cell includes three elements: an inductor, a

capacitor, and an active memristor. It is worth to notice that the ac-

tive memristor consists of a negative conductance (−G) and a passive

memristor in parallel.

The dynamic equations of the cell are derived by applying Kirch-

hoff’s circuit laws as follows




Cv̇ = −i − W (ϕ) v + Gv,

Li̇ = v,

ϕ̇ = v,

(4.1)

where v, i, and ϕ are voltage of the capacitor, current over inductor, and

flux, respectively. The memristor is characterized by the memductance
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W (ϕ) =
dq (ϕ)

dϕ
=





a |ϕ| < 1,

b |ϕ| > 1,
(4.2)

where q(ϕ) is a piecewise–linear function described by

q (ϕ) = bϕ + 0.5 (a − b) (|ϕ + 1| − |ϕ − 1|) . (4.3)

By replacing x = v, y = i, z = ϕ, α = 1/C, β = 1/L, and γ = G, Eqs.

(4.1) can be transformed into the following dimensionless equations:




ẋ = α (−y − W (z) x + γx) ,

ẏ = βx,

ż = x,

(4.4)

From Eqs. (4.4) we can obtain

ẏ − βż = 0. (4.5)

Computing z in Eq. (4.5) yields

z =
y + c

β
, (4.6)

where c is constant. Substituting Eq. (4.6) into Eq. (4.4), the following

equation describing the dynamics of the memristive cell is obtained:

ÿ + α

(
W

(
y + c

β

)
− γ

)
ẏ + αβy = 0. (4.7)

The memristive circuit can be thus considered as a periodic second–

order oscillator. Eq. (4.7) is equivalent to Eqs. (4.4). In the following,

our analysis is however referred to Eqs. (4.4).

When the parameters are chosen such as α = 2, γ = 0.3 , β = 1,

a = 0.1, and b = 0.5, Eqs. (4.4) exhibit the periodical signal shown
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in Fig. 4.3. However, in order to get autowaves, Eqs. (4.4) should be

characterized by a slow–fast dynamics [77], [7]. In the slow regime, the

state of the limit cycle remains at a constant value for a considerably

long period of time τst. After this long period, the state returns rapidly

in a significantly short period of time τex, where τex << τst. By choosing

appropriate parameters e.g., α = 10, γ = 0.3 , β = 0.01, a = 0.1, and

b = 0.5, our memristive cell satisfies this requirement. The waveform

of the signal (variable x(t)) is shown in Fig. 4.4, in which the slow–fast

dynamics is clearly evident.

L C
Active

memristor

Fig. 4.2: The memristive cell.

Memristive CNN

In the literature, the autowaves were implemented by 1D CNNs, 2D

CNNs or CNNs made of Chua’s circuits. In [81] travelling waves, a
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Fig. 4.3: Waveform of signal x when the parameters are chosen as

α = 2, γ = 0.3 , β = 1, a = 0.1, and b = 0.5.

special case of autowaves, were studied in the 1D and 2D CNNs where

the cell has two stable equilibrium points. The travelling waves only

triggered from one stable equilibrium state to a second one and they

remained from then on. Arena et al. [7] utilized the two–layer CNN

model with second–order cells to obtain various complex phenomena

such as autowaves, and Turing pattern formation, thus demonstrating

that state–controlled CNNs give a physical realization of low–cost soft–

computing devices.

We construct a MCNN as shown in Fig. 4.5. Each cell is connected

with four neighbours by four linear resistors. As the result, a reaction–

diffusion process is emulated.

From Fig. 4.5 the dynamic equations of the MCNN are derived
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Fig. 4.4: Waveform of signal x when the parameters are chosen as

α = 10, γ = 0.3 , β = 0.01, a = 0.1, and b = 0.5.





ẋi,j = α (−yi,j − W (zi,j) xi,j + γxi,j)

+D (xi−1,j + xi+1,j + xi,j−1 + xi,j+1 − 4xi,j) ,

ẏi,j = βxi,j ,

żi,j = xi,j ,

(4.8)

where the diffusion coefficient D is constant.

4.1.2 Simulation results

The term autowaves or autonomous waves was introduced by R. V.

Khorhlov [49]. Typical examples of autowaves include the waves of

combustion, of phase transitions, concentration waves in chemical re-

actions, and also many biological autowave processes. According to [78],

the autowaves have some noticeable properties as follows. The ampli-
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L C L C

L C L C

Fig. 4.5: Block diagram of the proposed memristive CNN.

tude and shape of the autowave do not change during propagation.

Autowaves do not exhibit reflection or interference, but annihilation

occurs when two waves collides. In this Section, the simulation results

are reported to illustrate the principal features of autowaves in the

MCNN.

A 50 × 50 MCNN with zero–flux boundary conditions has been

simulated. Here, the diffusion coefficient was fixed to D = 0.51. We

used the following initial conditions: xi,j(0) = yi,j(0) = zi,j(0) = 0,

where 1 ≤ i, j ≤ 50, except xi,2(0) = 1.5 in Fig. 4.6, x25,25(0) = 1.5 in

Fig. 4.7, xi,2(0) = xi,49(0) = 1.5 in Fig. 4.8 and x25,2(0) = x25,49(0) =

x26,2(0) = x26,49(0) = 1.5 in Fig. 4.9.
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An autowave has been observed moving with the same shape, from

the left–hand side to the righ–hand side of the MCNN, as shown in

Fig. 4.6. Unlike classical waves whose amplitude attenuates rapidly

with the distance, the shape of autowave remains unchanged. When

one point at the centre of the MCNN is active, an autowave propagates

and a circle–shape appears as given in Fig. 4.7.

Fig. 4.8 represents two autowaves propagating from the left–hand

side and the right–hand side as an effect of the initial conditions con-

sidered. The two waves move with the same velocity, finally annihilate

each other when the two wavefronts collide with each other. Similarly,

two colliding autowaves annihilate rather than penetrating one another,

and, therefore, no interference takes place as shown in Fig. 4.9. The ma-

jor characteristics of autowaves were therefore observed in the MCNN,

thus showing the effectiveness of the introduced structure to generate

autowaves. It is worth to notice that autowaves are generated with a

very simple basic cell consisting of three components and, in view of

the considerations in [72], in principle, even a simpler cell (consisting

of either a capacitor or an inductor and an active memristor) can be

used.

4.2 FPGA–based generation of autowaves in

Memristive Cellular Neural Networks

Different hardware implementations of CNN systems emulating au-

towave propagation have been also proposed: for instance, Gomez-
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Fig. 4.6: 2D representation of an autowave propagating from the left–

hand side to the right–hand side of a MCNN.

