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 "O frati," dissi, "che per cento milia 

perigli siete giunti a l'occidente, 

a questa tanto picciola vigilia 

 

d'i nostri sensi ch'è del rimanente 

non vogliate negar l'esperïenza, 

di retro al sol, del mondo sanza gente. 

 

Considerate la vostra semenza: 

fatti non foste a viver come bruti, 

ma per seguir virtute e canoscenza". 

 

Dante, Inferno, Canto XXVI, vv. 112-120 

 

 

 

“Appena a sud del carbonio c'è il silicio. Come accade spesso tra i vicini si tratta di una prossimità 

ambigua, che crea un po' di disagio. Come il carbonio, ma in misura minore, il silicio ha la capacità 

di formare alcune tra le lunghe molecole a catena necessarie per i processi complessi come la vita. 

E tuttavia il silicio non ha dato origine a un proprio tipo di vita; forse però da questo punto di vista 

è solamente dormiente. I prodotti principali del carbonio, gli organismi viventi, hanno impiegato 

miliardi di anni per mettere a punto meccanismi di accumulo e dispersione dell'informazioni (una 

definizione austera e sintetica di ciò che intendiamo per «vita»); nel frattempo il silicio è rimasto in 

attesa. La recente alleanza tra le due regioni, che ha visto organismi basati sul carbonio sviluppare 

utensili basati sul silicio per la tecnologia dell'informazione, ha portato alla schiavizzazione del 

silicio. Però gli organismi basati sul carbonio sono ricchi d'inventiva e stanno sviluppando sempre 

più le potenzialità nascoste del silicio, tanto che forse un giorno il silicio capovolgerà i rapporti di 

forza con il suo vicino settentrionale e assumerà il ruolo dominante. Sicuramente sui tempi lunghi il 

silicio ha grandi potenzialità, perché il suo metabolismo e la sua replicazione possono essere meno 

complessi di quelli del carbonio. Questo potrebbe rivelarsi uno dei più astuti giochi di alleanze di 

tutto il Regno” […] 

 

Peter Atkins, “The Periodic Kingdom: A Journey Into the Land of the Chemical Elements”.  

New York, BasicBooks, 1995
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Preface 
 

Over the last decades the world has been experimenting an increasing pressure to find solutions to 

energy crisis issues. As a result, the scientific research has been boosted towards the development 

of solutions related to alternative energy sources. 

For the future decades, we can only imagine either to face the current standard energy demand or to 

face an increased one. 

Since life quality levels are getting continuously better in most of the world, energy needs in such a 

scenario could be satisfied only by photovoltaic energy if we think to meaningfully cut the 

consumption of both traditional fossil fuels and nuclear energy. 

This story comes from the past, the need for the development of renewable energy sources put itself 

under the world spotlight for the first time in the 70s, when the western countries experimented a 

serious energy crisis sponsored by the Middle-East OPEC countries that decided to dramatically 

reduce their crude oil export as a way to politically press over the western diplomacies after the 

Yom Kippur War between Israel and its Arab neighbors.  

In the last twenty years, the Climate Change issues have gained enough popularity as well among 

developed countries’ public opinions to become a further motivation to invest in the research and 

development of renewable sources in order to improve their efficiency. 

In this geopolitical context, several research programs have been supported. Among them, the 

ENIAC Project Joint Undertaking, Energy for a green society: from sustainable harvesting to smart 

distribution, equipment, materials, design solutions and their applications, within which the present 

work has been performed. 

In particular, this thesis is focused on the optimization of photovoltaic cells, through the use of 

mathematics tools and optimization techniques based on new theories like the Genetic Algorithm 

ones. 

In the first chapter, the solar cell physics is briefly introduced, with special attention to light 

absorption phenomenon, to the main sources of loss in photovoltaic conversion and to the most 

important geometric parameters involving the cell efficiency, that will be the object of the analysis 

in the following chapters. 

In the second chapter, the global optimization problem and main techniques are introduced: the 

deterministic methods, the direction, the tunneling and the probabilistic methods, showing their 

advantages and drawbacks. 

Since we will usually deal with more than one objective function to optimize in our analysis, the 

multiobjective programming techniques are introduced in the third chapter, taking into account 

Pareto optimality theory and the most important multiobjective techniques, ranging from the ex-

ante to the ex-post methods, to the interactive ones, suggesting to us the importance of the solver 

opinions in order to give importance to results and search directions. 

In the fourth chapter, we deal the direct search algorithm for optimization, ranging from the line 

search methods, to the linear approximation to the quadratic approximation ones. 

Then, in the fifth chapter, a numerical simulation of a monocrystalline selective emitter solar cell is 

presented. As for the model implementation, the tool used has been the Technology Computer 

Aided Design (TCAD) Sentaurus. Moreover, a homogeneous emitter cell is presented and simulated 

in the same section, taking into account the dependence of efficiency on both LDOP (lowly doped) 

and HDOP (heavily doped) profiles. Finally, it has been performed an analysis of the loss 
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mechanisms involving the photovoltaic cells, bounding the Internal Quantic Efficiency of both HE 

(Homogeneous Emitter) and SE (Selective Emitter) cells, getting to the conclusions of the 

advantages of the SE cell over the HE one. 

Anyway, also the number and the way the contacts are placed within the cell play a key role in 

optimizing  the device’s efficiency. That is why in the sixth chapter, it has been performed a 

simulation of a rear contacted solar cell with special attention to the dependence of the cell’s output 

on the metallization fraction as for the short circuit current, the fill factor, the open circuit voltage 

and the device’s internal efficiency. 

In the seventh chapter, a homogeneous emitter cell has been simulated, writing a Matlab input code 

to perform the simulation with given parameters by the TCAD Sentaurus. A genetic algorithm has 

been used, gaining an improvement in Fill Factor and Efficiency of the simulated cell with regard to 

the HE cell of the seventh chapter. Since we are trying to optimize both fill factor and efficiency of 

the device, we deal with a multiobjective problem and some trade-offs solutions have been 

introduced among the points of the Pareto front. The simulation has been launched twice, using a 

maximum number of generations of 300 and 1700 respectively. By the combined use of both a 

genetic algorithm and a such a powerful tool like TCAD Sentaurus, the results obtained in this part 

are innovative and represent a quantitative improvement of the results previously obtained over this 

argument in literature. The comparison against the reference structures, together with the 

improvements gained is summarized in the tables and figures at the end of the chapter.  

In the eighth chapter, the thin-film cells are briefly introduced. Since the pressure towards the 

efficiency increase has got strong and stronger in last two decades, this gives a simultaneous answer 

to the increasing material and manufacturing cost of photovoltaic devices. 

In the ninth chapter, the thin-film physics is briefly described, together with the mathematical 

methods that will be used in the following chapter to calculate the absorption and the light’s 

diffused component. So, this chapter is dedicated to the thin-film optical model, but it also deals 

with the Monte Carlo method, a powerful stochastic method that will be used to model in a 

stochastic way the photons behavior in the photovoltaic device. 

In the tenth and last chapter, the thin-film silicon cell is optimized through the use of a Genetic 

Algorithm. Since the thin-film technology is intimately bound to the reduction of production costs, 

the optimization problem takes into account the balance between the thickness of the cell layers and 

the manufacturing cost, becoming a profit maximization problem. Also this chapter deals with the 

thin-film structures from an innovative standpoint. The obtained results are new and they represent 

a noticeable improvement in the optimization of a tandem cell.     
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1 Introduction to solar cells 
 

Semiconductor solar cells are fundamentally quite simple devices. Semiconductors have the 

capacity to absorb light and to deliver a portion of the energy of the absorbed photons to carriers of 

electrical current – electrons and holes. A semiconductor diode separates and collects the carriers 

and conducts the generated electrical current preferentially in a specific direction. Thus, a solar cell 

is simply a semiconductor diode that has been carefully designed and constructed to efficiently 

absorb and convert light energy from the sun into electrical energy. [13] 

A solar cell, so, is a device able to convert part of the energy coming from sunlight into electrical 

power, by the exploitation of the photovoltaic effect, that takes place when the light on a double 

leyer of semiconductive material produces a potential difference between the layers. 

 

1.1 Solar radiation 
All electromagnetic radiation, including sunlight, is composed of particles called photons, which 

carry specific amounts of energy determined by the spectral properties of their source. Photons also 

exhibit a wavelike character with the wavelength, λ, being related to the photon energy, Eλ, by the 

equation [1] 

 

𝐸 =
𝑐


 

 

where h is Plank’s constant and c is the speed of light. 

The sun has a surface temperature of 5762 K and its radiation spectrum can be approximated by a 

black-body radiator at that temperature. Emission of radiation from the sun, as with all black-body 

radiators, is isotropic. However, the Earth’s great distance from the sun means that only those 

photons emitted directly in the direction of the Earth contribute to the solar spectrum as observed 

from Earth. Therefore, for practical purposes, the light falling on the Earth can be thought of as 

parallel streams of photons. Just above the Earth’s atmosphere, the radiation intensity, or Solar 

Constant, is about 1.353 kW/m
2
 and the spectral distribution is referred to as an air mass zero 

(AM0) radiation spectrum. The Air Mass is a measure of how absorption in the atmosphere affects 

the spectral content and intensity of the solar radiation reaching the Earth’s surface. The Air Mass 

number is given by [2] 

 

𝐴𝑖𝑟 𝑀𝑎𝑠𝑠 =
1

𝑐𝑜𝑠
 

 

where θ is the angle of incidence (θ = 0 when the sun is directly overhead). The Air Mass number 

is always greater than or equal to one at the Earth’s surface. An easy way to estimate the Air Mass 

has been given by Green as 

 

𝐴𝑖𝑟 𝑀𝑎𝑠𝑠 =   1 +  
𝑆

𝐻
 

2

 

 

where S is the length of a shadow cast by an object of height H. A widely used standard for 

comparing solar cell performance is the AM1.5 spectrum normalized to a total power density of 1 

kW/m
2
. The spectral content of sunlight at the Earth’s surface also has a diffuse (indirect) 

component owing to scattering and reflection in the atmosphere and surrounding landscape and can 

account for up to 20% of the light incident on a solar cell. The Air Mass number is therefore further 
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defined by whether or not the measured spectrum includes the diffuse component. An AM1.5g 

(global) spectrum includes the diffuse component, while an AM1.5d (direct) does not. [1] 

Black body (T = 5762 K), AM0, and AM1.5g radiation spectrums are shown in the picture below  

 

 
Figure 1.1 - The radiation spectrum for a black body at 5762 K, an AM0 spectrum, and an AM1.5 global spectrum 

 

The specific amount of energy carried by photons is related to the spectral properties of the source 

they come from. Below, it is possible to get a look on the light spectrum, related to the wavelength.  

 

 
Figure 1.2 - The light spectrum with reference to wavelength and special attention to the visible light range 
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As we have already seen when introducing the Air Mass parameters, the atmosphere is responsible 

for alterations of the electromegnatic spectrum. This is, essentially, due to two reasons. The first 

one is that the atmosphere is divided into different layers and each of them is responsible for the 

absorption of radiations with a specific wavelength. The second one is that the atmosphere is 

responsible for the phenomenon of the Rayleigh’s scattering, related to the collision among 

different light wavelength and the air, leading to a radiations’ alteration. [22] 

 

1.2 Silicon in photovoltaic technology 
Solar cells can be fabricated from a number of semiconductor materials, most commonly silicon 

(Si) – crystalline, polycrystalline, and amorphous. Materials are chosen largely on the basis of how 

well their absorption characteristics match the solar spectrum and their cost of fabrication. Silicon 

has been a common choice due to the fact that its absorption characteristics are a fairly good match 

to the solar spectrum, and silicon fabrication technology is well developed as a result of its 

pervasiveness in the semiconductor electronics industry. [21] 

Electronic grade semiconductors are very pure crystalline materials. Their crystalline nature 

means that their atoms are aligned in a regular periodic array. This periodicity, coupled with the 

atomic properties of the component elements, is what gives semiconductors their very useful 

electronic properties. Below, you can see an abbreviated periodic table of elements. 

 

 
Figure 1.3 – Part of the periodic table of elements 

 

Note that silicon is in column IV, meaning that it has four valence electrons, that is, four electrons 

that can be shared with neighboring atoms to form covalent bonds with those neighbors.  

In the case of Silicon, each atom forms a covalent bond with four more atoms, and these are all 

valence atoms. That is the way the lattice in the molecular structure of silicon is created. [18] 

The dual behavior of semiconductor, insulant at low temperatures and conductive at higher ones, 

can be related to the behavior of electrons between valence and conduction bands. When 

temperature increases, the thermal energy somministrated to the lattice, leads to the breaking of 

some covalent bonds created among valence atoms. These atoms, thermally excited, can jump away 

from the valence band to the conduction band and they will be responsible for the conduction 

phenomena in photovoltaic. 

The amount of energy needed to break this kind of bond is called band gap (Eg) and can be 

determined as follows in the case of silicon [1] 

 

𝐸𝑔 = 1.21 − 3.60 ∙ 10−4𝑇    𝑒𝑉 
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So, for a temperature of 0 K, the band gap for silicon is 1.21 eV, and, at room temperature (300 K), 

it has decreased to 1.1 eV. That is why, at temperatures below zero, semiconductors are usually 

considered as insulant materials. [22] 

When temperature increases, the probability for a valence electron to break its covalent bonds and 

jump to the conduction band increases too. This phenomenon involves not only the valence 

electrons, because, when one of more of them leaves the valence band, it is no more completely 

occupied by the electrons, so, electrons belonging to lower states of the band can move to fill the 

free states in the valence band if properly excited by an electric camp. 

A material with the previously underlined features is called intrinsic semiconductor. In this case, 

the density of electrons is equal to the density of holes. [1] 

As shown in the picture below, electron near the maxima in valence band have been thermally 

excited to the empty states near the conduction-band minima, leaving behind holes. The excited 

electrons and remaining holes are the negative and positive mobile charges that give 

semiconductors their unique transport properties. 

 

 
 
Figure 1.4 – A simplified energy band diagram at T > 0 K for a direct band gap (EG) semiconductor. Electrons near the 
maxima in valence band have been thermally excited to the empty states near the conduction-band minima, leaving 

behind holes. The excited electrons and remaining holes are the negative and positive mobile charges that give 
semiconductors their unique transport properties 
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1.3 Conduction band and valence band density of states and Fermi-Dirac 

distribution 
The dynamic behavior of the electron can be established from the electron wave function, ψ, which 

is obtained by solving the time-independent Schrodinger equation: 

 

∇2 +
2𝑚

2
 𝐸 − 𝑈(𝑟)  = 0 

 

where m is electron mass, h is the reduced Planck constant, E is the energy of the electron, and U(r) 

is the periodic potential energy inside the semiconductor. This equation states that the electron 

energy is quantized. If we consider a wave function (r) and a sample made up by a cube of 

material through which r is the position vector, the huge number of energy levels allowed for the 

electron is very close one to another. [2] 

So, if we consider the energy interval (E, E+dE), the number of states that own this level of energy 

is indicated as n(E)dE, with n(E) indicated as density of allowed states. 

 

𝑛 𝐸 =
8 2𝜋𝑚3/2𝐸1/2

3
 

 

Not all of the allowed states are occupied. The density of occupied states will be 

 

𝑛0 𝐸 = 𝑛 𝐸 𝑝(𝐸) 

 

With 𝑝(𝐸) called Fermi-Dirac function of probability. It expresses the probability that a state at a 

given energy would be occupied as well. 

 

𝑝 𝐸 =
1

𝑒 𝐸−𝐸𝐹 /𝑘𝑇 + 1
 

 

Where EF is the Fermi’s energy, the energy at which we have p=1/2, k is the Boltzmann’s constant 

and T is the absolute temperature. This equation suggests that the parameter with a real importance 

is E-EF  that is the difference between the energy of the considered electron and the Fermi’s energy, 

because only the electrons with an amount of energy close to the Fermi’s one can play a role in the 

electrical conduction process. [25] 

In the picture below, you can see the Fermi’s energy at various temperatures. [2] 

 
Figure 1.5 - The Fermi function at various temperatures 
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1.4 Donors, acceptors and doped semiconductors  
Because of their low density, intrinsic semiconductors cannot produce a sufficient current for 

normal applications. Anyway, it is possible to alterate the normal properties of these materials 

through an adequate increase of carriers by doping the materials. Doping, in electronics, consists in 

contaminating the semiconductor with special impurities. 

Let us consider a crystal of pure silicon, where we insert some atoms of elements of the 5
th

 group, 

like phosphorus. Four electrons belonging to these atoms will be shared with the closest silicon 

atoms to create covalent bonds, while the fifth electron, still available for an additional bond, will 

stay with its phosphorus atom. So, the thermal excite and the following jump to the conduction 

band would result easier for this last electron, rather for the others, now part of four covalent bonds. 

As a result, an energy of only 0.05 eV, will be enough to free this electron and make it available for 

the electrical conduction, while it would be necessary an energy of 1.1 eV to take a silicon atom 

electron from the valence band to the conduction one. [28] 

The phosphorus atom, within the silicon lattice, is called donor, because it lends an electron to the 

conduction band. So, adding donor atoms, it is possible to increase the electron density within the 

conduction band. 

Semiconductors doped with donor atoms are called ―n type‖ semiconductors, where n stands for 

negative, because the negative carriers (electrons) are much more than holes (positive carriers). In 

this type of semiconductors, electrons within the conduction band are called majority carriers, 

while the holes in the valence band are called minority carriers. 

Let us consider now a pure silicon crystal doped with impurities belonging to elements from the 

third group of the periodic table, such as boron. Each boron atom is surrounded by four silicon 

atoms, but boron has three valence electrons, so one more electron is needed to complete the 

external atomic configuration (8 valence electrons). With a very low energy level, 0.05 eV it is 

possible to take an electron away from a silicon-silicon bond to use it to complete the valence 

configuration. The boron atom is so called acceptor, because it easily takes an electron from the 

valence band. Adding acceptor atoms, it is possible to dramatically increase the holes density within 

the valence band. 

A semiconductor rich in this kind of impurities (acceptors) shows at room temperature an excess of 

positive carriers and it is called ―p type semiconductor‖. In this last kind of semiconductors, 

majority carriers are the valence band holes, while the minority carriers are the conduction band 

electrons. 

 

1.4.1 Drift and diffusion current 

While the impurities are inserted in the semiconductor lattice, it is needed to understand how these 

carriers move inside the material. Electron speed without any electrical field can be estimated 

between 0 and vf (Fermi’s speed, the speed of an electron with a kinetic energy equal to the Fermi’s 

one Ef). While, when applying an electrical field, electrons are accelerated, so that they have a small 

speed increase in the field direction, but towards the opposite versus, because electrons have a 

negative carriers, so that [1] 

 

𝐹 = −𝑒𝐸 

 

Electrons responsible for the conduction are the only ones with a speed close to vf. 

The parameter that measures the capacity of carriers to move freely within the material under an 

electrical field E is the following one 

 

𝜇 =
𝑣

𝐸
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where v is the speed of the electrons in the direction opposite to the field’s one. The current density 

of the carriers is called drift current. It is related to the carrier movement due to the electrical field 

over the semiconductor. 

The drift current densities for holes and electrons can be written as 

 

𝐽𝑝
𝑑𝑟𝑖𝑓𝑡

= 𝑞𝑝𝑣𝑑 ,𝑝     for holes 

 

𝐽𝑛
𝑑𝑟𝑖𝑓𝑡

= −𝑞𝑛𝑣𝑑 ,𝑛   for electrons 

 

So, these currents depends on drift speed for holes and electrons, on the number of holes and 

electrons and, finally, on the electron’s carrier. 

Moreover, Electrons and holes in semiconductors tend, as a result of their random thermal motion, 

to move (diffuse) from regions of high concentration to regions of low concentration. 