Gesteira et al. [47] designed a two–dimensional array (10 × 8 circuits)

where every cell is a Chua’s circuit; Yalcin and Suykens [120] demon-

strated spatio–temporal pattern formation on the ACE16k CNN chip;

and Yeniceri and Yalcin [123] proposed a real–time implementation of

autowave generation on FPGA.

In this Section we consider CNNs made of memristor–based cells

and implemented through FPGA and show that they can generate au-

towaves. While single memristor–based nonlinear circuits were focused

in [53, 72, 71], as far as complex systems made of more interacting

units are concerned we mention here a few examples. In [54], a cellular

automaton and a discrete–time CNN (DTCNN) using nonlinear pas-
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Fig. 4.7: Formation of an autowave from the centre of the MCNN.

sive memristors were designed. One noticeable feature of memristive

DTCNN was the multitasking, since memristive DTCNN were shown

to be able to perform more than one functions of the memristor cel-

lular automaton at the same time. Another approach was the use of

standard CNNs to implement memristive analogue circuits which then

can be utilized as basic cells to realize chaotic circuits [20]. In another

work [61], the role of memristors in implementing programmable con-

nections of the cells was investigated. In Sect. 4.1 it has been shown

that CNNs with memristive cells can generate autowaves. We inves-

tigate here an FPGA–based approach for the implementation of this

model. The choice of the FPGA as a platform for the hardware imple-
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Fig. 4.8: Obliteration of two colliding autowaves, travelling from the

left–hand side and the right–hand side.

mentation of the system is motivated by the fact that FPGA combines

the advantages of both hardware and software systems by providing

reprogrammable hardware.

4.2.1 FPGA–based implementation of Memristive Cellular

Neural Networks

FPGA–based implementations concentrating on circuit architectures

have been widely used for signal processing [86]. New algorithms can

be easily tested with the FPGA development platform that reduces

time consumption as well as the price of the process of design [57].
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Fig. 4.9: Annihilation of two colliding autowaves.

In order to realize a system based on FPGA, its discrete model is

required firstly. There, a discrete-time version of Eqs. (4.8) is obtained

by applying the fourth–order Runge–Kutta integration method [82] as

follows:
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



xi,j (k + 1) = xi,j (k)

+h
6
(k1x;i,j + 2k2x;i,j + 2k3x;i,j + k4x;i,j) ,

yi,j (k + 1) = yi,j (k)

+h
6
(k1y;i,j + 2k2y;i,j + 2k3y;i,j + k4y;i,j) ,

zi,j (k + 1) = zi,j (k)

+h
6
(k1z;i,j + 2k2z;i,j + 2k3z;i,j + k4z;i,j) ,

(4.9)

where knx;i,j, kny;i,j and knz;i,j (n = 1, 2, 3, 4) are evaluated as





k1x;i,j = α (−yi,j (k) + γxi,j (k) − W (zi,j (k)) xi,j (k))

+D (xi−1,j (k) + xi+1,j (k) + xi,j−1 (k)

+xi,j+1 (k) − 4xi,j (k)) ,

k1y;i,j = βxi,j (k) ,

k1z;i,j = xi,j (k) ,
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




k2x;i,j = α
[
−yi,j (k) − h

2
k1y;i,j + γ

(
xi,j (k) + h

2
k1x;i,j

)

−W
(
zi,j (k) + h

2
k1z;i,j

) (
xi,j (k) + h

2
k1x;i,j

)]

+D
[
xi−1,j (k) + h

2
k1x;i−1,j + xi+1,j (k)

+h
2
k1x;i+1,j + xi,j−1 (k) + h

2
k1x;i,j−1 + xi,j+1 (k)

+h
2
k1x;i,j+1 − 4

(
xi,j (k) + h

2
k1x;i,j

)]
,

k2y;i,j = β
(
xi,j (k) + h

2
k1x;i,j

)
,

k2z;i,j = xi,j (k) + h
2
k1x;i,j,






k3x;i,j = α
[
−yi,j (k) − h

2
k2y;i,j + γ

(
xi,j (k) + h

2
k2x;i,j

)

−W
(
zi,j (k) + h

2
k2z;i,j

) (
xi,j (k) + h

2
k2x;i,j

)]

+D
[
xi−1,j (k) + h

2
k2x;i−1,j + xi+1,j (k)

+h
2
k2x;i+1,j + xi,j−1 (k) + h

2
k2x;i,j−1 + xi,j+1 (k)

+h
2
k2x;i,j+1 − 4

(
xi,j (k) + h

2
k2x;i,j

)]
,

k3y;i,j = β
(
xi,j (k) + h

2
k2x;i,j

)
,

k3z;i,j = xi,j (k) + h
2
k2x;i,j,
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



k4x;i,j = α [−yi,j (k) − hk3y;i,j + γ (xi,j (k) + hk3x;i,j)

−W (zi,j (k) + hk3z;i,j) (xi,j (k) + hk3x;i,j)]

+D [xi−1,j (k) + hk3x;i−1,j + xi+1,j (k)

+hk3x;i+1,j + xi,j−1 (k) + hk3x;i,j−1 + xi,j+1 (k)

+hk3x;i,j+1 − 4 (xi,j (k) + hk3x;i,j)] ,

k4y;i,j = β (xi,j (k) + hk3x;i,j) ,

k4z;i,j = xi,j (k) + hk3x;i,j,

and h = 0.004 is an interval.

Using the model (4.9), MCNNs can be implemented in an FPGA–

based system with the block diagram shown in Fig. 4.10. The core

of system is the “calculation and control block” which computes the

integration of Eqs. (4.9), displays the results on a monitor and controls

the interface with the RAM memory.

Here, RAM memory is an IS42S16400 high–speed synchronous dy-

namic RAM. It is the external memory provided on the development

board and is used to store the state variables data of the memristive

cells.

4.2.2 Experimental results

The whole system consists of an Altera DE2 development board and a

monitor. DE2 board includes a Cyclone II EP2C35F672C6 FPGA chip

in a 672–pin package and provides other hardware resources to connect

to other external devices. The DE2 board is connected to the monitor



4.2 FPGA–based generation of autowaves in Memristive Cellular Neural Networks 61

Fig. 4.10: Block diagram of the whole system based on an FPGA chip.

through a VGA DAC (10–bit high–speed triple DACs) with VGA–out

connector. The calculation and control block, RAM driver block, and

monitor driver block are programmed on FPGA chip with hardware

description language VHDL. Firstly, the calculation and control block

based on Altera’s Nios II processor emulates MCNN by integrating Eqs.

(4.9) for a time step. After that, the result is stored in the RAM and

displayed on the monitor. The outputs of the FPGA system as shown

in the monitor are then captured by a camera as reported in Figs. 4.11,

4.12, 4.13 and 4.14. These figures are intended to demonstrate that the

generated waves have the main properties of the autowaves, namely an

amplitude and shape of the wave that do not change during propaga-

tion, the absence of reflection or interference, and annihilation when

two waves collides.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.11: Autowave propagation from the left–hand side to the right–

hand side of the MCNN.

(a) (b) (c)

(d) (e) (f)

Fig. 4.12: Autowave formation starts from the centre of MCNN.
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(a) (b) (c)

(d) (e) (f)

Fig. 4.13: Annihilation of two colliding autowaves.

(a) (b) (c)

(d) (e) (f)

Fig. 4.14: Annihilation of two colliding autowaves.
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Simple memristive time–delay chaotic

systems

Memristive systems have appeared in various application

fields from non–volatile memory devices and biological struc-

tures to chaotic circuits. In this chapter, we propose nonlin-

ear circuits based on memristive systems with the presence of

delay, i.e., memristive systems in which the state of the mem-

ristor depends on the time–delay. These systems can exhibit

chaotic behaviour and, notably, in the second model, only a

capacitor and a memristor are required to obtain chaos.

Chaotic circuits have been designed to confirm theoretical models

[43] as well as to be used in diverse applications such as secure chaotic

communications [34], robotics [8] or random generator implementation

[121]. Chaotic circuits can be either autonomous or non–autonomous,

and an actual issue on the research on chaotic is the design of chaotic

circuit with the minimum number of elements. On one hand, some

simple non–autonomous chaotic circuits were proposed. Linsay built an

anharmonic oscillator with a resistor, an inductor, and a varactor diode

[63]. Dean [36] presented a circuit with a capacitor, a linear resistor, and
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a resistor including ohmic losses in the inductor winding. Chaos could

occur in a sinusoidally driven second–order circuit made of three linear

elements and a Chua’s diode [58]. A non–autonomous chaotic circuit

based on one transistor, two capacitors, and two resistors was described

by Lindberg [62, 42]. On the other hand, in the realm of autonomous cir-

cuits, Chua’s circuit has received a significant amount of attention [43].

The four–element Chua’s circuit introduced in [10] can be considered

as the simplest circuit of this kind. In addition, by using a nonlinear ac-

tive memristor, a three–elements autonomous circuit has been realized

[72]. Piper [80] introduced some simple autonomous chaotic circuits us-

ing only op–amps and linear time–invariant passive components. More

recently, the autonomous Hartley’s oscillator based on a junction field

effect transistor (JFET) and a tapped coil has been implemented [104].

Hence, the authors have named it the simplest chaotic two–component

circuit. However, it is notable that, when the Tchitnga’s circuit is ana-

lyzed in terms of the concept of mathematical simplicity given [80], it

is not really simple because of its four state equations.

From another point of view, if the prospective study is to create

a simple chaotic circuit described by few dynamical equations, it is

clear that time–delayed systems are good candidates. Due to time–

delay these systems are infinite–dimensional dynamical systems [118]

and thus a system described by just one delay differential equation can

be chaotic.

In this chapter, we investigate the possibility of designing memris-

tive time–delay systems (MTDS) exhibiting chaotic behaviour. In par-
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ticular, we introduce three different autonomous MTDS models and

propose implementations of the second model which consists of just

two components: a time–delay memristive element and a capacitor as

well as the third model consisting of just one memristive element.

5.1 Models of memristive time–delay systems

This Section is devoted to the introduction of the mathematical models

of two MTDS showing chaotic behavior. These models are built starting

from circuit configurations who are good candidates for the generation

of chaos. This is in view of the final aim of our research, which is the

real implementation of the mathematical model introduced.

5.1.1 The 6–element memristive time–delay system

The first model introduced in this chapter is the MTDS shown in

Fig. 5.1. The MTDS consists of an integrator, a nonlinear active mem-

ristor, and a single time–delay block. Analogously to the approach pre-

sented in [71], a nonlinear active memristive system is considered. In

particular, it is governed by the following equations:





ẏ = f (y, vM , t) = lvM + my + nvMy

iM = G (y, vM , t) vM = αvM + βvMy2,
(5.1)

where vM , iM , y are the voltage across the terminals of the memristive

system, the current through it and its state variable, respectively, and

l, m, n, α, β are constants. By applying the Kirchhoff’s circuit laws to

the MTDS in Fig. 5.1, the following circuit equations are obtained:
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Fig. 5.1: Circuital model of the 6–element MTDS based on a nonlinear

active memristor and a delay unit.





dvC(t)
dt

= − α
C
vC (t) − 1

RC
vC (t − τ ) − β

C
vC (t) y2 (t)

dy(t)
dt

= lvC (t) + my (t) + nvC (t) y (t) ,
(5.2)

where τ is the time–delay. The dimensionless equations of the 6–element

MTDS are derived as follows





ẋ = ax + bxτ + cxy2

ẏ = lx + my + nxy,
(5.3)

where x = vC (t), xτ = x (t − τ), a = − α
C

, b = −1
RC

, and c = − β
C

. If we

set a = 1.5, b = −2, c = −2, l = 2.5, m = −0.5, and n = −5, Eqs.

(5.3) become
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Fig. 5.2: Projection of the chaotic attractors exhibited by the 6–element

MTDS (5.4).





ẋ = 1.5x − 2xτ − 2xy2

ẏ = 2.5x − 0.5y − 5xy.
(5.4)

Once fixed the values of the parameters, Eqs. (5.4) have been numer-

ically integrated for different values of τ and chaos has been obtained

through a sequence of period–doubling bifurcations induced by increas-

ing values of this bifurcation parameter. The chaotic attractor obtained

for τ = 1.3 is shown in Fig. 5.2, while the bifurcation diagram of Eqs.

(5.4) when τ is varied from 0.3 to 1.6 is illustrated in Fig. 5.3.

5.1.2 The 2–element memristive time–delay system

The most simple chaotic circuit based on memristor is the so–called

3–element circuit introduced in [72]: this consists of only three circuit

elements (an inductor, a capacitor and a memristive system), since,

according to the Poincarè-Bendixson theorem [13], three is the min-
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Fig. 5.3: Numerical bifurcation diagram for the 6–element MTDS,

τ ∈ [0.3, 1.6].

imum number of state variables for an autonomous continuous–time

system to be able to generate chaotic behavior. However, when time–

delay systems are dealt with, since they can be considered as infinitive–

dimensional dynamical systems [66], even one delay differential equa-

tion is enough to generate chaos [40, 52]. For this reason, we investi-

gated maybe the simplest configuration with one time–delay memris-

tive system: the parallel of a memristive system and a second circuit

element. One can either consider the parallel with a resistor or with a

memory element (inductor or capacitor). The first case was discarded,

because the presence of a resistor in parallel with the meristive sys-

tem has the only effect of redefining the i − v characteristics of the

memristive system. In the second case it is equivalent to consider an
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inductor or a capacitor. We focused on the parallel of a capacitor with

a nonlinear active memristive system. The circuit is shown in Fig. 5.4.