Much like how the air in a balloon is distributed evenly within the volume of the balloon, carriers, 

in the absence of any external forces, will also tend to distribute themselves evenly. This process is 

called diffusion and the diffusion current densities are given by 

 

𝐽𝑝
𝑑𝑖𝑓𝑓

= −𝑝𝐷𝑝∇𝑝 

 

𝐽𝑑
𝑑𝑖𝑓𝑓

= 𝑞𝐷𝑛∇𝑛 

 

 

So, the total current, for both holes and electrons, can be calculated as follows 

 

𝐽𝑝 = 𝐽𝑝 ,𝑑𝑟𝑖𝑓𝑡 + 𝐽𝑝 ,𝑑𝑖𝑓𝑓  

 

𝐽𝑛 = 𝐽𝑛 ,𝑑𝑟𝑖𝑓𝑡 + 𝐽𝑛 ,𝑑𝑖𝑓𝑓  

 

1.4.2 p-n junctions 

The development occurred to the photovoltaic technology started just from the studies over the p-n 

junction, elementary structure of the semiconductor devices physics. The p-n junction, essentially, 

is made up by a n-type and a p-type semiconductor put close one to another. When this two devices 

lay one along the other, the diffusion phenomenon has place, so that the holes move from the p-

zone to the n-zone and the vice-versa happens for the electrons from the n-zone to the p-zone. This 

happens because of the distribution of holes and electrons in the semiconductor device that is not 

uniform, so that the diffusion current is generated. This phenomenon ends when the carriers are 

distributed uniformly. The diffusion of carriers, determines a region between the junction, called 

―depletion region‖, where finding carriers it is not possible and it is possible to measure an electric 

field not equal to zero, caused by the presence of ionized doping atoms, that is not counterbalanced 

by the lack of carriers within the region. [3] 

The following picture represents the depletion region between the n-type and p-type region 
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Figure 1.6 Simple solar cell structure used to analyze the operation of a solar cell. Free carriers have diffused across 
the junction (x = 0) leaving a space-charge or depletion region practically devoid of any free or mobile charges. The 
fixed charges in the depletion region are due to ionized donors on the n-side and ionized acceptors on the p-side 

 

The difference of potential between the p-type and the n-type semiconductor is called ―built-in 

potential‖, and it is equal to: 

 

𝑉𝑏𝑖 =
𝐾𝑇

𝑞
𝑙𝑛  

𝑁𝑎𝑁𝑑

𝑛𝑖
2   

 

where Na and Nd are, respectively, the p-type and n-type impurities concentrations introduced 

during the doping phase and ni is the density of electrons in the conduction band.  

The potential and the electrical field of the junction can be calculated using the abrout change 

approssimation. According to this equation, if we assume the density of spatial carriers in the p and 

n regions equal to, respectively −𝑞𝑁𝑎  and 𝑞𝑁𝑑  we will have that 

 

𝑥𝑛𝑁𝑑 = 𝑥𝑝𝑁𝑎  

 

where 𝑥𝑛  and 𝑥𝑝  are the width of the depletion regions in the n-type and p-type semiconductors. So, 

we can argue that, in equilibrium, in any point of the depletion region, the effect of the electrical 

field is counterbalanced by the effect of concentrations variation. 

Now, we can consider the Poisson’s equation: 

 

𝑑2𝑉

𝑑𝑥2
= −

𝜌

휀
=

𝑞𝑁𝑎

휀
 

 

where  is the density of carrier. So, integrating two times this equation, and assuming the boundary 

condition that the potential and the electrical field would be equal to zero for 𝑥 = −𝑥𝑝  , we have 

 

𝑉 =
𝑞𝑁𝑎

휀
 
𝑥2

2
+ 𝑥𝑝𝑥 +

𝑥𝑝
2

2
  

 

and it is now possible to express the potential for both sides of the junction: 

 

𝑉𝑝 =
𝑞𝑁𝑎𝑥𝑝

2

2휀
    and   𝑉𝑛 =

𝑞𝑁𝑑𝑥𝑛
2

2휀
 

 

So, if we sum this two values, we have the total value of the potential barrier on the junction.  

The depletion region width can be calculated, approximately, considering the zone moving carriers 

free. In fact, when the intrinsec Fermi’s level Ei is close to the real one Ef, n and p become almost 
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equal to each other. Assuming that Na and Nd would be constant in the respective zones (step 

junction), the depletion region width W is equal to 

 

𝑊 = 𝑥𝑝 + 𝑥𝑛  

1.5 Light absorption 
The creation of electron–hole pairs via the absorption of sunlight is fundamental to the operation of 

solar cells. The excitation of an electron directly from the valence band (which leaves a hole 

behind) to the conduction band is called fundamental absorption. [3] 

Both the total energy and momentum of all particles involved in the absorption process must be 

conserved. Since the photon momentum, pλ = h/λ, is very small compared to the range of the crystal 

momentum, p = h/_, the photon absorption process must, for practical purposes, conserve the 

momentum of the electron.1 The absorption coefficient for a given photon energy, hν, is 

proportional to the probability, P12, of the transition of an electron from the initial state E1 to the 

final state E2. So, the photon absorption process in a direct band semiconductor can be represented 

as in picture below  

 

 
Figure 1.6 – Valence and conduction band in a direct band semiconductor 

 

where the incident photon has an energy E2-E1>EG. 

Absorption results in creation of an electron-hole pair since a free electron is excited to the 

conduction band leaving a free hole in the valence band. [18] 

While, in indirect band semiconductors, like silicon, where the valence-band maximum occurs at a 

different crystal momentum than the conduction-band minimum, conservation of electron 

momentum necessitates that the photon absorption process involve an additional particle. Phonons, 

the particle representation of lattice vibrations in the semiconductor, are suited to this process 

because they are low-energy particles with relatively high momentum. This phenomenon is 

represented in the following picture 
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Figure 1.7 – Photon absorption in an indirect band gap semiconductor for a photon with energy hν < E2 − E1 and 

photon with energy hν > E2 − E1. Energy and momentum in each case are conserved by the absorption and 

emission of a phonon, respectively 

 

Photon absorption in an indirect band gap semiconductor for a photon with energy h < E2 − E1 

and a photon with energy h  > E2 − E1. Energy and momentum in each case are conserved by the 

absorption and emission of a phonon, respectively. 

In both direct band gap and indirect band gap materials, a number of photon absorption processes 

are involved, though the mechanisms described above are the dominant ones. A direct transition, 

without phonon assistance, is possible in indirect band gap materials if the photon energy is high 

enough. Conversely, in direct band gap materials, phonon-assisted absorption is also a possibility. 

 

1.5.1 Recombination 

When a semiconductor is taken out of thermal equilibrium, for instance by illumination and/or 

injection of current, the concentrations of electrons (n) and holes (p) tend to relax back toward their 

equilibrium values through a process called recombination in which an electron falls from the 

conduction band to the valence band, thereby eliminating a valence-band hole. There are several 

recombination mechanisms important to the operation of solar cells – recombination through traps 

(defects) in the forbidden gap, radiative (band-to-band) recombination, and Auger recombination. 

The net recombination rate per unit volume per second through a single level trap (SLT) located at 

energy E = ET within the forbidden gap, also commonly referred to as Shockley–Read–Hall 

recombination, is given by 

 

𝑅𝑆𝐿𝑇 =
𝑝𝑛 − 𝑛𝑖

2

𝜏𝑆𝐿𝑇 ,𝑛  𝑝 + 𝑛𝑖𝑒
𝐸𝑖−𝐸𝑇

𝑘𝑇  + 𝜏𝑆𝐿𝑇 ,𝑝   𝑛 + 𝑛𝑖𝑒
𝐸𝑇−𝐸𝑖

𝑘𝑇  
 

 

where the carrier lifetimes 𝜏𝑆𝐿𝑇  are given by 

 

𝜏𝑆𝐿𝑇 =
1

𝜍𝜈𝑡𝑁𝑇
 

 

Where 𝜍 is the capture cross section, vth is the thermal velocity of the carriers, and NT is the 

concentration of traps. The capture cross section can be thought of as the size of the target present 
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to a carrier traveling through the semiconductor at velocity vth. Small lifetimes correspond to high 

rates of recombination. If a trap presents a large target to the carrier, the recombination rate will be 

high (low carrier lifetime). When the velocity of the carrier is high, it has more opportunity within a 

given time period to encounter a trap and the carrier lifetime is low. Finally, the probability of 

interaction with a trap increases as the concentration of traps increases and the carrier lifetime is 

therefore inversely proportional to the trap concentration. [25] 

Radiative (band-to-band) recombination is simply the inverse of the optical generation process 

and is much more efficient in direct band gap semiconductors than in indirect band gap 

semiconductors. When radiative recombination occurs, the energy of the electron is given to an 

emitted photon – this is how semiconductor lasers and light emitting diodes (LEDs) operate.  

Auger recombination is somewhat similar to radiative recombination, except that the energy of 

transition is given to another carrier (in either the conduction band or the valence band). This 

electron (or hole) then relaxes thermally (releasing its excess energy and momentum to phonons). 

Just as radiative recombination is the inverse process to optical absorption, Auger recombination is 

the inverse process to impact ionization, where an energetic electron collides with a crystal atom, 

breaking the bond and creating an electron–hole pair. 

Interfaces between two dissimilar materials, such as, those that occur at the front surface of a solar 

cell, have a high concentration defect due to the abrupt termination of the crystal lattice. These 

manifest themselves as a continuum of traps within the forbidden gap at the surface; electrons and 

holes can recombine through them just as with bulk traps. Rather than giving a recombination rate 

per unit volume per second, surface traps give a recombination rate per unit area per second. A 

general expression for surface recombination is 

 

 
𝑝𝑛 − 𝑛𝑖

2

𝑝 + 𝑛𝑖𝑒
𝐸𝑖−𝐸𝑡

𝑘𝑇

𝑆𝑛
+

𝑛 + 𝑛𝑖𝑒
𝐸𝑖−𝐸𝑡

𝑘𝑇

𝑆𝑝

 𝐷Π(𝐸𝑡)

𝐸𝑐

𝐸𝑣

𝑑𝐸𝑡  

 

where Et is the trap energy, D(Et) is the surface state concentration (the concentration of traps is 

probably dependent on the trap energy), and Sn and Sp are surface recombination velocities. 

 

1.6 Theoretical limits to photovoltaic conversion 

The conversion efficiency, maybe, is the most important parameter in photovoltaic tehcnology. The 

sun energy density is not as low as we cannot expect a generalized use of its energy, but, 

simultaneously, it is not so high that we can consider its exploitation simple. L’efficienza di 

conversione è forse il parametro più importante della tecnologia fotovoltaica. [14] La densità 

energetica del sole non è tanto bassa da non permetterci di avere aspettative su un uso generalizzato 

e efficiente della sua energia, ma, al tempo stesso, non è così alta da rendere ciò semplice. The solar 

cells efficiency is closely related to the hole-electron pairs due to the insulation and to the 

possibilità to avoid their recombination before they are conveyed into the outlet electrical circuit at 

evaluated the maximum efficiency to be expected from the solar cells, at 40.7% for the photonic 

spectrum approximated by the black body at the temperature of 6000K. [15] This value is not too 

high if we consider that the solar cells performs a inefficient use of photons, because most of them 

are not absorbed and their energy is not exploited in an optimal way. [1] 
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1.6.1 Recombination processes 

Photons are absorbed in order to get conveyed towards the conduction band from the valence band, 

according the process known as electron-hole pair generation. Anyway, the same process can take 

place in the opposite versus, when an electron comes back to its valence band. As a result, the 

difference between the electrons pushed towards the conduction band by the sunlight absorption 

and the electrons that fall again into their valence band is equal to the net current extracted from the 

solar cell. This statement can also be presented as an equation [1] 

 

𝐼

𝑞
= 𝑁𝑠

 − 𝑁𝑟
 =    𝑛𝑠 − 𝑛𝑟  

∞

휀𝑔

𝑑휀 

 

where g  represents the band gap, while Ns and Nr are the inlet and outlet photons flows into and 

from the solar cell respectively, through any surface. In other words, if the cell is adequately contact 

equipped, the current is made up by the electrons that leave the conduction band through the n-type 

contacts, adequately doped. In the same way, in the valence band, the I/q ratio, represents the 

electrons that enter the valence band through the highly doped p-type contacts. 

Finally, it is possible to estimate the solar cell theoretical reachable efficiency, as a function of the 

band gap, according to Shockley and Quesisser’s assumptions, at 40.7%. 

 
Figure 1.8 – Theoretical reachable efficiency for a solar cell as a function of the band gap 
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1.6.2 Solar cells  thickness 

If we consider the electrical perfomance, the optimal thickness depends on materials’ structure and 

quality and it can involves several aspects. The thinnest cells can absorb less light, but this 

drawback can be counterbalanced by light trapping technologies. Moreover, the losses due to the 

shadow side of the device can decrease when reducing the cell thickness. It is also to be taken into 

account the economic pressure, from an industrial standpoint, towards the decrease of cell 

thickness, in order to reduce the product material costs, since a thinner cell is simply made up by 

less silicon.   

1.6.3 Light trapping coatings 

Silicon is featured by an high reflection index. It has been calculated that, when it is not coated, 

silicon reflects 30% of incident radiation. This is the way reflection losses are generated. A widely 

used solution, consists in the use of a material with a very low reflection index as a coating for 

silicon. This coating is generally an insulant material, designed to reduce reflection. Industrial 

trends are now positioned on the use of Titanium oxides through the process of chemical vapour 

deposition (CVD). [1]

2 Introduction to global optimization  
 

Given a function 𝑓: 𝐼𝑅𝑛 → 𝐼𝑅, the global optimization methods tries to determine the global minum 

of the function 𝑓(𝑥), that is a point 𝑥∗ in such a way that: [5] 

 

𝑓 𝑥∗ ≤ 𝑓 𝑥  ∀ 𝑥 ∈ ℝ𝑛  

 

These methods can be divided into the following groups: 

1. Deterministic methods 

2. Methods for Lipschitzian functions 

3. Directions method 

4. Tunneling methods 

5. Probabilistic methods 

 

2.1 Deterministic methods 

A function 𝑓: 𝐼𝑅𝑛 → 𝐼𝑅 is called Lipschitzian if there exists a constant L > 0 (called Lipschitz’s 

constant) exists in such a way that for any 𝑥1 , 𝑥2 ∈  ℝ𝑛  it holds [41] 

 

|𝑓 𝑥1 − 𝑓 𝑥2 | ≤ 𝐿||𝑥1 − 𝑥2|| 

 

In other words a Lipschitzian function satisfyies the following statements: 

𝑓 𝑥 ≥ 𝑓 𝑥0 − 𝐿  𝑥 − 𝑥0   

𝑓 𝑥 ≤ 𝑓 𝑥0 + 𝐿| 𝑥 − 𝑥0 | 

 

for any 𝑥0 , 𝑥 ∈  𝐼𝑅𝑛 . 
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The following function 𝑓 𝑥  is a Lipschitzian one 

 

Figure 2.1 – A Lipschitzian function 

The algorithms belonging to this group of optimization methods have in common the research for 

the value that minimizes the following problem: 

min
𝑥∈𝐼𝑛

𝑓(𝑥) 

with 𝐼𝑛 =  𝑥: 𝐴𝑖 ≤ 𝑥𝑖 ≤ 𝐵𝑖   ∀ 𝑖 = 1,2, … , 𝑛   

 

We assume that: 

1. The n-dimensional cube 𝐼𝑛  should be in such a way that it contains a global minimum for 

𝑓(𝑥) 

2. The function would be Lipschitizian over 𝐼𝑛  

3. The L Lipschitz’s constant would be known or it would be known its overestimation 𝐿  

One of the most popular algorithm among these methods is the Schumbert-Mladineo’s one. [41] 

 

First step. Let it be 𝐿 > 𝐿; given 𝑥0 it is defined the function 

 

𝐹0 𝑥 = 𝑓 𝑥0 − 𝐿 | 𝑥 − 𝑥0 | 

 

and 𝑥1 is chosen so that: 

 

𝐹0(𝑥1) = min
𝑥∈𝐼𝑛

𝐹0 𝑥  

 

k
th 

step. Once you get 𝑥𝑘  the following function is defined 

 

𝐹𝑘 𝑥 = max
𝑗=0,…,𝑘

 𝑓 𝑥𝑗  − 𝐿 ||𝑥 − 𝑥𝑗 ||  

 

and 𝑥𝑘+1 is chosen in such a way that 
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𝐹𝑘 𝑥𝑘 + 1 = min
𝑥∈𝐼𝑛

𝐹𝑘 (𝑥) 

 

the function 𝐹𝑘 𝑥  is featured by a very particular structure that can be used to define algorithms 

that in a finite number of steps solve the problem 

 

min
𝑥∈𝐼𝑛

𝐹𝑘(𝑥) 

 

So, if 𝑓∗ is the minimum value of 𝑓(𝑥) over 𝐼𝑛 , let they be 𝐹𝑘
∗ the minimum values of  𝐹𝑘(𝑥) over 

𝐼𝑛 . Let it be Φ ≡  𝑥∗ ∈ 𝐼𝑛 , 𝑓 𝑥∗ = 𝑓∗  and let it be  𝑥𝑘  the sequence of points generated by the 

previous algorithm, then, it follows: 

 

lim
𝑘→∞

inf
𝑥∗∈Φ

| 𝑥∗ − 𝑥𝑘  | = 0 

 

lim
𝑘→∞

𝑓 𝑥𝑘 = 𝑓∗ 

 

and that the sequence  𝐹𝑘
∗  is not decreasing and  

 

lim
𝑘→∞

𝐹𝑘
∗ = 𝑓∗ 

 

 

Method’s benefits 

1. It does not require the solver to calculate the derivatives 

2. It is possible to determine the point’s sequence  𝑥𝑘  convergence, both from a theoretical 

and a computational standpoint 

3. A stopping criterion exists for the algorithm. If  𝑥𝑘  and  𝐹𝑘
∗  are the sequences generated, 

you have the following ones: 

 

𝑓 𝑥𝑘 ≥ 𝑓∗ ≥ 𝐹𝑘
∗ 

 

𝑓 𝑥𝑘 ≥ 𝑓∗ ≥ 𝑓 𝑥𝑘 + 𝑟𝑘  

 

where 𝑟𝑘 = 𝐹𝑘
∗ − 𝑓 𝑥𝑘  and lim𝑘→∞ 𝑟𝑘 = 0 because of the previous theorem. So, if   𝑟𝑘  <   

then 𝑥𝑘   is a minimum for 𝑓(𝑥) , far away from it for only an . 

 

Method’s drawbacks 

1. it can be very difficult to define, ex-ante, an n-dimensional cube 𝐼𝑛  containing at least a 

global minimum of 𝑓(𝑥) 

2. the method can be very heavy, from a computational point of view, because of the 

computing of  𝐹𝑘(𝑥) at each step 

3. the hypothesis that 𝑓(𝑥) would be a Lipschitzian function is very restrictive 

4. it is not always possible to get an overestimation of the Lipschitz’s constant 
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2.2 Directions methods 

The basis idea of the directions method is to define some directions, containing all the local 

optimals and to choose, among them, the one related to the lowest value of the objective function. 

These methods have been firstly proposed in the 70s, without getting good results at that time. 

Lately, through the implementation of a new, general approach, these methods have come again 

under the spotlight. The most popular direction method is the Branin’s method. [42] 

 

Branin’s method 

Let us suppose that 𝑓(𝑥) is continuous and ∇𝑓(𝑥) would be continuous as well. If you choose an 𝑥0 

it is possible to define some directions 𝑥(𝑡) in which ∇𝑓(𝑥 𝑡 ) is parallel to ∇𝑓(𝑥0). So, through 

the solution of the following system 

 

𝑑

𝑑𝑡
 ∇𝑓 𝑥 𝑡   = ±∇𝑓 𝑥 𝑡   

 

assuming the initial condition 𝑥 0 = 𝑥0 it is possible to get some directions satisfying the 

following one 

 

∇𝑓 𝑥 𝑡  = ∇𝑓(𝑥0)𝑒±𝑡  

 

The Branin’s method is based on the following steps: 

1. Determination of the solution 𝑥 𝑡  of the system 

𝑑

𝑑𝑡
 ∇𝑓 𝑥 𝑡   = −∇𝑓 𝑥 𝑡  ,       𝑥 0 = 𝑥0 

 

2. the direction 𝑥 𝑡  allows us to determine a stationary point 𝑥∗ di 𝑓(𝑥). In fact, since 

 

lim
𝑡→∞

∇𝑓 𝑥 𝑡  = lim
𝑡→∞

∇𝑓 𝑥0 𝑒
−𝑡 = 0 

 

the direction 𝑥 𝑡  tends to 𝑥∗. 

 

3. the stationary point 𝑥∗ is slightly perturbated, gaining to the point 𝑥 0 = 𝑥∗ + 휀 and the 

following system is solved 

 

𝑑

𝑑𝑡
 ∇𝑓 𝑥  𝑡   = ∇𝑓 𝑥  𝑡  ,      𝑥  0 = 𝑥 0 

 

gaining the direction 𝑥  𝑡 . 

 

4. along the direction 𝑥  𝑡  we get away from the stationary point 𝑥∗ because the norm of the 

gradient increases as 𝑡 increases: 

 

∇𝑓 𝑥  𝑡  = ∇𝑓(𝑥 0)𝑒𝑡  
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so, the direction 𝑥  𝑡  is followed until 𝑡 , when 𝑥  𝑡   is out of the stationary point ―attraction zone‖. 