The memristive system in Fig. 5.4 is a voltage–controlled one–port

system described by the following equations

M
i

M
vC C

v

C
i

Fig. 5.4: The 2–element MTDS.





ẋ = f (xτ , vM , t) = axτ + b |xτ | + cvM

iM = G (x, vM , t) vM = (α + βx) vM ,
(5.5)

where x is the state variable of the memristor, τ is time–delay and

a, b, c, α, β are constants. By applying the Kirchhoff’s circuit laws and

the constitutive relationship of the memristive system (5.5), the equa-

tions governing the circuit are obtained:




dx(t)
dt

= ax (t − τ) + b |x (t − τ )| + cvC (t)

dvC(t)
dt

= − α
C
vC (t) − β

C
x (t) vC (t) .

(5.6)
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By defining y = vC (t), xτ = x (t − τ), m = − α
C

, and n = − β
C

, the

following dimensionless equations are derived for the 2–element MTDS:




ẋ = axτ + b |xτ | + cy

ẏ = my + nxy.
(5.7)

In the following we set a = 1, b = −2, c = 5, m = 0.5, and n = −0.9

and consider τ as a bifurcation parameter. Eqs. (5.7) become:




ẋ = xτ − 2 |xτ | + 5y

ẏ = 0.5y − 0.9xy.
(5.8)

Eqs. (5.8) have been numerically integrated and chaotic behavior

has been obtained for τ & 1.25. An example of the chaotic behavior

obtained with the 2–element MTDS is shown in Fig. (5.5), while the

bifurcation diagram with respect to τ is shown in Fig. (5.6). Another

interesting bifurcation parameter is b. When this parameter is varied,

chaos is preserved for a quite large interval, beyond which periodic be-

havior or stable equilibrium point is obtained. The bifurcation diagram

with respect to b is shown in Fig. (5.7).

5.1.3 One–element memristive time–delay system

In the previous Section a memristive time–delayed system with two

elements (only a capacitor and a memristor) has been presented. This

simple configuration can be an autonomous chaotic oscillator, however

the second circuit element is a memory element. In order to construct a

simpler configuration, we consider the novel memristive system which

consists of only a memristor and a DC voltage source.
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Fig. 5.5: Chaotic attractor of two–element MTDS (5.8) obtained for

τ = 1.3.

For the sake of simplicity, we start from the circuit configuration

shown in Fig. 5.8 where the memristive time–delay system (MTDS)

includes a DC voltage source and a nonlinear active memristor.

The memristive system in Fig. 5.8 is a voltage–controlled one–port

system described by the following equations




ẋ = f (xτ , vM , t) = axτ + bsgn (xτ ) + cvM

iM = G (x, vM , t) vM = (α + βx) vM ,
(5.9)

where x is the state of the memristor. There the signum function sgn(x)

which can be implemented easily by an operational amplifier [119, 80,

96] is defined as

sgn (x) =





−1, for x < 0

0, for x = 0

1, for x > 0.

(5.10)
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Fig. 5.6: Numerical bifurcation diagram for the 2–element MTDS (5.8),

τ ∈ [1, 1.6].

By applying the Kirchhoff’s circuit laws to the MTDS, the circuit equa-

tions are obtained as




dx(t)
dt

= ax (t − τ) + bsgn (x (t − τ)) + cVe

iM (t) = (α + βx (t))Ve.
(5.11)

where τ is the delay. By defining y = iM(t), the dimensionless equation

of MTDS is derived as




ẋ = axτ + bsgn (xτ ) + cVe

y = αVe + βVex.
(5.12)

The parameters are chosen as a = −1, b = 1, c = −0.5, VE = 1,

α = −0.5 × 10−3, and β = 0.625 × 10−3, hence Eqs. (5.12) become




ẋ = −xτ + sgn (xτ ) − 0.5

y = −0.5 × 10−3 + 0.625 × 10−3x.
(5.13)
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Fig. 5.7: Numerical bifurcation diagram for the 2–element MTDS (5.8),

b ∈ [−2.2,−1.8].

When τ equals 2, the maximum Lyapunov exponent of the MTDS

(5.13) calculated by the discussed method in [40, 117, 95] is λmax ≃
0.1633 therefore the system (5.13) is a chaotic system. The chaotic

attractor and the state variable y obtained for τ = 2 are illustrated in

Fig. 5.9 and Fig. 5.10, respectively.

5.2 Implementation of the 2–element memristive

time–delay system

In this Section we discuss the implementation of the 2–element mem-

ristive time–delay circuit and related experimental results. The mem-

ristive system in Eqs. (5.5) is implemented through a multiplier and

a series of operational–based blocks devoted to realize the different
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M
i

M
v

e
V

Fig. 5.8: Model of MTDS based on a single nonlinear active memristor.

terms appearing in Eqs. (5.5), so that the whole circuit is implemented

as in Fig. 5.11. It consists of a capacitor C1 in parallel with the cir-

cuitry needed to implement the memristive system. The state variables

of the mathematical model x, y are implemented as voltages across

the two capacitors C2, C1 respectively, following for the design of the

operational–based blocks and for the choice of the parameters of the

circuit components the design guidelines detailed in [4, 5, 43, 71, 72, 96].

The time–delay block has been also implemented with an operational–

based approach. In particular, the approach discussed in [21] and based

on a cascade of Bessels filters has been used. This approach is suitable

to implement time–delays in the order of magnitude of milliseconds as

required in our study.

The circuit equations have the following form
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Fig. 5.9: Chaotic attractor exhibited by the MTDS (5.13) in the phase

plane x − xτ .






dx
dt

= 1
R13C2

(
−x + R11

R8
x + R11

R10
xτ − R17

R16

R11

R7
|xτ | + R11

R9
y
)

dy
dt

= 1
R3C1

y − R4+R5

10R3C1R4
xy.

(5.14)

TL084 opamps and an Analog Devices AD633 multiplier have been

used. Values of resistors and capacitors are reported in Fig. 5.11. The

schematic of the time–delay block is shown in Fig. 5.12. The value of

the time–delay implemented in this block is Tdelay = 1.3ms, so that the

dimensionless delay τ is:

τ =
Tdelay

R13C2

= 1.3. (5.15)

The 2–element memristive time–delay circuit has been implemented

on a breadboard with discrete off–the–shelf components. Signal wave-
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Fig. 5.10: Waveform of the state variable y of the MTDS (5.13) for

τ = 2.