 

5. the following system is now solved again 

 

𝑑

𝑑𝑡
 ∇𝑓 𝑥 𝑡   = ∇2𝑓 𝑥 𝑡  

𝑑𝑥 𝑡 

𝑑𝑡
= ∇𝑓(𝑥 𝑡 ) 

  

and the result is    
𝑑(𝑥 𝑡 )

𝑑𝑡
= ±∇2𝑓 𝑥 𝑡  

−1
∇𝑓(𝑥 𝑡 ) 

 

these last equations define a Newton-like method. Because the Hessian matrix can become singular, 

the previous equations can lose meaning for some 𝑡. If 𝐴(𝑥) is the adjoint matrix of ∇2𝑓(𝑥), 𝐴(𝑥) 

always exists and it is true that ∇2𝑓(𝑥)−1 =
𝐴(𝑥)

det [𝛻2𝑓 𝑥 ]
 , so, the previous system can be replaced 

through a new parameterization with the following system 

 

𝑑𝑥 𝑡 

𝑑𝑡
= ±𝐴 𝑥 𝑡  ∇𝑓 𝑥 𝑡   

 

Comments on the Brainin’s method [42] 

 It has never been proved that this method would be globally convergent, that is the curve 

defined reaches the global minimum. 

 If the method is convergent, it is hard to know how many stationary points 𝑓(𝑥) has and, 

because of it, it is hard to state a stop criterion for the algorithm. 

 The direction 𝑥 𝑡  is attracted by all the 𝑓(𝑥)’s  stationary points. 

 The numerical solution of the differential equation systems defining the curve 𝑥 𝑡  is 

heavy from a computational standpoint. 

 

2.3 Tunneling methods 

The tunneling methods have been proposed in order to find in an efficient way the global minimum 

for functions with many local minima (in cases where the previous direction methods would not be 

adequate). 

 

Tunneling algorithms’ structure 

Tunneling algorithms are made up by a sequence of cycles, each cycle is made up by two steps: a 

minimization phase, during which the objective function is minimized and a tunneling phase, where 

a ―good‖ starting point is got for a following minimization phase. 

Minimization phase 

Given a starting point 𝑥0, a local search is performed. It is equivalent to apply any convergent 

algorithm to a local minimum 𝑥0
∗. 

Tunneling phase 

The solver efforts are to find a point 𝑥1 ≠ 𝑥0 in such a way that 

 

𝑓 𝑥1 = 𝑓 𝑥0
∗  
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so, theoretically, the tunneling methods generate a sequence in such a way that 

 

𝑓 𝑥𝑘
∗ ≥ 𝑓 𝑥𝑘+1

∗   

 

and that the 𝑥𝑘  points come close to the global minimum ―passing under‖ the less important local 

minima, without taking into account how many and where they are. 

This last feature is very important for problems with a lot of minima. The main drawback of these 

methods are the difficulties met when trying to find an x in such a way that 𝑓 𝑥 = 𝑓(𝑥𝑘
∗) and 

𝑥 ≠ 𝑥𝑘
∗ . In order to avoid this situation, a new point is found, by the zero of the following: 

 

𝑇 𝑥, 𝑥𝑘
∗ =

𝑓 𝑥 − 𝑓(𝑥𝑘
∗)

[(𝑥 − 𝑥𝑘
∗)𝑇(𝑥 − 𝑥𝑘

∗)𝜆]
 

 

where  is chosen iteratively, in such a way that the pole in 𝑥𝑘
∗  introduced in 𝑇 𝑥, 𝑥𝑘

∗  makes 

𝑓 𝑥 − 𝑓(𝑥𝑘
∗) equal to zero. Moreover, it must be taken into account that this method has no stop 

criterion. In fact, we could look for an 𝑥  in such a way that 𝑓 𝑥  = 𝑓(𝑥𝑘
∗), even when 𝑥𝑘

∗  

is already the global minimum for 𝑓 𝑥 . 

 

2.4 Probabilistic methods 

The probabilistic approaches define the global optimization problem over a limited region 𝐷 ⊂ ℝ𝑛  

that is: 

min
𝑥∈𝐷

𝑓(𝑥) 

 

Among the different probabilistic methods, we can refer to: 

- Methods using random directions 

- Multistart methods 

- Chichinadze’s methods 

- Simulated annealing methods 

 

Methods using random direction 

When using this group of algorithms, at each iteration, the direction 𝑑𝑘  is chosen randomly over an 

n-dimension sphere, with a unitary radius. These methods are based on the Gaviano’s theorem, that 

states that if the sequence  𝑥𝑘  is in such a way that 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘  

 

where 𝑑𝑘  is chosen randomly over the previous n-dimension sphere with a radius equal to 1 and 𝛼𝑘  

so that: 

 

𝑓 𝑥𝑘 + 𝛼𝑘𝑑𝑘 = min
𝛼

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘) 
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then, 𝑓 𝑥𝑘 − 𝑓∗ < 휀 happens with a probability that tends to one.  

 

Multistart methods 

These methods are based on the following considerations. [43] 

Let 𝑚(. ) be the Lebesgue’s measure over D. If A is a set with a measure m(A) in such a way that 

 

1 ≥
𝑚(𝐴)

𝑚(𝐷)
= 𝛼 ≥ 0 

 

the probability P(A,N) that, taking into account N points randomly extracted (over D), at least one is 

inside A is given by: 

 

𝑃 𝐴, 𝑁 = 1 − (1 − 𝛼)𝑁  

 

and, from this equation, it follows: 

 

lim
𝑁→∞

𝑃 𝐴, 𝑁 = 1 

 

so, we can conclude that, if we choose randomly many points, one of them, almost surely, is very 

close to the global minimum 𝑥∗. 

 

2.5 Simulated annealing methods 
These methods take inspiration from  quantic mechanics theories. Let us consider a system made up 

by a very large number of particles of the same kind and let s stands for the system state and E(s) 

energy associated to this state. [53]. If the system is in thermal equilibrium, then the probability 

density that it would be in the state s is proportional to 

 

𝑒−
𝐸(𝑠)
𝐾𝑇  

 

where, as defined in the previous chapters, K is the Boltzmann’s constant and T is the temperature. 

It is generally known that, when lowering the temperature, states with low energy increase their 

own probability, up to the limit, when the temperature reaches the absolute zero and the only 

possible states are the ones with zero energy.  

Now, let us consider a system, that associates at each state x, an energy amount: 

 

𝐸 𝑥 = 𝑓 𝑥 − 𝑓∗ ≥ 0 

 

where, 𝑓∗ is the global minimum for 𝑓 𝑥 . Now, if the temperature would tend to zero, the states 𝑥∗ 

would become more likely, in such a way that: 

 

𝐸 𝑥∗ = 𝑓 𝑥∗ − 𝑓∗ = 0 

 

In a more accurate way, we can underline the following theorem. 
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Let f(x) be a continuous function over a compact set D ⊂ ℝ𝑛 . Let us assume that only one global 

minimum x* exists for f(x) over D. Then, it is true that: 

 

𝑥𝑖
∗ = lim

𝑇→0

 𝑥𝑖𝑒
−(𝑓 𝑥 −𝑓 𝑥∗ )/𝑇𝑑𝑥

 𝑒−(𝑓 𝑥 −𝑓 𝑥∗ )/𝑇𝑑𝑥
= lim

𝑇→0

 𝑥𝑖𝑒
−𝑓(𝑥)/𝑇𝑑𝑥

 𝑒−𝑓(𝑥)/𝑇𝑑𝑥
        𝑖 = 1, … , 𝑛 

 

that can be also expressed as: 

 

𝑥𝑖
∗ = lim

𝑇→0
 𝑥𝑖𝑃𝑇 𝑥 𝑑𝑥 = lim

𝑇→0
𝑥 𝑖 𝑇  

 

where 𝑃𝑇 𝑥 =
𝑒−𝑓(𝑥)/𝑇

 𝑒−𝑓(𝑥)/𝑇𝑑𝑥
 

 

it is a probability density where 𝑥 𝑖 𝑇  are the average values of some aleatory variables distributed 

according the density 𝑃𝑇 𝑥 . 

Then, the basic idea of these optimization methods is to simulate some aleatory arrays distributed 

according the probability density 𝑃𝑇 𝑥 . 

As T decreases, the arrays generated by the simulation come closer and closer, from a probabilistic 

standpoint, to the global minimum we are looking for. 

The different algorithms belonging to this group, use different ways to perform this simulation. 

 

 

Stop criteria 

Within these probabilistic methods, a large number of different stop criteria have been proposed, 

but, the most interesting one is the one using a certain number of randomly chosen points over D, 

that tries to give to the solver an approximated value, as a probability 𝑃 𝑤  of the function 

 

𝑃 𝑤 =
𝑚( 𝑥: 𝑓 𝑥 ≤ 𝑤 )

𝑚(𝐷)
 

 

where, as usual, m(.) is a set’s Lebesgue’s measure. After that, a point 𝑥∗ can be considered a good 

estimation of the global minimum if 

 

𝑃 (𝑓 𝑥∗ ) ≤ 휀 << 1 
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3 Introduction to multiobjective programming  

An optimization problem can be defined as both the minimization or maximization of a real 

function over a specified set. [8] 

Its importance derives from the evidence that many real issues are formulated as an optimization 

probem. Anyway, almost any optimization problem is featured by the  simultaneous presence of 

different objectives, that are real functions to be minimized or maximized, usually in conflict one 

against another. [58] 

Let us consider the following optimization multiobjective problem: 

 

min (𝑓1(𝑥)𝑓2  𝑥 …𝑓𝑘 𝑥 )𝑇  𝑤𝑖𝑡 𝑥 ∈ 𝐹 ⊆ ℝ𝑛      (1) 

where 𝑘 ≥ 2 𝑎𝑛𝑑 𝑓𝑖 : ℝ
𝑛 → ℝ  

 

𝐹 is the set of feasible decision variables. 

From now on we will refer to ℝ𝑘  as the objective space and ℝ𝑛  as the decision variables space. 

An array 𝑥 𝜖 ℝ𝑛  so will be a decision array while 𝑧 𝜖 ℝ𝑘  is an objective array. 

We will refer, moreover, to 𝑓(𝑥) as the objective function array  (𝑓1(𝑥)𝑓2  𝑥 …𝑓𝑘 𝑥 )𝑇 and to 

 

𝑍 = 𝑓 𝐹 =  𝑧𝜖ℝ𝑘 : ∃𝑥 ∈ 𝐹, 𝑧 =  𝑓(𝑥)   

 

as the imagine of the feasible region in the objective space 

Especially, it is possible to say that an objective array 𝑧𝜖ℝ𝑘  is feasible when 𝑧 ∈ 𝑍. 

Moreover, it is possible to define the ideal objective array 𝑧𝑖𝑑  as the array whose components are 

𝑧𝑖
𝑖𝑑 = min

𝑥∈𝐹
𝑓𝑖 (𝑥) 

The ideal situation represents the simultaneous optimization of all the objective functions. If there 

would not be conflicts among them, the trivial solution would be the one got by the separate 

solution of k different optimization problems (one for each objective function). This way we could 

just get the ideal array 𝑧𝑖𝑑 . So, no particular solution technique would be needed. In order to avoid 

to treat this trivial case, it is requested to suppose that 𝑧𝑖𝑑   𝑍. This means that the functions  

𝑓1 𝑥 , 𝑓2 𝑥 , …𝑓𝑘(𝑥) are required to be, partly at least, in conflict one against another. [58] 

 

3.1 Pareto optimality 
The following optimality definition of a multiobjective problem has been first proposed by 

Edgeworth in 1881 and then redefined by Vilfredo Pareto in 1896 [57] 

 

Given two arrays 𝑧1, 𝑧2 ∈  ℝ𝑘  we say that 𝑧1 dominates 𝑧2according to Pareto (𝑧1 ≤𝑃 𝑧2) when we 

have: 

 

𝑧𝑖
1 ≤ 𝑧𝑖

2 ∀𝑖 = 1,2, … , 𝑘 
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and   𝑧𝑗
1 < 𝑧𝑗

2 𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑗 ∈  1, … , 𝑘  

 

The binary relation ≤𝑃 is a partial sort in the set of k-tuples of real numbers. Through this relation, 

it is possible to define the Pareto optimality: 

 

A decisions array 𝑥∗ ∈ 𝐹 is optimal according to Pareto if there is no other array 𝑥 ∈ 𝐹 in such a 

a way that 

 

𝑓 𝑥 ≤𝑃 𝑓(𝑥∗) 

 

Below, a representation of local and global Pareto optimals: 

 

 
Where Z1 and Z2 lay on the axes. 

As a result, it is to say that an objective array 𝑧∗ ∈ 𝑍 is Pareto optimal when there is no other array 

𝑧 ∈ 𝑍 in such a way that 𝑧 ≤𝑃 𝑧∗. 

So, if the solving method is already in a Pareto optimal point and the decision maker wishes to  

further reduce the value of one or more objective functions, it is needed to take into account a 

consequent increase in the value of some or all the objective functions. As a result, in the objective 

space, Pareto optimal points are to be considered as equilibrium points on the boundary of Z. 

Now we define an efficient boundary the set of Pareto optimal points of the optimization problem. 

A Pareto optimum is therefore optimal, since it requests the satisfaction of the condition within the 

feasible set of the problem. It is also possible, moreover, to give a definition of Pareto local 

optimum: 

 

a decision array 𝑥∗ ∈ 𝐹 is a local optimum according to Pareto if exists a number  0 in such a 

way that 𝑥∗is a Pareto optimal within 𝐹 ∩ 𝐵(𝑥∗, 𝛿) 

 

where 𝐵(𝑥∗, 𝛿) is the neighborhood of center 𝑥∗ and radius 𝛿. Any global optimal point is a Pareto 

local optimal too, while the vice-versa is true only if some hypoteses are true: 

Z2 

Z1 
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1. The feasible set F is convex 

2. All the objective functions 𝑓𝑖(𝑥) for x = 1,2…k  are convex 

 

In this case, it is possible to demonstrate that each Pareto local optimal is a global optimal point too. 

From this definition of Pareto optimum, it is possible to state the definition of Pareto weak 

optimum as follows: 

 

an array 𝑥∗ ∈ 𝐹 is a Pareto weak optimal for the problem (1) if there is not any point 𝑥 ∈ 𝐹 so that 

𝑓(𝑥) < 𝑓(𝑥∗) 

 

where  𝑓(𝑥) < 𝑓(𝑥∗) means 𝑓𝑖 𝑥 < 𝑓𝑖 𝑥
∗   𝑓𝑜𝑟 𝑒𝑎𝑐 𝑖 = 1,2, …𝑛 

 

It is possible to argue that the Pareto optimal set is a subset of the weak Pareto optimal and it is 

possible to define the local weak optimum: 

a decision of array 𝑥∗ ∈ 𝐹 is a weak local optimum according to Pareto if exists a number 𝛿 > 0 in 

such a way that 𝑥∗is a Pareto weak optimum within 𝐹 ∩ 𝐵(𝑥∗, 𝛿) 

 

Even for the weak optimality it is true that if the problem is convex, each local weak optimal is a 

Pareto global weak optimal too. 

 

 

3.2 Efficient and dominated points 

 

By the utilization of the concept of cone it is possible to generalize the definition of optimality and 

weak optimality according to Pareto: [57] 

 

an array 𝑦 ∈  ℝ𝑛  is a conic combination of m arrays( 𝑥1, 𝑥2, … , 𝑥𝑚 )  within ℝ𝑛  when it is possible 

to find m real numbers 1 , 2, …, 𝑚 in such a way that: 

 

 𝑖𝑥
𝑖 = 𝑦

𝑚

𝑖=1

 

 

where 𝑖 ≥ 0   𝑖 = 1, 2, … , 𝑚 

 

A set D ⊆ ℝ k 
 is a cone if the conic combination of the arrays of any finite subset of  D belongs to D 

as well. 

 

Taken two arrays z
1
 e z 

2 
within ℝ k

 we can say that z
1
 dominates z

2
 (z

1
≤D  z

2
) if z 

2 
- z

1 D\0 

 

Moreover, we can define an objectives array 𝑧∗𝜖 𝑍 efficient in respect to a cone D if it is not 

possible to find any array 𝑧 𝜖 𝑍 sothat 𝑧 ≤𝐷 𝑧∗that is if and only if 

 

 𝑧∗ − 𝐷\ 0  ∩ 𝑍 = ∅. 
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Equally, an array of decisions 𝑥∗ ∈ 𝐹 is efficient respect to a cone 𝐷 IR
k 
if and only if it does not 

exist any array 𝑥 𝜖 𝐹 in such a way that 𝑓 𝑥 ≤𝐷 𝑓(𝑥∗). 

1. Optimality conditions 

 

Let us now consider a problem with regard to the set F defined by inequality constraints: 

 

min  f(x) 

      g(x) ≤ 0 

 

where 𝑓: ℝ → ℝ𝑘   𝑓𝑜𝑟 𝑘 ≥ 2  𝑎𝑛𝑑  𝑔: ℝ𝑛 → ℝ𝑚  are continuously derivable functions and F 

assumes the following structure: 

 

 F =   𝑥 𝜖 ℝ𝑛 ∶ 𝑔(𝑥) ≤ 0  

 

We can indicate with the symbol 𝐼0 𝑥 =  𝑖: 𝑔𝑖 𝑥 = 0  the set of valid constraints in the point x. It 

will be, moreover, 𝐿: ℝ𝑛𝑥𝑘𝑥𝑚 → ℝ  definied as follows 𝐿 𝑥, , = 𝑇𝑓 𝑥 + 𝑇𝑔(𝑥) the 

Lagragian function coupled with the problem. 

 

Let us remember, moreover, what the Jordan’s theorem: one and only one of the two following 

systems has a solution,  

 

𝐵𝑧 < 0,    
𝐵𝑇𝑦 = 0

𝑦 ≥ 0,   𝑦 ≠ 0
         

 

where 𝐵 𝜖 ℝ𝑠𝑥𝑛 , 𝑧 ∈  ℝ𝑛  𝑎𝑛𝑑 𝑦 ∈  ℝ𝑠 

 

Moreover, given a point 𝑥 ∈ 𝐹,  an efficient direction within 𝑥  is an array 𝑑 ∈ ℝ𝑛  with d ≠ 0, for 

which exists a  > 0, in such a way that 

 

𝑓 𝑥 +  𝑑 ≤𝑃 𝑓 𝑥      ∈ (0, ) 

 

Thus, when moving from 𝑥  along the direction of the d array and, for movements small enough, we 

are sure we will be finding points able to improve the value of at least n objective function, without, 

at the same time, worsening the value of the others. Moreover, we can indicate with 

 

𝐹 𝑥  =   𝑑 ∈ ℝ𝑛 | 𝑑 ≠ 0, 𝑓 𝑥 + 𝑑 ≤𝑃 𝑓 𝑥   ∀  ∈  0, 𝛿  𝑎𝑛𝑑 𝑠𝑜𝑚𝑒 𝛿 > 0  

 

the set of all the efficient directions within 𝑥 . 

Evidently, if 𝑥  is a Pareto local or global optimal, i twill result in 𝐶 𝑥  ∩ 𝐹 𝑥  = ∅, that is no 

feasible direction can take us to points such that 𝑓 𝑥 ≤𝑃 𝑓 𝑥  . 

To define from an analytical standpoint the Pareto otpimal points, it is needed to define these other 

sets: 
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𝐹0 𝑥  =  𝑑 ∈ ℝ𝑛 |  𝑓𝑖(𝑥 )
𝑇𝑑 < 0, ∀ 𝑖 = 1, 2, … , 𝑘  

and   𝐺0 𝑥  =   𝑑 ∈ ℝ𝑛 | 𝑔𝑖(𝑥 )
𝑇𝑑 < 0, ∀ 𝑗 ∈ 𝐼0(𝑥 )  

 

For any x  F, it results that G0(x) C(x) and F0 (x)  F(x) so, 

necessary condition in order to the point 𝑥 ∈ 𝐹 would be a Pareto optimal (local or global) is that 

 

𝐺0 𝑥  ∩ 𝐹0 𝑥  = ∅ 

 

So, the Fritz-John’s theorem for the multiobjective programming will be valid: 

necessary condition in order to get 𝑥 ∈ 𝐹 as a Pareto optimal is that some arrays  ∈ ℝ𝑘  will exist 

and 𝜇 ∈ ℝ𝑚  in such a way that the following system would be satisfied: 

 

 𝑖 𝑓𝑖 𝑥  +  𝜇𝑗 𝑔𝑗  𝑥  = 0

𝑚

𝑗 =1

𝑘

𝑖=1

 

 

𝜇𝑇𝑔 𝑥  = 0,  ,  0,  , ≠ (0,0) 

 

 

3.3 Solution methods 

The generation of the Pareto optimal solutions is an essential part of vectorial programming and, in 

most cases, from a mathematical standpoint, the problem (P) can be considered solved once the 

Pareto optimals set has been found. But, this result is not always sufficient. Sometimes, in fact, it is 

needed to sort all the solutions and then to select the best one respect to this sorting. That is why a 

decision maker is often needed, that is someone able to decide, according to its preferences, how to 

sort the Pareto optimals set of the problem (P). 

On the basis of the role played by the decision maker over the problem solution, the multiobjective 

programming solving methods can be divided into four groups. [58] 

 

a) Methods without preferences according to which the decision maker plays no role and it is 

considered satisfiying the finding of any Pareto optimal. 

 

b) Ex-post methods according to which the whole Pareto optimal set is generated and the nit is 

presented to the decision maker, in order to let it choose the best optimal solution among the 

solutions presented. 

 

c) Ex-ante methods according to which the decision maker specifies its preferences before the 

problem solving starts. On the basis of the information got from the decision maker, the best 

optimal solution is determined, avoiding the generation of all the Pareto optimal solutions. 

 

d) Interactive methods according to which the decision maker specifies its preferences while 

the algorithm goes on. This is the way the solution process is guided towards the most 

satisfying possible solutions. 
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Beyond this distinction, all the multiobjective programming solution methods are based on the same 

idea, that is to shift the solution process from the original problem to another one with only one 

objective function. This technique, through which the mono-objective problem is got from the 

problem (P) is called scalarization.  

 

e) Methods with no preferences 

 

While using the methods with no preferences, the solution process simply generate an optimal 

Pareto solution, whatever it is, without considering the decision maker preferences. The method 

analyzed is the so called GOAL method, that makes us look for the solution that minimizes, within 

the objectives set, the distance between the feasible region (Z) and any other reference point z
ref  

Z=f(F). The reference array will contain the desirable values for the single objective functions, 

especially, a possible choose of z
ref 

 is z
ref

 = z
id

.  The problem got this way is the following one: 

 

min  ||𝑓 𝑥 − 𝑧𝑖𝑑 ||𝑝  

𝑔(𝑥) ≤ 0 

 

In this problem  ∙ 𝑝  stands for the norma of an array, that has a value between 1 and ∞ and, in 

particular, if p = ∞ the problem 𝑃𝑝  is known as the Tchebycheff’s problem. Let us suppose now 

we already know the global array of objectives. Under these hypotheses, the problem 𝑃𝑝  always has 

a solution and the following properties are valid 

 

Any global solution of the problem 𝑷𝒑 with 𝟏 ≤ 𝒑 ≤ ∞ is a Pareto global optimal for the problem 

P. 

 

Any local optimal of the problem 𝑷𝒑 with 𝟏 ≤ 𝒑 ≤ ∞  is a Pareto local optimal for the problem P. 

 

While, if we consider the case p = ∞, the following is valid: 

 

Any local (global) Pareto optimal for the Tchebycheff’s problem (𝑷∞) is a local (global) weak 

Pareto optimal for the problem P. 

 

From this statement, the fact that at least an optimal Pareto solution of 𝑃∞  exists for the problem P. 

Choosing p = 1 and p = ∞ is very convenient in the case the  original multiobjective problem is 

linear, because through simple manipulations of the problem 𝑷𝒑 it is possible to get a linear 

problem again and then to adopt the well known Linear Programming techniques for its solution. 

So, let us suppose that P is linear, that is: 

 

𝑚𝑖𝑛  (𝑐1
𝑇𝑥, 𝑐2

𝑇 𝑥, … , 𝑐𝑘
𝑇𝑥) 

                                                                     𝐴𝑥 ≤ 𝑏 
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 Case Norm p = 1 

The scalarized problem is 

 

𝑚𝑖𝑛   𝑐𝑖
𝑇𝑥 − 𝑧𝑖

𝑖𝑑  

𝑘

𝑖=1

 

       𝐴𝑥 ≤ 𝑏 

 

that can be simply transformed  into a Linear Programming problem by adding k auxiliary 

variables, 𝛼𝑖  for i=1, 2, … , k, getting: 

 

min  𝛼𝑖

𝑘

𝑖=1

 

 
 𝑐𝑖

𝑇𝑥 − 𝑧𝑖
𝑖𝑑 | ≤ 𝛼𝑖

 

𝐴𝑥 ≤ 𝑏
      with i=1, 2, …, k 

 

 Case Norm p = ∞ 

In this case, the scalarized problem is 

 

min max
𝑖=1,…,𝑘

  𝑐𝑖
𝑇𝑥 − 𝑧𝑖

𝑖𝑑    

         𝐴𝑥 ≤ 𝑏 

 

and it can be easily transformed into a PL problem by adding only one auxiliary variable 𝛼, gaining: 

 

min 𝛼 

          
 𝑐𝑖

𝑇𝑥 − 𝑧𝑖
𝑖𝑑  ≤ 𝛼

𝐴𝑥 ≤ 𝑏
     with i = 1, 2,…, k 

 

 

f) Ex-post methods 

 

The methods belonging to this group generate the Pareto solution set. In fact, the decision maker 

preferences are taken in account only after that the solution process ends, allowing the decision 

maker itself to choose the array or the arrays considered the best one(s) among the Pareto optimals 

generated. 

The main drawback of these methods, consists in the fact that, often, the Pareto optimal generation 

process is hard from a computational standpoint and, if the solutions among which we have to 

choose are a large number, the decision maker choose is not easy. That is why, it is very important 

the way the solutions are presented to the decision maker. 

 

1. Weights methods 

Let us consider the following problem: 
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𝑀𝑖𝑛  𝑤𝑖𝑓𝑖(𝑥)

𝑘

𝑖=1

 

𝑔(𝑥) ≤ 0 

 

In which 𝑤 ∈ ℝ+
𝑘  and the 𝑤𝑖  coefficients are normalized in such a way that: 

 

 𝑤𝑖 = 1

𝑘

𝑖=1

 

 

A relation between the 𝑃𝑤  problem solutions and the P problem Pareto points exists and this 

relation can be expressed as follows: 

any local (global) solution for the 𝑷𝒘 problem is a local (global) weak Pareto optimal for the 

problem P and, moreover, if  the problem 𝑷𝒘 for a certain weights array 𝒘 ≥ 𝟎, has only one 

solution, so, it is a Pareto optimal for the P problem. 

 

It is also possible to guess some hypoteses about the weights, if, in fact, all of them are positive, the 

following is valid: 

if 𝒘𝒊 > 0 for any i, each local (global) solution for the problem 𝑷𝒘 is a local (global) Pareto 

optimal  for the problem P. 

If the multiobjective problem P is convex, it is possible to state the following existence statement: 

Let it be 𝒙∗a Pareto optimal for the problem P. If P is convex, so the weights 𝒘 ∈ ℝ+
𝒌  exists, with  

 

 𝒘𝒊 = 𝟏

𝒌

𝒊=𝟏

 

 

and, in such a way that 𝒙∗is a solution for the problem 𝑷𝒘 too 

 

2. -Constraints method 

It is requested to select an objective function 𝑓𝑙(𝑥) among P’s objectives and then all other 

functions 𝑓𝑖(𝑥) with i=1, 2, … , k are transformed and i ≠ l, into constraints, imposing some upper 

bounds over their values. The problem obtained, so, is the following one: 

 

min 𝑓𝑙 𝑥  

𝑓𝑖 𝑥 ≤ 휀𝑖    ∀ 𝑖 = 1, 2, … , 𝑘 𝑎𝑛𝑑 𝑖 ≠ 𝑙 

𝑔 𝑥 ≤ 0 

 

Where 𝑙 ∈  1, 2, … , 𝑘  

 

It is so valid the following, that any solution for 𝑷𝜺 is a weak Pareto optimal for the P problem. 

It is also valid the following, that an array 𝒙∗ ∈ 𝑭 is a Pareto optimal for P, if and only if it is a 

solution for 𝑷𝜺  for any 𝒍 ∈  𝟏, 𝟐, … , 𝒌  and being 𝜺𝒊 = 𝒇𝒊 𝒙
∗  for any 𝒊 ≠ 𝒍. 
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Finally if the point 𝒙∗ ∈ 𝑭 is the only solution for the problem 𝑷𝜺  for any 𝒍 ∈  𝟏, 𝟐, … , 𝒌  and 

with 𝜺𝒋 = 𝒇𝒋 𝒙
∗  for any 𝒋 ≠ 𝒍, so, it is a Pareto optimal for the problem P. 

 

 

 Ex ante methods 

 

In the ex-ante methods the decision maker gives the needed information before the solution process 

starts. Then, the algorithm stops just when a Pareto optimal has been found. Some examples of 

these ex-ante methods are the Value Function method and the lexicographic method. 

 

The Value Function method  requie that the decision maker specifies an analytic expression of  a 

utility objectives function U(z). Then, the following problem is solved: 

 

min    𝑈(𝑓 𝑥 ) 

                                                                              𝑔(𝑥) ≤ 0 

 

If the U(z) would be linear, we would get the weights’ problem Pw again, while the weights’ method 

is an ex-post one, in which the solver firstly has to generate all the Pareto solutions, by the 

modification of the weights time by time, the Value Function method is an ex-ante one, that the 

decision maker communicates its preferences through the weights and imposes this way the relative 

utilities of the objective functions. It is so needed to underline that the U(z) function, generally, 

could be not linear. 

Using the lexicographic method, the decision maker sorts the objective functions according to their 

relative utility, and, at this point, the solution process starts with the minimization of the first 

objective function over the feasible original set F, that is the solution of the problem: 

 

min   𝑓1(𝑥) 

               𝑔(𝑥) ≤ 0 

 

If the problem Pi has only one solution, then this one is a solution for the P problem too and the 

algorithm ends. Else, the second objective function is to be minimized according to the 

lexicographic sorting. But this time, in addition to the original constraints, an additional constraint 

is added, and its purpose is to guarantee that the optimal point value would not worsen the value of 

the first objective function evaluated. Then, the problem becomes: 

 

min   𝑓2(𝑥) 

                             𝑓1(𝑥) ≤ 𝑓1(𝑥1∗) 

                𝑔(𝑥) ≤ 0 

 

where 𝑥1∗ is a solution of the problem Pi. 

It is true that any solution got through the lexicographic method is a Pareto optimal one for the 

problem P.  
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 Interactive methods 

 

The general flow-chart for an interactive method is the following one: [59] 

 

1. Find a starting feasible solution 

2. Propose this starting solution to the decision maker 

3. If the solution is good for the decision maker, then the algorithm stops 

4. Otherwise, on the basis of the suggestions coming from the decision maker, a new solution 

is generated and the algorithm goes again to step 2 

 

An interactive method is the STEP method. 

Let us suppose that in a Pareto optimal point, the decision maker knows which objective functions 

have an acceptable value and which have not. Let us suppose, moreover, that all the objective 

functions would be limited over the feasible region. 

At each iteration of this method, a Pareto optimal is presented to the decision maker, that, on the 

basis of what it knows about the objective functions’ values in the interested point, specifies the 

objective functions for which it is acceptable an increase of the value, in order to further reduce the 

values of the other functions. This is equivalent to let that the indexes set 𝐽 =  1, 2, … , 𝑘  is divided 

at each step into two subsets: 

 

1. J<  set containing the indexes of the objective functions whose values are not satisfying for 

the decision maker at the present step 

 

2. J> = J \ J<  

 

If 𝐽< = ∅ then the algorithm stops because the Pareto optimal that i salso the best solution for the 

decision maker has been found. Otherwise, the decision maker is requested to specify some bounds 

i  over the objective functions whose index is contained in the set J> and then is to be solved the 

problem: 

min     𝑓𝑖 𝑥 − 𝑧𝑖
𝑖𝑑  

𝑝

𝑖∈𝐽<

 

1
𝑝

 

 

                      𝑓𝑖 𝑥 ≤ 휀𝑖                            𝑖 ∈ 𝐽> 

                     𝑓𝑖 𝑥 ≤ 𝑓𝑖 𝑥
∗                    𝑖 ∈  𝐽< 

𝑔 𝑥 ≤ 0                     

 

where 1 ≤ 𝑝 ≤ ∞  and  𝑥∗ is the Pareto optimal point found during the previous step. 

The algorithm has to stop, in order to avoid useless computing, even when the set 𝐽> is empty, that 

is when all the objective functions has unsatisfying values. So, the algorithm can be summarized as 

follows: 
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1. With any method, the first Pareto optimal point 𝑥1 ∈ 𝐹 is found and then has to be set h = 1 

2. The decision maker is requested to divide the set J into 𝐽>
  and 𝐽<

 . if 𝐽>
 = ∅ or 𝐽<

 = ∅ the 

algorithm goes directly to step 4. 

3. The following problem is solved: 

 

min     𝑓𝑖 𝑥 − 𝑧𝑖
𝑖𝑑  

𝑝

𝑖∈𝐽<


 

1
𝑝

 

                      𝑓𝑖 𝑥 ≤ 휀𝑖
                           𝑖 ∈ 𝐽>

  

                     𝑓𝑖 𝑥 ≤ 𝑓𝑖 𝑥
                    𝑖 ∈ 𝐽<

  

𝑔 𝑥 ≤ 0                     

 

for 1 ≤ 𝑝 ≤ ∞. Let it be 𝑥+1 the solution of the problem above, it is set h = h+1 and the algorithm 

goes again to step 2. 

4. It is set 𝑥∗ = 𝑥  and the algorithm stops. 
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4 Direct search algorithms for optimization calculations 
 

4.1 Line search methods 

Line search methods for unconstrained optimization are iterative. A starting vector of variables 

𝑥1 ∈ ℝ𝑛  has to be given, and, for k=1,2,3,…, the k-th iteration derives 𝑥𝑘+1 from 𝑥𝑘  in the 

following way. A nonzero search direction 𝑑𝑘 ∈ ℝ𝑛  is chosen. Then the function of one variable 

𝜙 𝛼 = 𝐹 𝑥𝑘 + 𝛼𝑑𝑘 ,   𝛼 ∈ ℝ, receives attention, in order to pick a new vector of variables of the 

form 

 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑑𝑘    (1) 

 

for example, an ―exact line search‖ would set the step-length 𝛼𝑘  to an 𝛼 that minimizes 𝜙 𝛼 . In 

practice, however, one tries to choose 𝛼𝑘  in a way that requires very few values of  𝐹 𝑥𝑘 + 𝛼𝑑𝑘 ,

𝛼 ∈ ℝ, on each iteration, and it is unusual to satisfy the condition 

 

𝐹 𝑥𝑘+1 ≤ 𝐹 𝑥𝑘 , 𝑘 = 1,2,3 …  (2) 

 

of course the search directions should be able to explore the full space of the variables. Therefore, 

line search methods should have the property that, for some integer, l ≤ 𝑛, any consecutive search 

directions span ℝ𝑛  in a strict sense. If this condition failed, then a nonzero 𝑣 ∈ ℝ𝑛 , would be 

(nearly) orthogonal to the directions. Therefore a convenient form of the strict sense is that the 

bound 

 

𝑚𝑎𝑥   𝑣𝑇𝑑𝑗   𝑑𝑗 
2

 : 𝑗 = 𝑘 − 𝑙 + 1, 𝑘 − 𝑙 + 2, … , 𝑘 ≥ 𝑐 𝑣 
2

,     𝑣  ∈ ℝ𝑛    (3) 

 

is satisfied for k  l, where c is a positive constant. For example, a way of achieving this condition, 

which gives l=n and c=n
-1/2

 is to let each 𝑑𝑘  be a coordinate direction in ℝ𝑛  and, to cycle round the 

n coordinate directions recursively as k increases. Rosenbrock provides an extension of this 

technique that is sometimes useful. His first n directions are also the coordinate directions, but, 

when k is any positive integer multiple of n, then, before starting the (k+1)-th iteration, he generates 

𝑑𝑘+1, 𝑑𝑘+2 , … , 𝑑𝑘+𝑛  in sequence, by applying the Gram-Schmidt procedure to the differences 

𝑥𝑘+1 − 𝑥𝑘−𝑛+𝑗 , 𝑗 = 1,2, … , 𝑛. Further, he ensures that every step-length is nonzero, although 

condition (2) may have to fail.  

Unfortunately, condition (3) and exact line searches do not guarantee that limit points of the 

sequence 𝑥𝑘 , 𝑘 = 1,2,3, …, are good estimates of optimal vectors of variables, even if the objective 

function is continuously differentiable, and the level set  𝑥: 𝐹(𝑥) ≤ 𝐹(𝑥1)  is bounded. Indeed, 

Powell gives an example of bad behavior, with n=3 and exacr line searches, where the sequence 

𝑑𝑘 , 𝑘 = 1,2,3, …, is generated by cycling round the coordinate directions. Here, for each integer I in 

[1,6], the infinite sequence 𝑥6𝑗+𝑖 , 𝑗 = 1,2,3, …, tends to one vertex of a cube, and, in the path from 

𝑥𝑘  to 𝑥𝑘+6 tends to be a cycle along six edges of the cube. Further, the objective function is constant 
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on each of these edges, which implies that two components of the gradient ∇𝐹 are zero at each 

limiting vertex. 

The other component of ∇𝐹 𝑥𝑘 , however, is bounded away from zero for each stationary point of 

F. Therefore, it is easy to modify the algorithm so that the objective function becomes less than the 

actual limit of decreasing sequence 𝐹 𝑥𝑘 , 𝑘 → ∞. Specifically, we replace 𝑑𝑗  by a difference 

approximation to −∇𝐹 𝑥𝑗   for any integer j that is sufficiently large. Furthermore, there is another 

remedy that does not require an estimate of ∇𝐹. 

The kind of ingredient that avoids the bad behavior above is imposing the condition that, if  𝑥𝑘+1 −

𝑥𝑘  is bounded away from zero, then 𝐹 𝑥𝑘 − 𝐹 𝑥𝑘+1  is bounded away from zero too. Hence, in 

the usual case when 𝐹 𝑥𝑘 , 𝑘 = 1,2,3, …, converges monotonically, we have the limit 

 

 𝑥𝑘+1 − 𝑥𝑘 → 0  𝑎𝑠 𝑘 → ∞   (4) 

 

which prevents the cycling round the edges of the cube.  

Further, if the directions 𝑑𝑗 , 𝑗 = 1,2,3, …, satisfies inequality (3) and, if 𝑥∗ is any limit point of the 

infinite sequence 𝑥𝑘 , 𝑘 = 1,2,3, …, then ∇𝐹 𝑥∗ = 0 can be obtained by a suitable line search, 

provided that 𝐹 is continuously differentiable and bounded below. 

We are going to prove this assertion, not only because the method of proof provides a 

demonstration of the kind of analysis that can establish convergence properties. A way of achieving 

the restriction, due to Lucidi and Sciandrone, will be given after the proof. 

We aim tom deduce a contradiction from the assumption  𝛻𝐹 𝑥∗  
2

= 𝜂, where 𝜂 is a positive 

constant and where  𝑥∗  is a limit point of the sequence 𝑥𝑘 , 𝑘 = 1,2,3, …, as stated already. We 

seek some integers j such that ∇𝐹(𝑥𝑗 )𝑇𝑑𝑗 / 𝑑𝑗 2
 is bounded away from zero, because then the step-

length 𝛼𝑗  of the equation 𝑥𝑗 +1 = 𝑥𝑗 + 𝛼𝑗𝑑𝑗  can be choosen so that 𝐹 𝑥𝑗  − 𝐹 𝑥𝑗 +1  is aso bounded 

away from zero, which gives the required contradiction if this happens an infinite number of times. 