5.2 Implementation of the 2–element memristive time–delay system 79

y

x

x_tau

0

0

0

0

0

0

0

Delay Unit

C1

1uF

R15

100k

R15

100k

U7U7

+

-

OUT R13

1k

R13

1k

R5

34k

R5

34k

U6U6

+

-

OUT

R4

2k

R4

2k

R3

2k

R3

2k

R16

100k

R16

100k

R2

2.2k

R2

2.2k

R10

100k

R10

100k

R12

100k

R12

100k

R1

2.2k

R1

2.2k

U4U4

+

-

OUT

R11

100k

R11

100k

D1

D1N4148

D1

D1N4148

U3

AD633

U3

AD633

X11

X22

Y13

Y24

Z6

W 7

V
+

8
V
-

5

C2

1u

C2

1u

U5U5

+

-

OUT

R17

110k

R17

110k

U2U2

+

-

OUT

U1U1

+

-

OUT

R9

20k

R9

20k

R14

100k

R14

100k

U8U8
+

-

OUT

R8

100k

R8

100k

R7

50k

R7

50k

R6

11.11k

R6

11.11k

Fig. 5.11: Schematic of the 2–element memristive time–delay circuit.

R17 is a variable resistor which implements the bifurcation parameter

b. The values of components are as follows R1 = R2 = 2.2 kΩ, R3 =

R4 = 2 kΩ, R5 = 34 kΩ, R6 = 11.11 kΩ, R7 = 50 kΩ, R9 = 20 kΩ,

R13 = 1 kΩ, R17 = 110 kΩ, R8 = R10 = R11 = R12 = R14 = R15 =

R16 = 100 kΩ, and C1 = C2 = 1 µF .

forms have been recorded by using a data acquisition board National

Instruments SCB–68 with a sampling frequency of fs = 10kHz for

T = 5s. The chaotic attractor obtained for R17 = 100kΩ, correspond-

ing to b = −2, is shown in Fig. 5.13. A good agreement between the

theoretical and experimental attractor can be observed. We have then

investigated the behaviour of the circuit with respect to b, by varying
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Fig. 5.12: Schematic of the delay unit including 6 Bessel filters in series

where R18 = R19 = R20 = R21 = . . . = R28 = R29 = 10 kΩ, C3 = C5

= . . . = C2i+1 = . . . = C13 = 22 nF , and C4 = C6 = . . . = C2i = . .

. = C14 = 10 nF .

the value of the variable resistor R17. There R17 consists of a 90kΩ

resistor in series with a 20kΩ trimmer.

The experimental bifurcation diagram showing the local maxima of

the output signal y at different values of R17 is shown in Fig. 5.14.

Chaotic regions of the system behaviour and windows of periodic be-

haviors are observed in the bifurcation diagram. The experimental bi-

furcation diagram confirms the numerical analysis carried out in pre-

vious Section.
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(a) (b)

Fig. 5.13: Experimental chaotic attractor of the 2–element memristive

time–delay circuit in (a) x(t) – y(t) plane, and (b) x(t) – x(t−τ) plane

when R17 = 100 kΩ, and X axis = Y axis = 1 V/div.

5.3 Implementation of the single–memristor–based

chaotic circuit

In order to confirm the theoretical memristive system in Eqs. (5.13),

the single–memristor–based chaotic circuit is implemented by using

cost–effective electronic components. The whole circuit (see Fig. 5.15)

consists of a DC voltage source (Ve) in parallel with a memristive sys-

tem. It has been designed following an approach based on operational

amplifiers [43, 71, 96]. The state variables of the mathematical model

x, y are the voltage across the capacitor C1 and the current through

the memristive system respectively. The time–delay block has been also

implemented with an operational–based approach [21] and its detailed

schematic is illustrated in Fig. 5.16. The circuit equations are derived
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Fig. 5.14: Experimental bifurcation diagram for the 2–element mem-

ristive time–delay circuit with respect to the parameter b.

from Fig. 5.15 as follows





dx
dt

= 1
C2

(
− 1

R6
xτ + Vsat

R7
sgn (xτ ) − 1

R8
Ve

)

y = − 1
R3

Ve + R4+R5

10R3R4
Vex,

(5.16)

where Vsat is the saturation voltage of the operational amplifier U5.

Waveforms of the chaotic attractor displayed on the oscilloscope have

been captured as in Fig. 5.17. The good agreement between the theo-

retical and experimental attractor confirms that chaos can be obtained

by our single–memristor–based chaotic circuit
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Fig. 5.15: Schematic of the single–memristor–based chaotic circuit in

which the values of components are selected as follows: R1 = R2 = 2.2

kΩ, R3 = R4 = 2 kΩ, R5 = 23 kΩ, R6 = 1 kΩ, R7 = 14 kΩ, R8 = 2

kΩ, and C1 = 1 µF .



84 5 Simple memristive time–delay chaotic systems

Fig. 5.16: Schematic of the delay unit based on the proposed approach

in [21] where R9 = R10 = R11 = R12 = . . . = R27 = R28 = 10 kΩ, C3

= C5 = . . . = C2i+1 = . . . = C21 = 10 nF , and C2 = C4 = . . . =

C2i = . . . = C20 = 22 nF . The value of the time–delay of this unit is

Tdelay = 2ms corresponding the dimensionless delay τ = 2.
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Fig. 5.17: Experimental chaotic attractors displayed in x(t)− x(t− τ)

phase plane (horizontal axis: 1 V/div; vertical axis: 1 V/div).
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Noise in chaotic circuits

The presence of noise is considered in two systems: a single

chaotic system with only one stable equilibrium and a network

of Chua’s circuits. In the first system, we develop a novel

control strategy for it both in the ideal case of absence of

noise and in the presence of noise based on the exploitation of

its peculiarities. While in the second one, we experimentally

investigate the robustness to noise of synchronization in all

the four–nodes network motifs.

6.1 Chaos control in a system with only one stable

equilibrium and in the presence of noise

Three-dimensional (3-D) autonomous system has received an enormous

amount of attention because it can be considered as the typical model

of chaotic systems. Although numerous 3-D autonomous chaotic sys-

tems were found [96], there has been an ongoing discovery. It is worth

noting that the novel chaotic systems with only stable equilibria have
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reported recently. Chen and Wang proposed chaotic systems with only

one stable equilibrium [112, 113] which cannot be proven by applying

Silnikov criterion. The 3-D chaotic system with two stable node-foci in-

cluding only two quadratic terms in a form very similar to the Lorenz

system was introduced by Yang [122]. By generalizing a Sprott C sys-

tem, Wei [116] investigated a new 3-D chaotic system with only two

stable equilibria. Another 3-D autonomous chaotic system, which is

topologically non-equivalent to the original Lorenz and all Lorenz-like

systems, was studied by theoretical analysis in [115]. Moreover the ap-

proach constructing a chaotic system with any number of equilibria was

presented in [114]. These discoveries indicate a relationship between the

local stability of an equilibrium and the global complex dynamical be-

haviors of a chaotic system.