Now, by setting 𝑣 = ∇𝐹 𝑥∗  in expression (3), we deduce that the inequality 

 

 𝛻𝐹 𝑥∗ 
𝑇
𝑑𝑗  𝑑𝑗 2

 ≥ 𝑐 𝛻𝐹 𝑥∗  
2

= 𝑐𝜂   (5) 

 

is achieved at least once for every l consecutive positive integers j. Further, because 𝛻𝐹 is 

continuous, this inequality implies  𝛻𝐹 𝑥∗ 
𝑇
𝑑𝑗  𝑑𝑗 2

 ≥ 1/2𝑐𝜂 , provided that 𝑥𝑗  is sufficiently 

close to 𝑥∗. Specifically,  𝑥𝑗  is close enough to 𝑥∗ if it satisfies  𝑥𝑗 − 𝑥∗ 
2

< 휀, where  is a 

positive constant that provides the property 

 

 ∇𝐹 𝑥 − 𝛻𝐹 𝑥∗  
2

≤
𝑐𝜂

2
   𝑖𝑓   𝑥 − 𝑥∗ 

2
< 휀     6  

 

because then the Cauchy-Schwarz inequality and condition (5) give the bound 
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 𝛻𝐹 𝑥∗ 
𝑇
𝑑𝑗  

 𝑑𝑗 2

≥
 𝛻𝐹 𝑥∗ 

𝑇
𝑑𝑗  −  ∇𝐹 𝑥𝑗  −𝛻𝐹 𝑥∗  𝑇𝑑𝑗  

 𝑑𝑗 2

≥ 𝑐𝜂 −
𝑐𝜂

2
=

𝑐𝜂

2
   (7) 

 

therefore it remains to show that, on an infinite number of occasions, l consecutive positive integers 

j satisfy  𝑥𝑗 − 𝑥∗ 
2

≤ 휀. The limit (4) is helpful, because it admits an integer 𝑗0 > 0 such that 

 𝑥𝑗 +1 − 𝑥𝑗 2
≤

휀

2
∕  𝑙 − 1  holds for all j > j0. Hence, if  𝑥𝑘 − 𝑥∗ 

2
≤  

휀

2
  occurs for some integer k 

> j0 then  𝑥𝑗 − 𝑥∗ 
2

≤ 휀 is obtained by every integer j in [k, k+l-1]. This does happen an infinite 

number of times, because 𝑥∗ is limit point of 𝑥𝑘 , 𝑘 = 1,2,3, …, even if we require the differences 

between the chosen integers k to be at least l. the proof is complete. 

The line search procedure of Lucidi and Sciandrone is suitable for the above analysis, although 

some parameters are required that may be difficult to choose well in practice. They are numbers  

and  that satisfy  > 0 and 0 < < 1 and a positive sequence  𝛽𝑘 : 𝑘 = 1,2,3, …  that tends to zero 

as k → ∞. Then, on each iteration, there is a search for a step-length 𝛼𝑘 = 𝛼 that has the properties 

 

 
𝐹(𝑥𝑘 + 𝛼𝑑𝑘 ≤ 𝐹 𝑥𝑘 − 𝛼2 𝑑𝑘 2

2
   𝑎𝑛𝑑

min 𝐹 𝑥𝑘 + 𝛼 𝑑𝑘 , 𝐹(𝑥𝑘 + 𝛼 𝑑𝑘)] ≥ 𝐹(𝑥𝑘) − 𝛼2 𝑑𝑘 2

2
   

       (8) 

 

where 𝛼 =
𝛼

𝛿
. If the first line of expression (8) holds for a trial  > 0, then either  is acceptable or 

the second line shows that a step-length of larger modulus is allowed by the first line, namely 
𝛼

𝛿
 or 

−
𝛼

𝛿
. Thus, the modulus of  is increased if necessary, and the second line is tested for a new . This 

procedure is continued recursively until  is acceptable, which happens eventually because we are 

assuming that F  is bounded below. Alternatively, if the first line of expression (8), not only for the 

initial  but also for –𝛼, then 𝛼 is replaced by 𝛼 and these tests are tried again. Thus, the second 

inequality of expression (8) is achieved by the new 𝛼. Again recursion is applied, either until an 

acceptable step-length is found. 

Moreover, the search directions 𝑑𝑘 , 𝑘 = 1,2,3, …, have to satisfy the strict linear independence 

condition (3). These constructions provide the conclusion ∇𝐹 𝑥∗ = 0 as shown below. The first 

line of expression (8) and equation (1) imply the bound 

 

𝐹 𝑥𝑘 − 𝐹 𝑥𝑘+1 ≥ 𝛾 𝑥𝑘 − 𝑥𝑘+1 2

2
    𝑘 = 1,2,3, … ,    (9) 

 

when 𝛼𝑘  is positive and the bound is trivial when 𝛼𝑘  is zero. Therefore, the limit (4) at the 

beginning of the given analysis is valid and the conclusion ∇𝐹 𝑥∗ = 0 of the analysis holds, 

provided that inequality (7) causes 𝐹 𝑥𝑗  − 𝐹 𝑥𝑗 +1  to be bounded away from zero. Further, the 

method of analysis allows us to restrict attention to values of j that satisfy two more conditions. 

Firstly, we assume j > 𝑗0, where 𝑗0 is fixed positive integer, which may be larger than 𝑗0 introduced 

earlier. Thus, we allow for the zero step-length in the line search procedure under consideration. 
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Secondly, we assume  𝑥𝑗 − 𝑥∗ 
2

≤ 휀, although our previous use of this bound was only to 

establish the existence of integers j that have the property (7). Thus, the uniform continuity of ∇𝐹 in 

any neighbourhood of 𝑥∗ provides the condition 

 

 𝛻𝐹 𝑥 − 𝛻𝐹 𝑥𝑗   2
≤

𝑐𝜂

4
   𝑖𝑓   𝑥 − 𝑥𝑗 2

≤ 휀      10  

 

for all of the values of j that are obtained, where 휀  is a positive number that is independent of j. 

now, it follows from expressions (7) and (10) that the gradient of the line search function 𝜙 𝛼 =

𝐹 𝑥𝑘 + 𝛼𝑑𝑘 ,   𝛼 ∈ ℝ, is bounded by the inequality 

 

 𝜙′ 𝛼  =  𝑑𝑗
𝑇∇𝐹 𝑥𝑗 + 𝛼𝑑𝑗   ≥  𝑑𝑗 2

 𝛻𝐹 𝑥𝑗 + 𝛼𝑑𝑗  − 𝛻𝐹 𝑥𝑗   2
≥

𝑐𝜂

4
 𝑑𝑗 2

   𝑖𝑓    𝛼𝑑𝑗 2

< 휀        11  

 

Therefore, by choosing the sign of 𝛼 to be opposite to the sign of 𝜙′ 0  and by applying 𝜙 𝛼 =

 𝜙′ 𝜃 𝑑𝜃
𝛼

0
, we find the relation 

 

𝐹 𝑥𝑗 + 𝛼𝑑𝑗  ≤ 𝐹 𝑥𝑗  −
𝑐𝜂

4
 𝛼𝑑𝑗 2 

    𝑖𝑓    𝛼𝑑𝑗 2 
≤ 휀      (12) 

 

Thus, the first line of expression (8) is achieved by every 𝛼 of the appropriate sign that satisfies 

 𝛼𝑑𝑗 2
< 휀  and  𝛼𝑑𝑗 2 

≤
𝑐𝜂

4
. It follows that, if the parameter j of the line search procedure is at 

most 𝛿 min  휀 ,
𝑐𝜂

4𝛾
 , and if the first trial value of 𝛼 on the j-th iteration is at least j, then the 

procedure provides a step-length 𝛼𝑗 that is positive. The first of these conditions is irrelevant, if 𝑗0 is 

sufficiently large, as assumed before and, any sensible implementation observes the second 

condition. Therefore, both the inequalities (8) hold for 𝑘 = 𝑗 with 𝛼 = 𝛼𝑗 > 0. We deduce form the 

second one and from the property (12) that  𝛼 𝑑𝑗 2
=

 𝛼𝑗𝑑𝑗 2

𝛿
 is no less than min  휀 ,

𝑐𝜂

4𝛾
  , which 

gives the inequality 

 

 𝑥𝑗 +1 − 𝑥𝑗 2
=  𝛼𝑗𝑑𝑗 2

≥ 𝛿 𝑚𝑖𝑛  휀 ,
𝑐𝜂

4𝛾
      (13) 

 

Thus condition (9) provides a positive lower bound on 𝐹 𝑥𝑗  − 𝐹 𝑥𝑗 +1  as required. Therefore line 

search methods without derivatives can provide convergence properties of the kind that are 

acclaimed by theoreticians when 𝐹 𝑥 , 𝑥 ∈ ℝ𝑛 , need not be convex. 
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4.2 Linear approximation methods  

The changes to the variables in the simplex methods depend on the positions 𝑣𝑖 , 𝑖 = 1,2, … , 𝑛 + 1 

of the vertices of the current simplex and on an integer m in [1, n+1] that is usually defined by the 

conditions 𝐹 𝑣𝑚 ≥ 𝐹 𝑣𝑖 , 𝑖 = 1,2, … , 𝑛 + 1. These methods make no other use of 𝐹 𝑣𝑖 , 𝑖 =

1,2, … , 𝑛 + 1, however, when choosing the next vector of variables for the calculation of the 

objective function, although the function values at the vertices can provide highly useful 

information when F is smooth. In particular, there is a unique linear polynomial from ℝ𝑛  𝑡𝑜 ℝ, Φ 

say, that satisfies the interpolation conditions 

 

Φ 𝑣𝑖 = 𝐹 𝑣𝑖 ,    𝑖 = 1,2, … , 𝑛 + 1     (1) 

 

and often ∇Φ is very helpful for reducing the least calculated value of 𝐹. Therefore we will consider 

changes to the variables that are derived from Φ. The given procedures also allow constraints on the 

variables of the form 

 

𝑐𝑝 𝑥 ≥ 0, 𝑝 = 1,2, … , 𝑚    2  

 

where m denotes the number of constraints from now until the end of the section. The constraints 

functions have to be specified by a subroutine that calculates 𝑐𝑝 𝑥 , 𝑝 = 1,2, … , 𝑚 at the points 

𝑥 ∈ ℝ𝑛  that are generated automatically. These points include the vertices of the current simplex, in 

order that, for each p, we can let 𝛾𝑝  be the linear polynomial from ℝ𝑛  𝑡𝑜 ℝ whose coefficients are 

defined by the equations 𝛾𝑝 𝑣𝑖 , 𝑖 = 1,2, … , 𝑛 + 1, which implies the conditions 

 

𝑥𝑘 ∈  𝑣𝑖 : 𝑖 = 1,2, … , 𝑛 + 1  𝑎𝑛𝑑 𝐹 𝑥𝑘 ≤ 𝐹 𝑣𝑖 ,   𝑖 = 1,2, … , 𝑛 + 1      3  

 

in the unconstrained case. Each iteration until termination generates a new vector of variables, 𝑣𝑛+2 

say, where the difference 𝑣𝑛+2 − 𝑥𝑘   is either a ―minimization step‖ or a ―simplex step‖. The values 

of  𝐹 and any constraint functions are calculated at 𝑣𝑛+2. Then the 𝑛 + 1 vertices of the simplex of 

the next iteration are chosen by deleting one point from the set  𝑣𝑖 : 𝑖 = 1,2, … , 𝑛 + 2 . Further, 𝑥𝑘+1 

is defined in the way mentioned earlier, any ties being broken by retaining 𝑥𝑘+1 = 𝑥𝑘  , unless a 

change provides a strict improvement according to the criterion for the best vertex. An iteration also 

sets the parameters ∆𝑘+1 and 𝜌𝑘+1 before increasing k, where 𝜌1 = ∆1 . All of these operations 

receive further consideration below. 

The minimization of Φ 𝑥 , 𝑥 ∈ ℝ𝑛 , subject to constraints (4) is a linear programming problem that 

usully fails to have a finite solution in the case m < n. Further, it is likely that the linear 

approximations are too inaccurate to be useful when 𝑥  is far from the current simplex. Therefore 

we consider algorithms that employ trust region bounds. Specifically, the vector 𝑣𝑛+2 is the vector 

of the k-th iteration has to satisfy the inequality 

 

 𝑣𝑛+2 − 𝑥𝑘 ≤ 𝜌𝑘      (4) 
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where 𝜌𝑘  is a positive number that is available at the beginning of the iteration, but is may be 

reduced occasionally. On most iterations, 𝑣𝑛+2 is the vector 𝑥 that minimizes Φ 𝑥  subject to 

 𝑥 − 𝑥𝑘 ≤ 𝜌𝑘  and the conditions (4) and then 𝑣𝑛+2 − 𝑥𝑘  is the ―minimization step‖, provided that 

 𝑣𝑛+2 − 𝑥𝑘  is as small as possible if the solution to this subproblem is not unique. It can happen, 

however, that the constraints of the subproblem are inconsistent, and then the ―minimization step‖ is 

defined by minimizing the greatest violation of a linear constraint, namely max   −𝛾𝑝(𝑣𝑛+2: 𝑝 =

1,2, … , 𝑚 , subject to inequality (4) where again any nonuniqueness is taken up by reducing 

 𝑣𝑛+2 − 𝑥𝑘 . Powell addresses these calculations when the vector norm is Euclidean and 

recommends a procedure that generates the path 𝑣𝑛+2 𝛼 , 0 < 𝛼 < 𝜌𝑘 , 𝑖𝑛 ℝ𝑛 , where 𝑣𝑛+2 𝛼  is 

the 𝑣𝑛+2 that would be required if 𝜌𝑘  were equal to 𝛼. This path begins at the point 𝑣𝑛+2 0 = 𝑥𝑘 , 

and is continuous and piecewise linear. Further, the different pieces of the path correspond to 

different indices of critical constraints, the q-th constraint being critical if and only if the conditions 

𝛾𝑞 𝑥 ≤ 0 and 𝛾𝑞 𝑥 ≤ 𝛾𝑝 𝑥 , 𝑝 = 1,2, … , 𝑚 hold. Sometimes the length  𝑣𝑛+2 − 𝑥𝑘  of the 

―minimization step‖ is too  small and then it is usual to replace 𝑣𝑛+2 − 𝑥𝑘  by a simple step. There 

are also iterations that calculate only a ―simplex step‖. The reasons for these alternatives are as 

follows. 

We consider the case when there are no given constraints on the variables, when 𝑣𝑛+2 − 𝑥𝑘   is a 

―minimization step‖, when  𝑣𝑛+2 − 𝑥𝑘  is large enough for 𝐹(𝑣𝑛+2) to be calculated and when the 

new function value has the property 

 

𝐹 𝑣𝑛+2 ≥ 𝐹 𝑥𝑘    (5) 

 

Then, because the definition of the minimization step implies Φ 𝑣𝑛+2 ≥ 𝐹 𝑥𝑘 , the approximation 

Φ 𝑣𝑛+2 ≈ 𝐹 𝑣𝑛+2  is inadequate. There are two main causes of the inadequacy, and it is 

important to distinguish between them. Firstly, 𝑣𝑛+2 may be so far from 𝑥𝑘  that very god linear 

approximations to 𝐹 in a neighbourhood of 𝑥𝑘  may be unsuitable at 𝑣𝑛+2, due to second and higher 

order terms of lack of smoothness of the objective function. Secondly, although the bound (4) may 

ensure that any one of these very good approximations provides a minimization step that is 

successful at reducing the least calculated value of 𝐹, the interpolation condition (1) may define a 

linear polynomial Φ that is unhelpful. This can happen if one or more of the distances  𝑣𝑖 − 𝑥𝑘 ,

𝑖 = 1,2, … , 𝑛 + 1, is much greater than 𝜌𝑘  or if the current simplex is nearly degenerate. The 

appropriate remedy in the first case is so shorten the length of the minimization step on the next 

iteration by choosing 𝜌𝑘+1 < 𝜌𝑘 ,  which is a standard technique in trust region algorithms. In the 

second case, however, the remedy is to choose a better simplex. When 𝑣𝑛+2 is calculated for the 

latter purpose, we call 𝑣𝑛+2 − 𝑥𝑘  a ―simplex step‖. 

The choice of independent Φ, except for a plus or minus sign, and 𝑣𝑛+2 becomes one of the vertices 

of the simplex of the next iteration. The need for such steps is clear if a given constraint on the 

variables is linear and, if, 𝑣𝑛+2 satisfies the constraint as an equation for all minimization steps. 

Indeed, if there were no simplex steps in this case, and if all of the vertices of the initial simplex 

have been removed from the current simplex by earlier iterations, then all of the current vertices 

𝑣𝑖 , 𝑖 = 1,2, … , 𝑛 + 1 are on the boundary of the linear constraint. Thus the equations (1) fail to 
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define the coefficients of Φ, because the matrix of the equations is singular. Therefore a reason for 

the ―simplex steps‖ is to oppose any tendencies for the current simplex to become degenerate. 

It has been mentioned that ∆1> 0 is a prescribed parameter that controls the size of the initial 

simplex. Most of the later iterations employ ∆𝑘= ∆𝑘−1,  and each ∆𝑘  is an acceptable length for the 

edges of the current simplex, the length being relevant to the suitability of the linear polynomial Φ 

defined by the equations (1). Specifically, it is assumed that the nonlinearities of the objective 

function may damage the usefulness of the approximation Φ ≈ F, if any of the distances  𝑣𝑖 − 𝑥𝑘 ,

𝑖 = 1,2, … , 𝑛 + 1, is much greater than ∆𝑘 . On the other hand, when ―minimization steps‖ are 

successful at improving the best vector of variables so far, then there is no need for any ―simplex 

steps‖. Thus, 20 consecutive iterations, say, may make changes to the variables that are 

minimization steps, and all of the changes may be roughly in the same direction in ℝ𝑛 , which 

causes max    𝑣𝑖 − 𝑥𝑘 ∶ 𝑖 = 1,2, … , 𝑛 + 1  to become large. Eventually, however, we expect the 

sequence of successful iterations to be interrupted by a minimization step that makes 𝑣𝑛+2  no better 

than 𝑥𝑘 , which means that inequality (5) occurs in the unconstrained case. Then, the next iteration 

employs a ―simplex step‖. When the k-th iteration tries to take a simplex step, an integer 𝑙 𝑖𝑛 [1, 𝑛] 

is calculated that has the property 

 

 𝑣𝑙 − 𝑥𝑘 = max    𝑣𝑖 − 𝑥𝑘 , 𝑖 = 1,2, … , 𝑛 + 1     (6) 

 

Further, the condition  𝑣𝑙 − 𝑥𝑘 ≤ 𝛽∆𝑘  is tested, where 𝛽 > 1 is a prescribed constant that has the 

value 𝛽 = 2.1 in the work of Powell (1994). If the test fails, then 𝑣𝑛+2  is chosen in a way that 

makes it suitable to delete 𝑣𝑙  from the set  𝑣𝑖 , 𝑖 = 1,2, … , 𝑛 + 2  , when generating the vertices of 

the simplex of the next iteration. Specifically, letting 𝑤𝑙 ∈ ℝ𝑛  be a vector of unit length that is 

orthogonal to the face of the current simplex that is without 𝑣𝑙 , we let 𝑣𝑛+2  be the point 

 

𝑣𝑛+2 = 𝑥𝑘 ± ∆𝑘𝑤𝑙      7  

 

where the ± sign is negative if and only if  𝑥𝑘 − ∆𝑘𝑤𝑙   is better than 𝑥𝑘 ± ∆𝑘𝑤𝑙  . Otherwise, if 

 𝑣𝑙 − 𝑥𝑘 ≤ 𝛽∆𝑘  is achieved, the algorithm seeks a different integer  𝑙 𝑖𝑛 [1, 𝑛 + 1]. Indeed, letting 

𝜍𝑖  be the distance from 𝑣𝑖  to the plane in ℝ𝑛  that contains the vertices of the current simplex that 

are different from 𝑣𝑖 , the new 𝑙 minimizes 𝜍𝑙  subject to 𝑣𝑙 ≠ 𝑥𝑘 . Therefore a very small value of 𝜍𝑙  

indicates that the simplex is nearly degenerate. The inequality 𝜍𝑙 ≥ 𝛼∆𝑘  is tried, where 𝛼 < 1 is 

another positive constant, for instance 𝛼 =
1

4
.  

If the inequality fails, then 𝑣𝑛+2 is defined by formula (7) for the new 𝑙, where the ± sign and 𝑤𝑙  

are as before. Further, the new simplex is generated by replacing  𝑣𝑙  by 𝑣𝑛+2 in the list of vertices, 

which increases the volume of current simplex by the factor ∆𝑘/𝜍𝑙 . If 𝜍𝑙 ≥ 𝛼∆𝑘  holds, however, 

then the positions of the vertices 𝑣𝑖 , 𝑖 = 1,2, … , 𝑛 + 1, are assumed to be adequate for the equations 

(1) that define Φ, and, we say that simplex is ―acceptable‖. Then the iteration tries to generate 𝑣𝑛+2 

by a ―minimization step‖ instead of by a ―simplex step‖. 

We are now ready to consider the choices between the minimization and simplex step alternatives, 

the values of ∆𝑘  and 𝜌𝑘 , 𝑘 = 1,2,3, …, and a condition for terminating the calculation. Simple rules 

are recommended for adjusting ∆𝑘  and for termination. Specifically, ∆1 is given, and, until 
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termination, the k-th iteration sets ∆𝑘+1= ∆𝑘 , where k  is still the iteration number. The value of ∆𝑘  

at the start of the k.th iteration is provisional, however, in order that a few iterations can reduce ∆𝑘 , 

although no increase are allowed. A positive parameter ∆∗ say, has to be prescribed that satisfies 

∆∗≤ ∆1 because it is a lower bound on every ∆𝑘 . the changes in ∆𝑘  have to be such that ∆𝑘= ∆∗ 

occurs after a finite number of reductions. The calculation terminates when this situation occurs and 

∆𝑘  has already reached the value ∆∗. These rules afford the following useful properties. Every 

iteration until termination picks a vector of variables 𝑣𝑛+2 that satisfies the inequality 

 

 𝑣𝑛+2 − 𝑥𝑘 ≥ ∆𝑘     (8) 

 

and ∆𝑘  is not reduced until this condition seems to prevent further improvements to the variables. 

The user pick a value of ∆1 that causes substantial adjustments to the variables to be tried at the 

beginning of the calculation, which can alleviate the damage from any random noise in the function 

values. Then the bound (8) can be refined gradually by the decreases in ∆𝑘 . Further, when the given 

functions are smooth, good accuracy can usually be achieved at termination by letting ∆∗ be 

sufficiently small. 

Powell in 1994 sets 𝜌𝑘 = ∆𝑘  throughout the calculation, but changes to the variables that are much 

greater than ∆𝑘  are sometimes necessary for efficiency. Indeed, there are unconstrained calculations 

with quadratic objective functions such that, when ∆𝑘  is reduced, the distance from 𝑥𝑘  to the 

optimal vector of variables is of magnitude 𝑀∆𝑘 , where 𝑀 is the condition number of second 

derivative matrix ∇2𝐹. Therefore it may be helpful to allow 𝜌𝑘  to be much larger than ∆𝑘 . 

Moreover, the initial choice  𝜌1 = ∆1 has been already mentioned and, it is reasonable to set 𝜌𝑘  to 

the new value of ∆𝑘  when ∆𝑘  is decreased, because 𝜌𝑘  should become less than old value of ∆𝑘  for 

the moment, but the condition (8) excludes 𝜌𝑘 < ∆𝑘 . These remarks suggest the following 

guidelines for the choice of 𝜌𝑘 , 𝑘 = 1,2,3, … we pick 𝜌𝑘 = ∆𝑘 , which causes 𝜌𝑘  to be less than its 

value at the beginning of any iteration that decreases ∆𝑘 , but there are no other changes to 𝜌𝑘  during 

an iteration. The value 𝜌𝑘+1 = 𝜌𝑘   is often set at the end of the k-th iteration, and it always occurs 

when 𝑣𝑛+2 − 𝑥𝑘  is a ―minimization step‖ that provides 𝑥𝑘+1 ≠ 𝑥𝑘  . If a minimization step fails to 

improve the best vector of variables so far, however, than the next minimization step is required to 

be substantially shorter than the present one, except that the bound (8) is preserved. Therefore the 

value 

 

𝜌𝑘+1 = max   ∆𝑘 ,
1

2
 𝑣𝑛+2 − 𝑥𝑘       9  

 

for example, may be suitable.  

Each iteration until termination has to choose a ―minimization step‖ or a ―simplex step‖. The 

method that fixes the choice is specified below using the nomenclature that a minimization step is 

―long enough‖ if it satisfies inequality (8) and is ―questionable‖ unless its length is exactly ∆𝑘  and 

the current simplex is ―acceptable‖. When the iteration does not reduce ∆𝑘  and the choice between 

the alternatives is determined by the following four rules, which are given in order of priority. 

1. A minimization step is preferred if it is long enough and if either k=1 or the previous 

iteration improved the best vector of variables so far. 
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2. A minimization step is preferred if it is long enough and if the previous iteration applied a 

simplex step. 

3. A simplex step is preferred neither rule 1 nor rule 2 apply and if the current simplex is not 

acceptable. 

4. A minimization step is preferred if it is long enough, if the current simplex is acceptable and 

if the previous iteration employed a minimization step that is questionable. Thus the 

remaining possibilities are the following two situations. 

 

5. The current simplex is acceptable and the minimization step is not long enough. 

6. The current simplex is acceptable, the minimization step is long enough, the previous 

iteration applied a minimization step that is not questionable, but that iteration did not 

improve the best vector of variables.  

In these cases the time has to come to reduce ∆𝑘  and 𝜌𝑘 . Therefore termination occurs if ∆𝑘  has 

attained the value ∆∗. Otherwise, after reducing ∆𝑘  and 𝜌𝑘 , the required choice is determined by 

three more rules. 

7. The minimization step is preferred if it is long enough for the new ∆𝑘 . 

8. The simplex step is chosen if rule 7 fails and if the current simplex is not acceptable for the 

new ∆𝑘 . 

9. In all other cases, ∆𝑘  is still too large, so we introduce a recursion by branching back to the 

part of the algorithm that either causes termination or reduces ∆𝑘 . Thus, each iteration before 

termination picks just one vector 𝑣𝑛+2 at which the values of the given functions from 

ℝ𝑛  𝑡𝑜 ℝ are calculated. 

Another question that requires an answer is the choice of the n+1 vertices of the simplex for the 

next iteration from  𝑣𝑖 ∶ 𝑖 = 1,2, … , 𝑛 + 2 . We let 𝑣𝑙  be the point that is not retained, which agrees 

with equation (7) when 𝑣𝑛+2 − 𝑥𝑘  is a ―simples step‖. We propose a new choice of l when 𝑣𝑛+2 −

𝑥𝑘  is a ―minimization step‖, however, because the technique in Powell (1994) assumes 𝜌𝑘=∆𝑘  for 

every k. Let 𝑥𝑘+1 ∈  𝑣𝑖 ∶ 𝑖 = 1,2, … , 𝑛 + 2  be determined before l is selected, which is possible 

because we require the best vector of variables so far. Further, let the real multipliers 𝜃𝑖 , 𝑖 =

1,2, … , 𝑛 + 2, satisfy the equation 

 

 𝜃𝑖(

𝑛+2

𝑖=1

𝑣𝑖 − 𝑥𝑘+1) = 0     (10) 

 

where 𝜃𝑖  is zero for the integer 𝑖∗ that is defined by 𝑥𝑘+1 = 𝑣𝑖∗, but some of the other multipliers 

are nonzero. It follows from the nondegeneracy of the current simplex that the values of the 

multipliers are determined uniquely except for a scaling factor. Now, if i and j are different integers 

in [1, n+2] such that 𝜃𝑖  and 𝜃𝑗  are nonzero, and if 𝑆𝑖  and 𝑆𝑗  are the new simplices for l=i and l=j, 

respectively, the equation (10) implies the property 

 

 (𝑉𝑜𝑙 𝑆𝑖)/𝑉𝑜𝑙 𝑆𝑗  =  𝜃𝑖/𝜃𝑗       (11) 

 

therefore it may be suitable to pick l by satisfying the condition  𝜃𝑙 = max  𝜃𝑖 ∶ 𝑖 = 1,2, … , 𝑛 +

2 . this method, however, would favour the retention of any points 𝑣𝑖  that are far from 𝑥𝑘+1, and we 
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do not want the new simplex to have a large volume because the lengths of some of its sides are 

much greater than ∆𝑘 . Instead we take the view for the moment that, for every i in [1, n+2] such 

that  𝑣𝑖 − 𝑥𝑘+1  exceeds ∆𝑘 , the point 𝑣𝑖  is replaced by the point on the line segment from 𝑥𝑘+1 to 

𝑣𝑖  that is distance ∆𝑘  from 𝑥𝑘+1, but 𝑣𝑖  is unchanged for the other values of i.  

Then we choose l by applying the procedure just described to these new points. Specifically, for 

each integer i in [1, n+2], we find that 𝜃𝑖  in equation (10) has to be scaled by max  [1,  𝑣𝑖 −

𝑥𝑘+1 / ∆𝑘], because of the temporary change to 𝑣𝑖 . Therefore we let l be an integer in [1, n+2] that 

has the property 

 

 𝜃𝑙   max   ∆𝑘 ,  𝑣𝑖 − 𝑥𝑘+1   ≥  𝜃𝑖   max ∆𝑘 ,  𝑣𝑖 − 𝑥𝑘+1   ,   𝑖 = 1,2, … , 𝑛 + 2     (12) 

 

Thus, if the current simplex has a vertex that is far from the best vector of variables, there is a 

tendency to exclude it from the simplex of the next iteration. The merit function, Ψ say, of the 

calculation provides a balance between the value of the objective function and any constraint 

violations, in order to determine the best vertex of the current simplex. Specifically, Ψ is the same 

as F when there are no constraints, and, for m ≥ 1, the form 

 

Ψ 𝑥𝑘 = 𝐹 𝑥𝑘 + 𝜇 [max −𝑐𝑝 𝑥 ∶ 𝑝 = 1,2, … , 𝑚 ]+,     𝑥 ∈ℝ𝑛      (13) 

 

is taken from Powell (1994). Here 𝜇 is a parameter that is zero initially and that may be increased 

automatically as described below. Further, the subscript ―+‖ indicates that the expression in square 

brackets is replaced by zero if and only if its value is negative. Thus Ψ 𝑥 = 𝐹(𝑥) occurs whenever 

𝑥 is feasible, and it is helpful to scale the constraint functions so that the values −𝑐𝑝 𝑥 , 𝑝 =

1,2, … , 𝑚, have similar magnitudes for typical vectors 𝑥. Expression (3) is extended to m   0 by 

requiring the best vertex 𝑥 to satisfy the conditions 

 

𝑥𝑘 ∈  𝑣𝑖 ∶ 𝑖 = 1,2, … , 𝑛 + 1   𝑎𝑛𝑑  𝛹 𝑥𝑘  ≤ 𝛹 𝑣𝑖 ,   𝑖 = 1,2, … , 𝑛 + 1     (14) 

 

after choosing 𝑥𝑘 , both the minimization and the simplex steps are independent of  Ψ and 𝜇, but Ψ 

is usually important to what happens next. Indeed, if the new vector of variables of the k-th 

iteration, namely 𝑣𝑛+2 is generated by a minimization step, then usually another minimization step 

is chosen by the (k+1)-th iteration if and only if the strict inequality 𝛹 𝑣𝑛+2 ≤ 𝛹 𝑥𝑘  holds. 

Further, this inequality should be achieved if all linear approximations discussed before are exact. 

Therefore, we require the value of 𝜇 to provide the property 

 

Υ 𝑣𝑛+2 < Υ 𝑥𝑘 ,   𝑖𝑓  𝑣𝑛+2 − 𝑥𝑘    is a minimization step    (15) 

 

where Υ is the piecewise linear approximation 

 

Υ 𝑥 = Φ 𝑥 + 𝜇 [max   – 𝛾𝑝 𝑥 ∶ 𝑝 = 1,2, … , 𝑚 , 𝑥 ∈  ℝ𝑛     (16) 
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to the merit function. Now a minimization step either reduces the contribution from the constraints 

to expression (16), or the contribution is zero and Φ 𝑣𝑛+2 < Φ 𝑥𝑘  occurs, when we are 

excluding steps that are zero, because they are abandoned automatically, due to the failure of 

inequality (8). It follows that condition (15) can be achieved whenever it is required by choosing a 

sufficiently large value of 𝜇. therefore Powell (1994) propose the following technique for increasing 

𝜇. 

Whenever a minimization step is calculated that has the property (8), we let 𝜇 be the least 

nonnegative value of 𝜇 that provides Υ 𝑣𝑛+2 ≤ 𝛶 𝑥𝑘 . Further, 𝜇 is unchanged in the case 𝜇 ≥
3

2
𝜇 

, but, otherwise it is increased to 2𝜇. A possible consequence of an increase in 𝜇 is that  𝑥𝑘  is no 

longer the optimal vertex, and then the calculated minimization step would be incorrect. Therefore 

𝑥𝑘   is changed if necessary to another vertex that satisfies the condition (14). Then the minimization 

step is recalculated, so 𝜇 may have to be increased again, which may cause a further change to the 

optimal vertex. Fortunately, this procedure does not cycle, because each change to 𝑥𝑘  causes a strict 

reduction in  – 𝛾𝑝 𝑥 ∶ 𝑝 = 1,2, … , 𝑚 . Another use of Υ is that the ± sign of expression (7) is 

negative is and only if Υ 𝑥𝑘 − Δ𝑘𝑤𝑙  is less than Υ 𝑥𝑘 + Δ𝑘𝑤𝑙 .   

 

4.3 Quadratic approximation methods 

Now, we let the approximation Φ 𝑥 , 𝑥 ∈ ℝ𝑛 , to the objective function 𝐹 𝑥 , 𝑥 ∈ ℝ𝑛  , be a 

quadratic polynomial instead of a linear polynomial. Therefore Φ has 𝑛 =
1

2
 𝑛 + 1 (𝑛 + 2), say, 

independent coefficients, that may be defined by the interpolation conditions 

 

Φ 𝑣𝑖 = 𝐹 𝑣𝑖 ,   𝑖 = 1,2, … , 𝑛     (1) 

 

where the vectors  𝑣𝑖 , 𝑖 = 1,2, … , 𝑛   are the points in ℝ𝑛 . These points should have the property 

that, if expression (1) is written as a system of linear equations, the unknowns being the 

coefficients, then the matrix of the system is nonsingular. The Lagrange functions of the 

interpolation problem will be useful later. Therefore we reserve the notation 𝜒𝑖 , 𝑖 = 1,2, …, 𝑛 , 

for the quadratic polynomials from ℝ𝑛  to ℝ that satisfy the equations 

 

𝜒𝑖 𝑣𝑗  = 𝛿𝑖𝑗 ,    1 ≤ 𝑖, 𝑗 ≤ 𝑛      (2) 

 

where 𝛿𝑖𝑗  is the Kronecker delta. It follows that Φ is the function 

 

Φ 𝑥 =  𝐹(

𝑛

𝑖=1

𝑣𝑖)𝜒𝑖 𝑥 ,   𝑥 ∈ ℝ𝑛     (3) 

 

the main advantage of the quadratic over linear polynomials is that quadratics include some second 

derivative information, which allows the development of algorithms that have useful superlinear 

convergence properties. We are going to consider some of the ideas that have been proposed for 
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constructing and applying quadratic approximations to 𝐹 when there are no constraints on the 

variables. 

The algorithm of Winfield, developed in 1973, not only employs the interpolation equations (1) to 

define Φ, but also it includes some of the earliest work of the objective function calculated so far: 𝑛  

of them being obtained before the first iteration. Let these values be 𝐹 𝑣𝑖 ,   𝑖 = 1,2, … , 𝑛 , where 

𝑛 ≥ 𝑛 , let 𝑥𝑘  be a best vector of variables which means that it satisfies the conditions 

 

𝑥𝑘 ∈  𝑣𝑖 : 𝑖 = 1,2, … , 𝑛    and 𝐹 𝑥𝑘 ≤ 𝐹 𝑣𝑖 ,   𝑖 = 1,2, … , 𝑛     (4) 

 

and let the current data be ordered so that the sequence of distances  𝑣𝑖 − 𝑥𝑘 , 𝑖 = 1,2, … , 𝑛 , 

increases monotonically. Then the k-th iteration generates the quadratic polynomial Φ by trying to 

interpolate the function values of only the first 𝑛  terms of the sequence, in accordance with the 

notation (1). Further, the iteration calculates the vector 𝑥 ∈ ℝ𝑛  that minimizes Φ 𝑥  subject to the 

bound  𝑥 − 𝑥𝑘 ≤ 𝜌𝑘 , where the trust region radius is chosen automatically and satisfies 𝜌𝑘 ≤

0.99 𝑣𝑛 − 𝑥𝑘 , in order that the value of 𝐹 at the new point will be included in the interpolation 

conditions of the (k+1)-th iteration. One reason for mentioning the algorithm is that it acts in an 

enterprising way when the system (1) is degenerate. Specifically, the degeneracy is ignored, it is 

assumed that the calculation of Φ is sufficiently robust to provide a quadratic function that allows 

the trust region subproblem to be solved and the resultant 𝑥 receives no special treatment. Thus 

some unpredictable changes to the variables occur that may remove the degeneracy after a few 

iterations. Indeed, Winfield (1973) states that ―this natural cure of ill-conditioning is more efficient 

than restarting the algorithm by evaluating 𝐹(𝑥) at the points of a grid‖. The other methods that we 

study, however, ensure that each Φ is well defined. 

The Lagrange functions that have been mentioned provide a convenient way of avoiding singularity 

in the equations (1). The technique suggests itself if one tries to modify the algorithm of Powell for 

unconstrained optimization described in the previous paragraph, so that the linear polynomial Φ is 

replaced by the quadratic one that is defined by the equations (1). We retain from the previous 

section the parameters Δ𝑘  and 𝜌𝑘 , 𝑘 = 1,2,3, …, and the rules that give their values. Moreover, in 

the quadratic case, the points 𝑣𝑖 , 𝑖 = 1,2, … , 𝑛 ,  for the first iteration can be the vertices and the 

mid-points of the edges of a nondegenerate simplex in  ℝ𝑛 , where the lengths of the edges are still 

of magnitude Δ1. Otherwise, for 𝑘 ≥ 2, these points are chosen by the previous iteration, and 𝑥𝑘  

satisfies the conditions 

 

𝑥𝑘  ∈  𝑣𝑖 : 𝑖 = 1,2, … , 𝑛   𝑎𝑛𝑑 𝐹 𝑥𝑘 ≤ 𝐹 𝑣𝑖 ,   𝑖 = 1,2, … , 𝑛      5  

 

further, 𝑣𝑛+1 − 𝑥𝑘  is still a ―minimization step‖ if 𝑣𝑛+1 is the vector 𝑥 ∈ ℝ𝑛  that minimizes Φ 𝑥  

subject to  𝑥 − 𝑥𝑘 ≤ 𝜌𝑘  which is the trust region subproblem of the previous paragraph. On the 

other hand, a ―simplex step‖ is usually required if the previous iteration generated a minimization 

step that failed to reduce the least calculated value of 𝐹. In this case, we let l be and integer in [1, 𝑛 ] 

that maximizes  𝑣𝑙 − 𝑥𝑘 . If this distance is unacceptably large, then we have to pick a point 𝑣𝑛+1 

that will replace 𝑣𝑙  in the system (1) on the next iteration. Therefore we require a formula that is 

suitable when Φ is a quadratic polynomial. 
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Now we are going to maximize the volume of the simplex of the next iteration subject to  𝑣𝑛+2 −

𝑥𝑘 ≤ ∆𝑘 . Further, the volume of the simplex is a constant multiple of the modulus of the 

determinant of the matrix of the system (1) of the previous paragraph, when the usual basis of the 

space of linear polynomials is employed. Therefore an analogous choice of the ―simplex step‖ when 

Φ is quadratic would maximize the modulus of the determinant of the 𝑛 𝑥𝑛  system (1), after 𝑣𝑙  is 

replaced by 𝑣𝑛 +1, where 𝑣𝑛 +1 has to satisfy  𝑣𝑛 +1 − 𝑥𝑘 ≤ ∆𝑘 . 

We write 𝑥 = 𝑣𝑛 +1 for the moment, we regard the new quadratic polynomial in 𝑥. Further, the 

determinant must vanish if 𝑥 is any point of the set  𝑣𝑖 : 𝑖 = 1,2, … , 𝑛   that is different from 𝑣𝑙 . 

Thus, an elementary normalization provides the identity 

 

𝑁𝑒𝑤 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡

𝑂𝑙𝑑 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡
= 𝜒𝑙 𝑥 , 𝑥 ∈ ℝ𝑛     (6)  

 

therefore we define  𝑣𝑛 +1 − 𝑥𝑘  to be a ―simples step‖ for the chosen integer l ∈  1, 𝑛   if and only if 

𝑣𝑛 +1 is a vector of variables 𝑥 that maximizes  𝜒𝑙 𝑥   subject to  𝑥 − 𝑥𝑘 ≤ ∆𝑘 . This definition 

has the advantage of being independent of the choice of basis of the space of quadratic polynomials. 

Further, the simplex step can be calculated by solving two trust region subproblems of the type that 

has been encountered already. Indeed, if two vectors of variable are generated by minimizing the 

quadratic functions 𝜒𝑙  and −𝜒𝑙  subject to the trust region bound, then the required 𝑣𝑛 +1 is the 

vector that gives the larger value of  𝜒𝑙  . 

When the k-th iteration tries to take a ―simplex step‖, the algorithm may find that all the points 

𝑣𝑖 , 𝑖 = 1,2, … , 𝑛 , are sufficiently close to 𝑥𝑘 , which corresponds to the condition  𝑣𝑙 − 𝑥𝑘 ≤

𝛽∆𝑘 . Then a test for neardegeneracy of the system (1) is required. 