Controlling chaos has significant applications in various areas in-

cluding physics, biology, communications or engineering [15, 87]. Start-

ing from the first works of Ott, Grebogi, and York [75], many control

techniques have been reported such as time-continuous delayed feed-

back control [88], notch filter feedback control [23, 1] or linear feedback

control [26]. Depending on the characteristics of systems, appropriate

techniques were chosen to control chaos in these ones. The discoveries

of chaotic systems with the presence of stable equilibria motivate us to

develop an effective control method for such systems.
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6.1.1 Chaotic system with only one stable equilibrium

By adding a tiny perturbation to the Sprott E system [94], Wang and

Chen [113] obtained a new system





ẋ = yz + a

ẏ = x2 − y

ż = 1 − 4x,

(6.1)

where a is a constant. The only one equilibrium of the system (6.1) is

P (xE , yE, zE) =

(
1

4
,

1

16
,−16a

)
(6.2)

Because the tiny perturbation could change the stability of equi-

librium, system (6.1) with only one stable equilibrium could exhibit

chaotic behaviors, i.e., when a = 0.006 (see Fig. 6.1).

In order to observe the presence of multistability regions of system

(6.1), forward and backward continuation for the bifurcation parameter

a in the range of a ∈ [−0.01, 0.02] have calculated and presented in

Fig. 6.2. It is clear that chaotic attractor and stable equilibrium coexist,

demonstrating the relation between the local stability of equilibria and

the global complex dynamic of a system [112, 113], which cannot be

proven by applying Silnikov criterion [91]. On one hand due to the

existence of the stable equilibrium, chaos can be suppress by driving

the system trajectory close to the equilibrium. But on another hand,

the addition of an external unexpected force, especially noise may lead

the system from the equilibrium to chaotic attractor.
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Fig. 6.1: The chaotic attractor of system (6.1) with only one stable

equilibrium (yellow point), when a = 0.006.

6.1.2 Feedback control

Because the influence of noise on nonlinear dynamical systems has

recorded in literature such as noise–induced synchronization [102, 101],

noise-induced transitions [59, 12] or noise-induced chaos [44, 39], it is

interesting to consider the effect of noise on system (6.1). In fact, Chen’s

system with the presence of noise is given as





ẋ = yz + a

ẏ = x2 − y + εẇ

ż = 1 − 4x,

(6.3)

where ẇ is independent standard Wiener process with Gaussian incre-

ment, and the parameter ε is the noise intensity.
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Fig. 6.2: Forward (blue line) and backward (red line) continuation of

system (6.1) for a.

Linear feedback is one of the most effective feedback methods for

chaos control due to the fact that this technique requires a simple struc-

ture controller and does not need the access to the system parameters.

Linear feedback control applied successfully to control chaos in litera-

ture [25, 26]. Here, a new feedback control law will be introduced to

suppress chaos and lead the system to P (xE , yE, zE). The controlled

system is defined as 



ẋ = yz + a

ẏ = x2 − y + εẇ

ż = 1 − 4x + uz,

(6.4)

where the controller uz is
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uz =





0 if |z − zE| ≤ c

k (z − zE) if |z − zE| > c,
(6.5)

and k, c are constants.

In the absence of noise, after driving the system into the basin of

attraction of the equilibrium point, the control uz can be switched off.

In contrast, in the presence of noise we have thus to consider that the

noise can push the trajectory away from the equilibrium point and thus

the control has to be reactivated. In order to estimate the threshold c

for which the control has to be activated, we defined as δ the value of

the constant that has to be initially added to go from the equilibrium

point to the chaotic attractor. This value is presented as a function of

the parameter a in Fig. 6.3 and is used to define the threshold for the

control c = δ.

0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

2.5

a

δ

Fig. 6.3: The threshold δ as the function of the parameter a.
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6.1.3 Experimental results

Experimental implementations have been carried out to confirm the

proposed control strategy.

Emulating chaotic system with only one stable equilibrium

by using CNN-based approach

Arena et al. introduced State Controlled-Cellular Neural Networks (SC-

CNNs) for the analysis and design of complex system [4, 5]. Because

of its simplicity such as the use of only common off-the-shelf electronic

components, not requiring inductor, SC-CNN based method has been

applied to implement many chaotic circuits [43, 50, 20]. A SC-CNN

based circuit is realized to emulate Chen’s system (6.1). The schematic

of the circuit and values of components are shown in Fig. 6.4.

By applying the Kirchhoff’s laws, the following equations are ob-

tained for the Chen’s system




x = 1
R7C1

(
−x + R1

R5
x + R1

R4
yz + R1

R3
a
)

y = 1
R12C2

(
−y + R8

R10
x2

)

z = 1
R18C3

(
−z + R13

R15

z + R13

R16

V1 − R13

R17

x
)

.

(6.6)

The captured chaotic attractors (see Fig. 6.5) and experimental con-

tinuations (see Fig. 6.6) are in good agreement with simulations.

Experimental setup and measurements

The experimental setup for chaos control of the system in the presence

of noise is constructed as shown in Fig. 6.7. It consists of Chen’s circuit,

controller, and noise generator.
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Fig. 6.4: Schematic of the circuit emulating Chen’s system (6.1). Here,

the values of the components are chosen as follows: R1 = R2 = R3 =

R4 = R5 = R6 = R8 = R9 = R10 = R11 = R13 = R15 = R16 = R20 =

R25 = 100 kΩ, R7 = R12 = R18 = 100 Ω, R14 = 25 kΩ, R17 = 33.33

kΩ , R21 = R23 = 10 kΩ, R22 = 690 Ω, R19 = R26 = R28 = R30 = 1

kΩ, R27 = R29 = 9 kΩ, and R24 which implements the bifurcation

parameter a is a variable resistor, C1 = C2 = C3 = 4.4 µF . The DC

sources are V 1 = 1V , V 2 = V 3 = 15V .

In our experiments, a Chua’s circuit is employed to generate noise

because of its simplicity and convenience [2, 3]. The frequency of this

circuit is about 20 times greater than that of the Chen’s circuit in order

to let the Chua’s circuit act as a noise generator. Experimental data

have been acquired by using a National Instruments (NI–SB68) data

acquisition board with a period of time T = 10s. Fig. 6.8 shows the

trend of the state variable z(t) and the control law uz(t) in the absence
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(a) x-y phase plane

(b) x-z phase plane (c) y-z phase plane

Fig. 6.5: Experimental chaotic attractors displayed on the oscilloscope

when a = 6mV .

of noise. The system starts in the chaotic attractor. Then the control uz

is activated and it drives the system into the basin of attraction of the

equilibrium point. After that although the control uz is switched off, the

system still stays in this state. In contrast, the same does not happen in

the presence of noise as illustrated in Fig. 6.9. After driving the system

to the equilibrium point, if the control uz is turned off, the system goes

to the chaotic attractor since the noise can lead the trajectory of the
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Fig. 6.6: Experimental continuations for the parameter a: forward

continuation – blue line and backward continuation – red line.

system going far from the equilibrium point. Experimental results show

the effectiveness and the precision of the designed controller.

6.2 Robustness to noise in synchronization of

network motifs

Network motifs are defined as recurring, significant patterns of inter-

connections that can be found in complex networks [68]. Such struc-

tures of interconnections occur in a number, which is higher than in

surrogate networks, obtained by randomly connecting the same num-

ber of nodes with the same number of links of the original networks.

Therefore, they represent a clear topological feature distinguishing real
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Fig. 6.7: Experimental setup including: Chen’s circuit, noise, and con-

troller.

networks from randomized ones. In particular, motifs are found in a

variety of complex networks from different fields: ecology (for instance,

food webs), biochemistry (genetic networks, for example), neurobiol-

ogy (for instance, neural systems), and engineering (connectivity net-

works of logic electronic circuits) [68, 17]. Motifs abundant in networks

from a specific field are distinct from those appearing in other types

of networks, thus emphasizing that they have a significant role in the

structure of that particular class of networks.

For this reason, beyond the occurrence of motifs in real networks,

their relationship with the dynamical behavior exhibited by the net-

work has been also studied. In particular, understanding how the topol-

ogy of these motifs influence synchronization [16, 108] has been the sub-
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Fig. 6.8: Trend of the state variable z(t) and the control law uz(t) in

the absence of noise.

ject of several works [64, 109]. More specifically, in [109], the emergence

of collective phase synchronization in triangular, square, and pentago-

nal network motifs, made of Kuramoto phase coupled oscillators, has

been investigated and it has been found that lower synchronization

thresholds occur in motifs with high interconnectedness, while in [64],

a measure of the stability of the synchronous state in motifs has been

introduced and found to be correlated (in motifs of undirected links)

with their relative abundance in real networks.

Another aspect of interest in the synchronization of network motifs

is the study of heterogeneous networks, i.e., networks of nodes with

different dynamical behavior. In star–like motifs in which the central

node (i.e., the hub) oscillates at different frequencies with respect to
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Fig. 6.9: Trend of the state variable z(t) and the control law uz(t) in

the presence of noise.

the peripheral ones (the leaves), phenomena such as remote synchro-

nization [14] or explosive synchronization [46] may arise. These studies

are in turn applied to understand what happens in other less simple

topologies of complex networks of heterogeneous nodes.

In this Section, we experimentally investigate the role of noise in

all the four–nodes network motifs, and in particular how it affects syn-

chronization.

6.2.1 Experimental setup

The experimental setup used in this work consists of a network of

chaotic oscillators (Chua’s circuits [67, 43]), a waveform generator Agi-

lent 33220A used to generate a Gaussian white noise and an acquisition
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board NI USB 6255. Synchronization in the presence of a noisy oscilla-

tor has been investigated, i.e., noise was applied only to a node of the

network. In particular, four nodes have been taken into account and

all the four–nodes possible undirected motifs have been investigated.

There are six distinct four–nodes undirected network motifs as shown

in Fig. 6.10. For each of these motifs, noise was applied to one node

and a series of acquisitions of all the network signals with respect to

increasing values of the noise level has been performed. The analysis

has been then repeated for the other nodes of the network and then for

the other motifs. So, for each motif four distinct series of acquisitions

have been performed.

Fig. 6.11 shows the Chua’s circuit used as a node of the network.

The configuration used is the so–called state–controlled cellular nonlin-

ear network one, discussed in detail in [43]. The parameters are chosen

so that the circuit exhibits the double scroll chaotic attractor: R1 = 4

kΩ, R2 = 13.3 kΩ, R3 = 5.6 kΩ, R4 = 20 kΩ, R5 = 20 kΩ, R6 = 380

Ω (potentiometer), R7 = 112 kΩ, R8 = 112 kΩ, R9 = 1 MΩ, R10 = 1

MΩ, R11 = 8 kΩ, R12 = 1 kΩ, R13 = 51.1 kΩ, R14 = 100 kΩ,

R15 = 100 kΩ, R16 = 100 kΩ, R17 = 100 kΩ, R18 = 1 kΩ, R19 = 8.2

kΩ, R20 = 100 kΩ, R21 = 100 kΩ, R22 = 7.8 kΩ, R23 = 1 kΩ, R24 = 2

kΩ, R25 = 2 kΩ, C1 = 100 nF , C2 = 100 nF , and C3 = 100 nF . The

power supply of the circuit is ±9V .

Four of these circuits are used in the experimental setup, which is

schematically illustrated in Fig. 6.12a. The circuits are coupled through

resistors connected between the corresponding capacitors. In this way,
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bidirectional, diffusive couplings are realized. The coupling network re-

flects the structure of the motif after substitution of each edge with a

resistor of value Rc. An example of coupling network (the one corre-

sponding to motif M2) is reported in Fig. 6.12b.

(a) M1 (b) M2

(c) M3 (d) M4

(e) M5 (f) M6

Fig. 6.10: Four–nodes undirected network motifs. Symbols are also as-

sociated to node labels to refer to the nodes in the plot of experimental

results.
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Fig. 6.11: Circuitry for a single node: the Chua’s circuit.

We now describe the mathematical model of the experimental setup

used. Each single isolated node obeys to the following dimensionless

equations: 




ẋi = α (yi − h (xi))

ẏi = xi − yi + zi

żi = −βyi,

(6.7)

with h (x) = m1x + 0.5 (m0 − m1) (|x + 1| − |x − 1|), i = 1, ..., 4, and

where xi, yi, and zi represent the voltage across capacitors C3i−2, C3i−1,

and C3i.

When coupling between the network nodes is considered, one has to

take into account that the coupling is bidirectional and diffusive and

takes place between the variables associated to capacitors C3i−2 and
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(a)

(b)

Fig. 6.12: (a) Schematic illustration of the experimental setup. (b) An

example of coupling network: the coupling network to implement motif

M2.
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that noise is added to a node of the network, say circuit ī, so that the

dimensionless equations describing the whole network are





ẋi = α (yi − h (xi)) + σ
4∑

j=1

gijxj + ξiη

ẏi = xi − yi + zi

żi = −βyi,

(6.8)

where gij are the coefficients of the Laplacian matrix of the graph, i.e.,

gij = 1 if there is an edge between node i and j, gij = 0 if not, and

gij = −ki where ki is the degree of node i. σ represents the strength of

the coupling (namely, the coupling coefficient) and in our experimental

setup is σ = R18

Rc
. Finally, η represents the noise applied to circuit ī

(ξi = 1 if i = ī and ξi = 0 if i 6= ī).