Therefore, we continue to let 𝛼 < 1 be a positive constant, for instance 𝛼 = 1/4 and we seek an 

integer l in [1, 𝑛 ] such that the replacement of 𝑣𝑙  by 𝑣𝑛 +1 increases the modulus of the determinant 

of the system (1) by a factor of more than 1/ 𝛼, where 𝑣𝑛 +1 is defined at the end of the previous 

paragraph, because this choice maximizes the modulus of the new determinant. Specifically, the test 

for near-degeneracy in the quadratic case is as follows. The integer l runs through the set 

 1,2, … , 𝑛  , but similar tests on recent iterations may make it advantageous not to begin with l=1. 

For each l, the maximum value of  𝜒𝑙 𝑥  ,  𝑥 − 𝑥𝑘 ≤ ∆𝑘 , is calculated. If  𝜒𝑙 𝑥  > 1/𝛼 occurs, 

the task of searching for a suitable l is complete, because the replacement of 𝑣𝑙  by the vector 𝑣𝑛 +1 

that has been mentioned provides a substantial improvement to the positions of the interpolation 

points. Then 𝑣𝑛 +1 − 𝑥𝑘  is a ―simplex step‖ and the functions value 𝐹(𝑣𝑛 +1) is required for the 

system (1) of the next iteration. Otherwise, if no current interpolation points are ―acceptable‖ and 

the iteration may generate 𝑣𝑛 +1 by a ―minimization step‖. We also retain the rule that the 

minimization step is abandoned if it fails to satisfy  𝑣𝑛+1 − 𝑥𝑘 ≤ ∆𝑘 , which is important to the 

criteria for reducing ∆𝑘  and for termination. 

We let each choice between a ―minimization‖ and a ―simplex step‖ in the quadratic case be the 

same as in the previous paragraph. A modification is needed, however, to the technique that selects 

the interpolation points for the (k+1)-th iteration, after  𝐹(𝑣𝑛 +1) has been calculated and 𝑣𝑛+1 − 𝑥𝑘  

is a minimization step. These points are all but one of the vectors 𝑣𝑖 : 𝑖 = 1,2, … , 𝑛 + 1 and again we 

let 𝑣𝑙  denote the point that is rejected. Here it is important to note that, in contrast to the previous 
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paragraph, 𝑣𝑛+1 is now independent of l, because it is generated by the minimization step before l is 

chosen. In order to retain a best vector of variable so far, we let i be an integer in [1, n + 1] such 

that 𝐹(𝑣𝑖) is the least of the function values 𝐹 𝑣𝑖 , 𝑖 = 1,2, … , 𝑛 + 1. Then the value 𝑙 = 𝑖∗ is 

prohibited because 𝑥𝑘+1 is going to be the point 𝑣𝑖 . It would be straightforward to pick the 𝑙 that 

maximizes the modulus of the determinant of the system (1) on the next iteration if we wished to do 

so. Indeed, if 𝑙 ∈ [1, 𝑛 ], then it follows from the identity (6) that the determinant of the new system 

is the determinant of the present one multiplied by 𝜒𝑙 𝑣𝑛+1 .  Therefore, after defining 𝜃𝑛+1 = 1 

and 𝜃𝑖 = 𝜒𝑖 𝑣𝑛+1 , 𝑖 = 1,2, … , 𝑛  and then replacing 𝜃𝑖∗  by zero, we would let 𝑙 satisfy the 

equation  𝜃𝑙 = 𝑚𝑎𝑥  𝜃𝑖 : 𝑖 = 1,2, … , 𝑛 + 1 . Again, however, we prefer to take the distances 

 𝑣𝑖 − 𝑥𝑘+1 , 𝑖 = 1,2, … , 𝑛  into account. 

Specifically, if I is any integer in [1, 𝑛 ] such that  𝑣𝑖 − 𝑥𝑘+1 > ∆𝑘  occurs, we make a notional 

shift of 𝑣𝑖  to 𝑣 𝑖 , say, which is a point on the line segment from 𝑥𝑘+1 to 𝑣𝑖  that is within the distance 

∆𝑘  of 𝑥𝑘+1. Further, we let 𝜒𝑖  be the quadratic polynomial that satisfies the Lagrange conditions 

𝜒 𝑖 𝑣 𝑖 = 1 and 𝜒 𝑖 𝑣 𝑗  = 0, for very integer j in [1, 𝑛 ] that is different from i. Hence, 𝜒 𝑖  is the 

function 

 

𝜒 𝑖 𝑥 =
𝜒 𝑖(𝑥)

𝜒 𝑖(𝑣 𝑖)
,      𝑥 ∈ ℝ𝑛      (7) 

 

Now, because of the inequality  𝑣𝑖 − 𝑥𝑘+1 > ∆𝑘  we assume that the temporary replacement of 𝑣𝑖  

by 𝑣 𝑖  would make the determinant of the system (1) more relevant to our consideration of possible 

near-degeneracy. Therefore we change the value of 𝜃𝑖 , given the previous paragraph, to the number 

𝜒 𝑖 𝑣𝑛+1 =
𝜒 𝑖(𝑣𝑛 +1)

𝜒 𝑖(𝑣 𝑖)
, but there is still some freedom in the position of 𝑣 𝑖 . We have to avoid 

positions that are too close to other interpolation points, and it is easy to make  𝜒𝑖(𝑣 𝑖)  as large as 

possible, because 𝜒𝑖  is a quadratic function of one variable on the line segment from 𝑥𝑘+1 to 𝑣𝑖 . On 

the other hand, it would be unsuitable to allow  𝜒𝑖(𝑣 𝑖)  to exceed one, because then  𝑣𝑖 − 𝑥𝑘+1 >

∆𝑘  would assist the retention of 𝑣𝑖  in the set of interpolation points. These remarks lead to the 

formula 

 

𝜃𝑖 =
𝜒 𝑖(𝑣𝑛 +1)

min [1,𝑚𝑎𝑥   𝜒 𝑖 𝑥𝑘+1+𝛼 𝑣𝑖−𝑥𝑘+1   :0≤𝛼≤𝛼  ]
    (8) 

 

where 𝛼 =
∆𝑘

 𝑣𝑖−𝑥𝑘+1 
. Further, this choice is just  𝜃𝑖 = 𝜒𝑖 𝑣𝑛+1  as before, when i is an integer in [1, 

𝑛 ] that satisfies i≠𝑖∗ and  𝑣𝑖 − 𝑥𝑘+1 > ∆𝑘 . Moreover, 𝜃𝑛+1 = 1 is the most reasonable scaling 

factor to apply to the determinant when there is no change to the interpolation points. Therefore we 

recommend  these values of  𝜃𝑖  and after replacing 𝜃𝑖∗ by zero, we let l be an integer in [1, 𝑛 + 1] 

that maximizes  𝜃𝑙 . 

We have found that, due to the identity (6), Lagrange functions are highly useful for selecting points 

𝑣𝑖 , 𝑖 = 1,2, … , 𝑛 ,  such that the quadratic polynomial Φ is well defined by the equations (1).  

Another description of the use of Lagrange functions is given by Conn, Scheinberg and Toint. This 

work also addressed the idea of employing ―Newton fundamental polynomials‖ instead of Lagrange 

functions, where these polynomials in the quadratic case are a constant Lagrange polynomial, n 
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linear Lagrange polynomials, and 
1

2
𝑛(𝑛 + 1) quadratic Lagrange polynomials that are derived from 

one, n+1 and all of the interpolation points, 𝑣𝑖 , 𝑖 = 1,2, … , 𝑛  respectively. They provide a different 

basis of the 𝑛 =
1

2
 𝑛 + 1 (𝑛 + 2) dimensional space of quadratic polynomials, which is helpful 

when fewer than 𝑛  values of F are available to determine Φ. An outline of a trust region algorithm 

for unconstrained minimization without derivatives is given too. A major departure from the work 

of this section is that, the k-th iteration takes a ―minimization step‖ that reduces F by an amount that 

compares favourably with the corresponding reduction in Φ, then ∆𝑘+1 is allowed to be larger than 

∆𝑘 . Nevertheless, this trust region radius is reduced only when the positions of the interpolation 

points satisfy acceptability conditions that are similar to the ones specified in the complete 

paragraph following the equation (6). Therefore, in comparison with the technique of Jones that 

employs both ∆𝑘  and 𝜌𝑘 , several extra function values may occur if the larger trust region radius is 

successful for only a small number of iterations. An earlier paper by Conn, Scheinberg and Toint in 

1997 also considers Newton  fundamental polynomials and presents an outline of a similar trust 

region algorithm. Further, the convergence of the algorithm is studied under certain assumptions, 

including the uniform boundedness of the second derivative matrices ∇2Φ. It is proved that, if the 

number of iterations is infinite, then the property lim 𝑖𝑛𝑓𝑘→∞ ∇𝐹 𝑥𝑘  = 0 is achieved. 

The last topic of this section is the algorithm of Elster and Neumaier (1995) which is designed for 

optimization calculations. The algorithm is remarkable, because it combines quadratic 

approximations to F and trust regions with some of the properties of discrete grids that are 

considered before. Thus, termination is achieved, even if the values of the objective function are 

distorted by noise. There is a close analogy with the two trust region idea of Evan Jones, because it 

is appropriate to let 𝜌𝑘  be the trust region radius and ∆𝑘  be the grid size. The algorithm retains all 

the calculated values of F. Then, each quadratic approximation Φ is formed by least squares fitting 

to some of them, using a technique that is interesting, because it begins by generating a Hessian 

approximation G, and then it restricts attention to only about 2n+2 function values, in order to fit 

the parameters 𝑎 ∈ ℝ,   𝑔 ∈ ℝ𝑛  and 𝑘 ∈ ℝ of the approximation 

 

                          Φ x = a + gT 𝑥 − 𝑥𝑘 +
𝑘

2
(𝑥 − 𝑥𝑘)𝑇𝐺 𝑥 − 𝑥𝑘 ,      𝑥 ∈ ℝ𝑛      (9) 

 

where  𝑥𝑘  is still the vector of variables that provides the least value of F so far. The algorithm 

requires Φ, 𝜌𝑘  and 𝑥𝑘  for the calculation of a ―minimization step‖. Then, the new vector of 

variables at the end of this step is shifted to the nearest grid point, 𝑥+ say. The use of grids ensures 

that, after only a finite number of iterations, the function value 𝐹(𝑥+) will have been found by an 

earlier iteration. When this happens, or when three consecutive minimization steps fail to achieve  

𝐹 𝑥+ < 𝐹(𝑥𝑘), a procedure is involved that is similar to a ―simplex step‖. The procedure derives 

and may apply a linear polynomial approximation to F, using values of the objective function at 

grid points that have to be neighbors of 𝑥𝑘 . Thus, the decision is taken whether or not to have to 

reduce ∆𝑘  before resuming the minimization steps. Alternatively, termination occurs if a reduction 

in ∆𝑘  is required but ∆𝑘  is already at a prescribed lower bound. Several numerical experiments in 

Elster and Neumaier show that this algorithm compares favourably with the method of Nelder and 

Mead (1965) and with a finite difference implementation of a quasi-Newton algorithm.
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5 Numerical simulation and modeling of monocrystalline selective emitter 

solar cells 

 

Selective emitter (SE) solar cells in contrast with homogeneous emitter cells are characterized by 

having different doping profiles under the metal-contacted highly-doped region and the passivated 

one between contacts (lowly-doped region). [10] 

The SE solar cell is obtained by a light diffusion (LDOP) followed by a heavy phosphorus diffusion 

(HDOP) in the contacted regions. The advantages of the SE cell consists in reduced recombination 

effects in the passivated LDOP surface region and in an enhanced spectral response in the blue 

region. A trade-off exists between the advantages listed above and the increase of the emitter 

resistance that affects the SE cell due to the lower doping concentration of LDOP. Two-dimensional 

(2-D) numerical simulations can be used to gain insight on the loss mechanism in SE cells and to 

aid the design of the devices. [60] 

Here, we compare SE cells with a baseline homogeneous emitter cell. All the considered cells 

feature a p-type base region and a wafer thickness Dsub=180 m. Numerical simulations are carried 

out by Synopsys-Sentaurus. 

A n
+
 p c-Si HE solar cell and a SE device have been simulated. The rear surface is fully contacted 

by the base electrode. We consider a 100 m wide front metal electrode and a total lateral width of 

the heavy diffused region Wse=130 m under the metal electrode. The top surface is coated with a 

70 nm thick silicon nitride antireflective coating layer. 

 

 
 

Figure 5.1 – Cross section of a selective emitter solar cell with wafer thickness Dsub=180 m. The front metal contact 

width Wm is set to 100 m and the lateral width of the diffusion under the metal grid Wse is set to 130 m. 

 

In the section above, representing a SE solar cell, it is possible to recognize the front metal contact 

width (Wm) set to 100 m and the lateral width of the diffusion under the metal grid (Wse) set to 130 

m. 

The simulated doping profiles are described by analytical functions. Both HE and SE solar cells 

feature a back surface (BSF) modeled by an error function boron profile with a peak doping set to 

10
20

 cm
-3

 and 0.67 m junction depth. 
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5.1 Simulation setup 

The bulk doping concentration and base minority carrier lifetime are set to 10
16

 cm
-3

 (resistivity 

1.33 cm assuming a hole mobility of 470.5 cm
2
/Vsec) and 200 sec respectively, for both HE and 

SE. The emitter doping profiles are qualified by their sheet resistance, evaluated by using Arora 

model with Sentaurus default parameters. Surface recombination velocity is set to 10
5
 cm/s for 

metal front and back contacts. The surface recombination velocity S at the front passivated interface 

is assumed to be dependent on the surface doping concentration Nsurf of the emitter according to the 

following model [10] 

 

𝑆 = 𝑆0  1 + 𝑆𝑟𝑒𝑓  
𝑁𝑠𝑢𝑟𝑓

𝑁𝑟𝑒𝑓
       (1) 

 

Where S0=20 cm/s, Nref=10
16

 cm
-3

 and Sref=10
-3

 cm/s. So, according to equation (1), if Nsurf=10
20

 

cm
-3

, then S=220 cm/s. 

Electrical simulation takes into account Auger recombination, doping dependent Shockley-Read-

Hall (SRH) bulk and surface recombination, radiative recombination, bandgap narrowing (del 

Alamo model), doping dependence of carrier mobility (Philips Unified mobility model) and 

mobility degradation at high fields (Canali Model). The standard Sentaurus model for intrinsic 

carrier concentration is adopted. Fermi statistics is enabled since heavy doping concentrations are 

considered. 

Optical generation rate profiles are calculated assuming direct illumination with a standard AM1.5G 

spectrum and accounting for light trapping by a textured front surface. The light at the silicon top 

surface is assumed to be Lambertian distributed. The surrounding medium is air. 

The multiple bounces of light inside the device are described analytically in terms of a geometric 

progression. External reflectivity, internal top and bottom reflectivity coefficients are calculated by 

using the Transfer Matrix Method (TMM) and they are wavelength dependent. Since the optical 

treatment is 1D, all coefficients are obtained by calculating their cosine-weighted average over the 

angle with respect to the normal direction. The shadowing under front grid fingers is assumed ideal. 

The calculated parameters include short circuit current density (Jsc), open circuit voltage (Voc), 

fill factor (FF) and efficiency (). The simulated electrical output power of the cell and FF 

accounts for power loss due to series resistance R according to the following expressions: 

 

𝑅𝑐 =
𝜌𝑐

𝑊𝑚𝐿
     2  

 

𝑅𝑚 = 𝜌𝑚

𝐿

3𝐻𝑚𝑊𝑚
     3  

 

𝑅 = 𝑅𝑐 + 𝑅𝑚      4  

 

𝑃𝑀 = 𝑃𝑀0
− 𝐼𝑀𝑃

2 𝑅     5  

 

where PM is the effective maximum output power of the cell, IMP is the current under maximum 

power condition, RC  is the metal-semiconductor-contact resistance and Rm the contact finger 
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resistance. The length and the thickness of the grid finger are set to L=3 cm and to Hm=12 m 

respectively. The sheet resistivity of the metal and the contact resistivity are set to M=6x10
-6 
cm 

and c=10
-3 
cm, respectively. 

 

 

5.2 Homogeneous emitter solar cell simulation  

The HE solar cell features a 39 /square emitter error function profile with peak doping 

concentration equal to 3.7x10
20

 cm
-3

 and a junction depth of 0.39 m. [10] 

For a given metal-grid width, increasing Wsub results in larger Jsc and to larger emitter resistance 

that degrades the FF, leading to an optimum front contact pitch of approximately 2100 m. 

 

5.2.1 Selective emitter: dependence of efficiency on LDOP profile 

Several LDOP profiles are simulated at given HDOP (34 /square with peak doping of 3.7x10
20

 

cm
-3

 and junction depth set to 0.82 m). for a fixed junction depth (0.27 m) the peak doping of 

LDOP is changed from 5.0x10
19

 cm
-3

 to 3.0x10
20 

cm
-3

 corresponding to sheet resistances in the 

range 47 /square – 215 /square. The 34 /square HDOP and the 109 /square LDOP doping 

profiles of the HE solar cell are reported below 

 

 
Figure 5.2 – Active doping profiles fot the HE (39 /square) and for one SE solar cell (39 /square HDOP-highly doped 

region – and 109 /square LDOP-lightly doped region profiles). 

 

In the picture, it is possible to look at the active doping profile for the HE (39 /square) and for one 

SE solar cell (34 /square HDOP – highly doped region and 109  /square LDOP lightly doped 

region profiles). While the fill factor versus front contact pitch is reported in the following picture 

for the most significant LDOP profiles. 
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Figure 5.3 – Fill Factor (FF) of SE (HDOP 34 /square) versus Wsub for different LDOP profiles and for the baseline (HE 

39 /square). FF for the baseline and the SE (47 /square) are similar. 

 

For a given front contact pitch value, the FF of the HE cells is larger than or equal to those of any 

considered SE cell thanks to its lower spreading resistance. 

 

 
 

In the table above, the peak doping and sheet resistance values are reported for the considered 

lowly-doped region profiles for the SE solar cell. Simulated LDOP profiles are described by 

analytical error functions. For all LDOP profiles the junction depth is set to 0.27 m. 

So, simulation results highlight the dependence of FF on emitter resistance which is an increasing 

function of the contact pitch of the sheet resistance of the LDOP emitter profile. Efficiency versus 

front contact pitch Wsub obtained for different values of the LDOP sheet resistance is reported 

below together with results for the baseline cell: 
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Figure 5.4 – Efficiency of SE (34 /square) versus Wsub for different LDOP profiles and for the baseline (HE 39 

/square) solar cell. 

 

For each considered Wsub value, the efficiency of the SE cell is larger than that of the baseline in 

spite of a lower fill-factor values because both Jsc and Voc are larger. The maximum efficiency is 

provided by the 109 /square profile (peak doping 1.15x10
20

 cm
-3

) with front contact pitch equal to 

1800 m. 

In the following table, it is possible to notice the difference in the main parameters between HE and 

SE cells: 

 

 
Table 5.1 – Short circuit current (Jsc), Open Circuit Voltage (Voc), Fill Factor (FF) and Efficiency for baseline (Wsub=2100 

m, HE 39 /square) and SE (Wsub=1800 m, HDOP 34 /square, LDOP 109 /square) 

5.2.2 Selective emitter: dependence of efficiency on HDOP profile 

The sheet resistance of the HDOP profile has been varied from 34 to 63 /square, keeping the 

LDOP profile constant (109 /square profile form previous analysis) and Wsub=1800 m. The 

results of simulations show that there is only a slight dependence of efficiency on the HDOP 

parameters (peak doping, junction depth). The maximum value for conversion efficiency (17.61%) 

is obtained for the 46 /square HDOP profile. [10] 
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5.3 Analysis of loss mechanisms 

The SE (HDOP 46  /square, LDOP 109  /square) and the HE (39  /square) solar cells are 

compared in terms of internal quantum efficiency (IQE). 

 

 
 

Figure 5.5 – Comparison of Internal Quantum Efficiency (IQE) between selective emitter SE (Wsub = 1800 m, HDOP 46 

/square – ldop 109 /square) and baseline HE (Wsub = 2100 m, 39 /square). 