6.2.2 Experimental results

As mentioned above, for each of the 6 four–nodes motifs, we performed

a series of four acquisition campaigns with respect to increasing values

of the noise level. In each of these campaign, a zero-mean Gaussian

noise was applied to a single node of the network and all the state

variables of the networks were acquired with a sampling rate of fs=

70 kHz. The noise was generated by a waveform generator Agilent

33220A and the noise level was varied by changing, at steps of 200

mV, the peak–to–peak amplitude parameter in the instrument, which

is equivalent to change the variance of the signal. After acquisition of

the whole set of signals, synchronization is evaluated by introducing the

synchronization error defined as follows. We first consider the average
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(with respect to time) Euclidean distance between the state vector of

circuits i and j,

δij =

〈√
(xi (t) − xj (t))2 + (yi (t) − yj (t))2 + (zi (t) − zj (t))2

3

〉
,

(6.9)

where 〈.〉 denotes average with respect to time. We then define the

synchronization error as follows:

δ =
1

N2

∑

i,j

δij, (6.10)

where N is the number of network nodes. Since for each motif we con-

sider the application of noise in each of the network nodes, we introduce

the subscript h in the parameter, namely δh, to indicate that it has been

calculated in the case in which noise was applied to node h.

Furthermore, in order to compare the six motifs among them, the

average synchronization error with respect to all the possible injection

nodes is also defined,

∆ =
1

N

∑

i

δh. (6.11)

The coupling resistor was set equal for all the six network motifs in

such a way that, in the absence of noise, all the networks are synchro-

nized. In particular, a value of Rc = 70 Ω has been considered. Fig. 6.13

reports the average synchronization error δh with respect to the noise

level for the four–nodes network motifs. Each of the curves shown rep-

resents the average synchronization error when noise is applied to one

of the four nodes of the network. As general trend, the synchronization
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error grows as the noise level is increased. However, it is very interest-

ing to note that in all the cases examined, when noise is applied to a

high degree node, it deteriorates synchronization less than when it is

applied to a low degree node. In fact, for motif M1 (Fig. 6.13a) node

2 has degree equal to three, while the other nodes have degree equal

to one, and the best synchronization curve with respect to the noise

level corresponds to the case in which noise is applied to node 2. Simi-

larly, in motif M2 (Fig. 6.13b) synchronization is more robust to noise

when this is applied to nodes 2 and 3 (having degree two), instead of

nodes 1 and 4 (having degree equal to one). In motif M3 (Fig. 6.13c),

node 4 has the lower performance (it has degree one, while the other

have two or three). In motifs M4 and M6 (Figs. 6.13d and 6.13f), all

the nodes have the same degree and exhibit very similar performance.

And, finally, in motif M5 (Fig. 6.13e) nodes 2 and 4 have degree three

and nodes 1 and 3 have degree two, and, indeed, all the curves have

similar behavior except for node 3 which has poorer performance.

We now compare the six motifs by considering the average behavior

with respect to the four different series of acquisitions performed for

each of the network nodes, taking into account the parameter ∆. This

parameter with respect to the noise level is shown in Fig. 6.14 for the 6

four–nodes motifs. It is worth to note that for high values of the noise

level (greater than 1 V), the network motifs show different robustness

to noise, with the best performance shown by motif M6 (the all-to-all

network) and the worst by motif M2 (the array). For low values of the
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noise level (less than 1 V), motif M2 perform slightly better than motif

M1.



108 6 Noise in chaotic circuits

(a) M1 (b) M2

(c) M3 (d) M4

(e) M5 (f) M6

Fig. 6.13: Average synchronization error δh as a function of the noise

level for the four-nodes network motifs: (a) M1; (b) M2; (c) M3; (d)

M4; (e) M5; (f) M6. Each of the four curves represents the average

synchronization error when noise is applied to one of the four nodes of

the network.
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Fig. 6.14: ∆ as a function of the noise level for the 6 four–nodes network

motifs





7

Concluding remarks

This thesis focused on the design, implementation and investigation

of new nonlinear circuits and complex phenomena in three reference

frameworks (time–delay systems, CNNs and memristive systems). The

idea was to exploit the peculiarities of such systems and combine them

together to design new complex circuits. Noticeably, there are compara-

tive few researches in the literature relative to the abilities of combining

these systems. Starting from the problem statements and proposed ob-

jectives in Chapter 1, various novel nonlinear systems were represented

sequentially through mathematical models and experimental circuits.

A general procedure for designing time–delay chaotic electronic cir-

cuit has been reviewed in Chapter 2. In order to overcome the diffi-

culties when realizing time–delay block, the approximation of an ideal

delay through a cascade of multiple second–order filters allows to de-

sign an efficient and simple circuitry. It has been shown that the use of

piece–wise linear nonlinearities simplifies the implementation stage and

makes possible the implementation of the whole circuits by only using

simple off–the–shelf circuital components like resistors, capacitors and



112 7 Concluding remarks

operational amplifiers. In addition, the implementation of time–delay

chaotic circuits with digital time–delay block has been also investigated

in Chapter 3. It has been demonstrated the ease and flexibility of this

approach for realizing chaotic circuits. Furthermore, the behavior of

the circuits with respect to the precision and the sampling rate of the

conversion process is considered through synchronization error. For fu-

ture work, the procedure will be enlarged to promoting related studies

on multiple time–delay chaotic systems.

Cellular Neural/Nonlinear Network based on memristive cells, the

basic cell consists of an oscillating circuit made up of a capacitor, an

inductor and an active memristor, are discussed in Chapter 4. Based on

this system, autowaves are able to be obtained. We anticipate that our

proposed system may be used as the basis to investigate other complex

phenomena like spiral waves or Turing pattern formation. Moreover, it

would be useful to discover new memristive CNNs by modifying the

basic cell, i.e. using simple 2–element cell.

Chapter 5 has dealt with the possibility of designing memristive

time-delay systems exhibiting chaotic behavior. We propose three non-

linear circuits based on memristive systems with the presence of delay.

It is worth noting that chaotic behaviors are observed in very simple

configurations, i.e. 2–element circuit.

Moreover, effects of noise on the chaos control of Chen’s system

with only one stable equilibrium and the synchronization of network

motifs have studied in Chapter 6. In particular, obtained results can

be generalized to apply for other similar systems.
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