 

The SE cell features a better spectral response in the blue region resulting in higher short circuit 

current (35.17 mA/cm
2
 against 34.32 mA/cm

2
) even if the front contact pitch value is larger in the 

HE case, leading to reduced shadowing effect. The benefit in terms of spectral response is due to 

lower doping concentrations in the emitter leading to reduced Auger recombination and to a shallow 

junction in the passivated emitter region which improves separation for electron-hole pairs 

generated by photons at lower wavelengths (350-550 nm) that are absorbed close to the front 

surface due to a large absorption coefficient in c-Si. Furthermore, lower doping concentrations lead 

to reduced surface recombination rates at the front passivated interfaces. Simulations hightlight the 

influence of Auger recombination on efficiency as a major loss mechanism of a homogeneous solar 

cell with heavy and deep emitter diffusions. By selectively disabling Auger recombination effect, 

the SE and HE solar cells increase their efficiencies by an absolute 0.60% and 1.24 % respectively; 

this shows that reduced Auger recombination is the main reason for SE higher efficiency compared 

to the HE.  The following figure compares the Auger recombination rates in the region close to the 

front surface of the device for SE and HE. The peak of the Auger recombination rate is 5.18x10
22

 

cm
-3

s
-1

 in the case of the SE and 2.15x10
23 

cm
-3

s
-1

 for the baseline, confirming a reduced impact of 

Auger recombination in the SE cell. 
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Figure 5.6 – Auger recombination rates for optimized SE (Wsub=1800 m) and HE (Wsub=2100 m) in the lowly-doped 

emitter region close to the top surface (Depth=0 m). 

 

5.4 Conclusions 
It has been analyzed the efficiency, fill factor, short circuit current and open circuit voltage for a SE 

solar cell featuring a wafer thickness of 180 m as a function of front contact pitch and emitter 

doping profiles. According to our simulations, a selective emitter solar cell may provide an 

efficiency up to 0.8% higher compared to an HE device. Advantages of double-diffused emitters 

arise from the enhancement of the collection efficiency, especially in the blue region of the 

spectrum, and from reduced Auger recombination due to a lighter emitter doping concentration.
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6 Numerical simulation and modeling of rear point contact solar cells  
 

The conversion efficiency of a solar cell is significantly limited by the recombination losses 

occurring at the rear contact. Conventional solar cells, which are uniformly contacted over the 

whole back silicon surface, are affected by significant recombination losses at the metal-

semiconductor interface. High-efficiency silicon solar cells like PERC (Passivated Emitter and Rear 

Cell) and PERL (Passivated Emitter Rear Locally diffused) adopt local point contacts at the back 

surface, allowing the passivation of the uncontacted back silicon surface region to reduce the 

surface recombination rate and to increase the internal bottom reflectivity, leading to larger 

photocurrent densities. 

The optimum design of rear point contact solar cells requires a trade-off between reduced 

recombination losses, light trapping properties and the series parasitic resistance. It is worth noting 

that the increase of parasitic resistance associated to 3-D conduction paths occurring when the 

extension of the contacted region is significantly smaller than the cell area. We will assume that the 

holes feature a circular shape. The metallization fraction f is expressed by the following expression 

[11] 

 

𝑓 = 𝜋  
𝑠

2𝑝
 

2

    (1) 

 

where s is the diameter of the contact holes and p represents the hole pitch. A sketch of the analyzed 

system is reported in the following figures: 

 

 
Figure 6.1 - 3-D Sketch of a rear point contact solar cell. Wsub denotes the front contact pitch and Wmet the front 

contact finger width. The holes are equally distributedwith period p. The simulation domain is highlighted in red. 

 

Lx and Ly are the width and the length of the simulation domain which are equal to half hole pitch 

and to half front contact pitch, respectively. The height of the simulation domain is equal to the 

wafer thickness w. 
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Figure 6.2 – A 2-D cross section of the rear point contact cell. 

 

6.1 Simulation setup 

Rear point contact solar cells featuring an aluminum local back surface field (LBSF) and without 

LBSF (NOBSF) have been simulated.  

It has been investigated Czochralski (Cz) monocrystalline silicon (c-Si) devices with different 

values of substrate resistivity: 𝜌𝑠𝑢𝑏 = 0.5 Ωcm, and 1.0 Ωcm. For 𝜌𝑠𝑢𝑏 = 1.0 Ωcm  and 10 Ωcm the 

Al/p-Si interface is rectifying, hence only the LBSF configuration is considered in this analysis. On 

the other hand, for 𝜌𝑠𝑢𝑏 = 0.5 Ωcm the rectifying action of the Al/p-Si system is negligible, 

therefore both LBSF and NOBSF configurations are investigated. The emitter of the simulated solar 

cells is homogeneous (75 Ω/square) with a diffusion depth of 0.4 m. For devices featuring a local 

BSF, the aluminum diffusion is described by a Gaussian doping concentration profile with a 

junction depth of 5 m and a peak doping of 2.5x10
19

 cm
-3

. 

 

6.2 Physical models 

The physical models adopted for the numerical simulations include the high-field and doping 

dependent mobility model (also known as Philips Unified Models) as well the Schenk band-gap 

narrowing. Fermi statistics is adopted in order to correctly deal with high doping concentration 

regions in the emitter and in the BSF region. Minority carrier lifetime for Cz c-Si material and 

surface recombination velocities at passivated interfaces have been modeled in order to take into 

account the dependence of the cell efficiency on the material quality and process conditions. For 

bulk recombinations are used the Scharfetter conditions, well-calibrated in order to take into 

account a proper value of the minority carrier lifetime in the boron-doped base region. The surface 

recombination velocities at passivated interfaces, which play a key role in the device analysis, are 

accounted  by using a doping dependent surface Schockley-Read-Hall model. [61] 

In order to calculate more realistic values of the fill factor and of the efficiency, the parasitic contact 

and finger resistances have been included. 
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6.2.1 Optical simulation 

Optical generation rate profiles are calculated on the basis of a simulation of plane-waves 

propagation in silicon assuming direct illumination with a standard  AM1.5G spectrum (1000 

W/m
2
). In the following table the parameters of the simulated solar cells are summarized: 

 

 
 

Table 6.1 – Parameters of the simulated solar cells. 

 

The simulated device feature textured front surfaces. It is to be considered the shadowed caused by 

front fingers ideal. Since it has been performed a 1-D optical simulation, the internal bottom 

reflection coefficient Rbi is assumed uniform at the rear interface and it is weighted by the 

metallization fraction according to [11] 

 

𝑅𝑏𝑖 =  𝑅𝑏𝑖 ,𝑝 − 0.25𝑓      2  

 

where Rbi,p is the internal bottom reflection coefficient of the silicon-dielectric interface, set to 0.90. 

The internal bottom reflection coefficient of the Al/p-Si interface is assumed equal to 0.65. 

 

6.3 Results 

6.3.1 Dependence of the output parameters on the metallization fraction 

The dependence of the output cell parameters on the metallization fraction f  has been calculated for 

the case p=500 m with hole diameter ranging from 25 m up to 400 m. the short-circuit current 

density (Jsc), the open circuit voltage (Voc), the fill factor (FF) and the efficiency  are reported in 

the following figures: 
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Figure 6.3 - Dependence of the short-circuit current density (Jsc) for LBSF and NOBSF cells on metallization fraction. 

 
Figure 6.4 - Dependence of the open-circuit voltage (Voc) for LBSF and NOBSF cells on metallization fraction. 

 
Figure 6.5 - Dependence of the fill factor (FF) for LBSF and NOBSF cells on metallization fraction. 
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Figure 6.6 - Dependence of the efficiency for LBSF and NOBSF cells on metallization fraction 

 

For the considered devices and substrate resistivity values, by decreasing the metallization fraction 

f, we observe and increase of both Jsc and Voc due to the reduction of the effective back surface 

recombination velocity and to the increase of the effective internal bottom reflectivity. Moreover, 

the considered base resistivity values result in a different impact of the bulk recombination and of 

the rear surface recombination losses. In particular, the calculated bulk minority carrier lifetime 𝜏𝑛  

is equal to 1.136 ms and 39.8 s at Nsub=1.368x10
15

 cm
-3

 (𝜌𝑆𝑈𝐵 = 10 Ω𝑐𝑚) and Nsub=3.255x10
16

 

cm
-3

 (𝜌𝑆𝑈𝐵 = 0.5 Ω𝑐𝑚),
 
respectively. As a consequence, larger values of Voc and Jsc are observed 

for 𝜌𝑆𝑈𝐵 = 10 Ω𝑐𝑚. In addition, for the NOBSF cell, both Jsc and Voc are smaller than those of 

LBSF cells because of the larger recombination rates in the rear side of the cell. It is also important 

to note that, for a given 𝜌𝑐 , the presence of the LBSF leads to a weaker dependence of both Voc and 

Jsc on f because of a reduced impact of the surface recombination losses at the rear surface.  

By decreasing the metallization fraction, the base spreading and the contact series resistances RS,CB 

increase, leading to a degradation of the FF. It is worth noting that the NOBSF cell the back contact 

resistivity is 𝜌𝐶𝐵 = 1.434x10
-3

 Ω𝑐𝑚2
 since Nsub = 3.255x10

16
 cm

-3
 leading to RS,CB = 0.73 Ω at f = 

0.2%, but for the LBSF cell (independently of the substrate doping concentration), due to the 

presence of the Al-BSF diffusion, 𝜌𝐶𝐵 = 3.015x10
-7

 Ω𝑐𝑚2
 therefore, RS,CB = 0.15 mΩ at f = 0.2%. 

When comparing the three different substrate resistivity values, two consideration arise: 

- a lower FF is observed for 𝜌𝑆𝑈𝐵 = 10 Ω𝑐𝑚  

- a stronger dependence of the FF on the metallization fraction is shown in the case of 

𝜌𝑆𝑈𝐵 = 10 Ω𝑐𝑚 because of the larger 3-D spreading effect 

the efficiency trade-off due to the opposite trends of Voc (Jsc) and FF as a function of f  leads to an 

optimum value 𝑓0 is within the range 1-3% for 𝜌𝑆𝑈𝐵 = 10 Ω𝑐𝑚 and for 𝜌𝑆𝑈𝐵 = 1.0 Ω𝑐𝑚, while for 

𝜌𝑆𝑈𝐵 = 10 Ω𝑐𝑚, 𝑓0 is shifted to a larger value (around 20%) due to the stronger degradation of the 

FF at low metallization fractions. 

Furthermore, the maximum efficiency is observed for 𝜌𝑆𝑈𝐵 = 1.0 Ω𝑐𝑚 (=20.06% at 𝑓0 = 3.14%), 

leading to an efficiency improvement  equal to 1.08% calculated with respect to the case of 

full-metalized rear side (f=100%), for which =18.98%. As expected, for a given substrate 

resistivity, the LBSF cells feature a larger efficiency with respect to the NOBSF cell. 
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However, the gain in efficiency is reduced down to 0.31% at the optimum metallization fraction 

(the NOBSF cell features the maximum efficiency =19.45% at f=1.77% while the LBSF cell with 

𝜌𝑆𝑈𝐵 = 0.5 Ω𝑐𝑚 reaches the maximum efficiency =19.76% at f=3.14%. 

The simulation results are summarized in the following table: 

 

 
 

Table 6.2 – Output cell parameters calculated at the optimum metallization fraction f0 and at f=100% (fill-contacted 

rear side). 

 

6.3.2 Collection efficiency of photo-generated carriers 

It has been calculated the collection efficiency c of the photo-generated electron-hole pairs at the 

contacts as the ratio of the short circuit current to the photon current within the range 600-1100 nm 

for the LBSF cells. The situation is reported in the following figure. [11] 

For long wavelengths, corresponding to photon absorption close to the back surface, the collection 

efficiency increases significantly due to the reduced rear recombination losses. 

It is worth noting that for 𝜌𝑆𝑈𝐵 = 10 Ω𝑐𝑚 the rear point contact geometry has a smaller impact on 

the collection efficiency with respect to the device featuring 𝜌𝑆𝑈𝐵 = 0.5 Ω𝑐𝑚, for which the effects 

of the recombination losses strongly influences the contribution to short circuit current density by 

large wavelengths. In fact, for instance, at =1100 nm and for 𝜌𝑆𝑈𝐵 = 10 Ω𝑐𝑚, c=0.01, while for 

𝜌𝑆𝑈𝐵 = 0.5 Ω𝑐𝑚, c=0.10. 

 
Figure 6.7 – Collection efficiency from 600 nm to 1100 nm for theLBSF cells with sub=0.50 cm 
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6.4 Conclusions 

The dependence of the electrical output parameters on the metallization fraction f for rear point 

contact solar cells (NOBSF and LBSF) have been investigated by means of 3-D numerical 

simulations. The performed analysis highlights a trade-off between the reduction of the rear surface 

recombination losses at passivated interfaces and the increase of the internal bottom reflectivity and 

of the series resistance. For a substrate resistivity of 𝜌𝑆𝑈𝐵 = 10 Ω𝑐𝑚 a relatively large optimum 

value of metallization fraction 𝑓0 (around 20%) has been calculated due to the strong effect of the 

spreading resistance on the fill factor, while for 𝜌𝑆𝑈𝐵 = 0.5 Ω𝑐𝑚 and 𝜌𝑆𝑈𝐵 = 1.0 Ω𝑐𝑚 𝑓0 is in the 

range 1-3% for both NOBSF and LBSF cells. The maximum efficiency (20.06%) is obtained for 

LBSF cell with 𝜌𝑆𝑈𝐵 = 1.0 Ω𝑐𝑚, due to relatively smaller effective rear surface recombination 

velocities. However, for the lowest considered substrate resistivity (𝜌𝑆𝑈𝐵 = 0.5 Ω𝑐𝑚), the NOBSF 

cells shows the larger efficiency improvement (=2.28%) with respect to the full-metalized rear 

side cell.
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7 Analysis and optimization of a homogeneous emitter solar cell  

 

7.1 The tool employed: TCAD Sentaurus 

Sentaurus TCAD is a framework made up by different tools used to model and simulate different 

kinds of devices. Especially, the following tools have been employed: Sentaurus Structure Editor 

(SSE) and Sentaurus Device (SD). The first one, SSE, allows the scientist to create 2D and 3D 

geometrical structures and to model their physical properties (like the material and the doping 

profile), the second one allows to simulate the optical and electrical features of the device. 

Moreover, the first tool cooperates with the generator of the mesh on which the second tool will 

work on. Below, I will describe the input and output files, used by the different tools. [9] 

Within SSE, the input file (*.Scm) is made up by a series of commands, whose syntax is based on 

the scripting language called Scheme. These instructions are used to create the geometrical 

structure, to define the contacts, to add to the model the doping profile (that can be a constant, 

analytical or externally generated), and, finally, to allow the tool to communicate with the mesh 

generator. 

These last commands allow us to create the input file (boundary_fps.tdr and command_dvs.cmd) 

needed by the mesh generator. It is recalled (always by a command) by the SSE and it generates a 

file (grid_msh.tdr) containing the geometrical data and the doping profile related to the mesh nodes. 

This file is an input one for the simulator (SD). The other input to the simulator 

(command_dvs.cmd) is a command file that needs the scientist to select the physical model that 

better suits to the problem, the mathematics methods to solve it and the output to analyze. Finally, 

the simulator output (*_des.plt, *-des.tdr) described the electrical features of the device. 

 

7.2 Homogeneous emitter solar cell 
A 2D model of a homogeneous emitter solar cell has been implemented. It considers a p-n

+
 

junction. The structure dimensions are reported in the table below. So, the structure is made up, 

from the top to the bottom, by a metal layer, followed by a p
+
 layer, a p layer, a n

+
 layer and 

then an antireflection coating and the contact. [9] 

 

Geometrical 

parameter 

Value 

  

Number of 

contacts 

77 

Wafer width 156000 m 

Substrate width 2026 m (=156000/77) 

Substrate 

thickness (p) 
180 m 

Contact width 75 m 

Contact thickness 0.05 m 

Layer width AR 0.03 m 

Emitter width (n
+
) 0.35 m 

BSF (p
+
) width 10.3 m 

 
Table 7.1 – Geometrical parameters of the analyzed homogeneous emitter solar cell 

 

While, the outputs are calculated from the characteristic curve I-V, measured thanks to the SD tool. 

They are: 
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- Maximum power current 

- Maximum power voltage 

- Short-circuit current 

- Open circuit voltage 

- Maximum power  

- Fill Factor 

- Efficiency 

 

7.3 TCAD/Optimization algorithm interface 
In order to optimize the cell performance, it is to operate on the geometric dimensions of the 

structure and on the physical properties (like the doping profile). Thus, the design variables (that are 

the decision variables) are properly managed by the optimization algorithm and included in the 

relevant file (*.Scm), that is the input file for the SSE tool. While, when the device is simulated, the 

characteristic curve I-V is extracted from the SD tool’s output file (*_des.plt). From this curve, all 

the interesting parameters (or the objective functions) are extracted. Both scripts that insert and 

extract the information are written in Matlab


. 

 

7.3.1 Optimization algorithm 

It has been used a Genetic Algorithm, since it is a heuristic search and optimization method well 

suited to the cases when the objective function is not continuous, not derivable or strongly not 

linear. It enables the researcher to face problems of single (SOO) and multi-objective optimization 

(MOO) and also allows to adopt solution strategies that take into account constraints within the 

solution subset to solve constrained SOO and MOO problems. 

More details over this topic can be found in ―Clonal selection – An Immunological Algorithm for 

Global Optimization over Continuous Spaces‖ (Journal of Global Optimization, DOI 

10.1007/s10898-011-9736-8) 

My choice has been to use the Fill Factor and the Efficiency as my objective functions, while the 

geometrical parameters shown in the previous table have been chosen as decision variables. 
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7.4 Results 
Simulating the solar cell and employing the numerical values shown in the previous table the result 

is a Fill Factor equal to 0.82% and an Efficiency equal to 20.95%. My results are further shown 

in the following figures. 

 

 
 

The results in the previous figure have been gained running the simulation over the model of a HE 

solar cell, after that 300 different structures have been analyzed. These structures are compared 

among them as for Efficiency and Fill Factor. The points featured by the Pareto Optimality despite 

of the 300 remaining are underlined in red, in green it is possible to see all the other points. In black 

it has been underlined the point related to the reference structure (the one of the previous table). 

The further step has been the consideration of a trade-off. 

 

 Fill Factor Efficienza(%) 

Maximum Fill Factor 0,830297 19,083924 

Maximum Efficiency 0,823503 21,659972 

Best Trade off 1 0,827048 21,641942 

Best Trade off 2 0,828174 21,566847 
 

Table 7.2 – The points selected from the Pareto front in the previous figure. 
 

In the first column of the previous table, the decision strategies have been shown. The first one and 

the second one are immediate, while the third and the fourth one have been gained through the 

normalization of the two measures respect to the maximum value and then calculating the 

distance from the ideal point (that is [1,1]).  

Now, in the following table, I am going to show the percentage gain for both the interested 

parameters, related to the reference structure. 
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 Fill Factor Gain  (%) Efficiency Gain  (%) 

Maximum Fill Factor +0,61 -8,93 

Maximum Efficiency -0,22 +3,37 

Best Trade off 1 +0,21 +3,28 

Best Trade off 2 +0,35 +2,92 

 
Table 7.3 – Percentage gain (with respect to the reference structure) 

 

In the following figure, I am going to show the results gained by the multi-objective optimization 

performed over the HE solar cell. These results have been extracted after that 1700 different 

structures have been analyzed. The structures are compared among them as for Efficiency and Fill 

Factor again. The points gaining the Pareto Optimality respect to all the other points are underlined 

in red, in green all the others. In black it is possible to look at the reference structure’s performance 

(related to the parameters shown in the first table). 

 

 
 

 Fill Factor Efficiency(%) 

Maximum Fill Factor 0,830297 19,083924 

Maximum Efficiency 0,827228 21,777828 

Best Trade off 1 0,828315 21,759444 

Best Trade off 2 0,828365 21,753349 

Best Trade off 3 0,828321 21,755498 

Best Trade off 4 0,828116 21,768324 

Best  Trade off 5 0,827663 21,769921 

 
Table 7.4 – The points selected from the Pareto front in the previous figure. 

 

Again, the first two decision strategies are immediate, while the others are chosen by the 

normalization of the two measures respect to their maxima and then calculating the distance from 

the ideal point (again [1,1]). 
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 Fill Factor Gain (%) Efficiency Gain (%) 

Maximum Fill Factor +0,61 -8,93 

Maximum Efficiency +0,23 +3,93 

Best Trade off 1 +0,37 +3,84 

Best Trade off 2 +0,37 +3,81 

Best Trade off 3 +0,37 +3,82 

Best Trade off 4 +0,34 +3,88 

Best Trade off 5 +0,29 +3,89 

 
Table 7.5 – Percentage gain (with respect to the reference structure) 

 

Above, again, the fill factor and efficiency gains, related to the reference structure, are shown.
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8 Thin-film solar cells 
 

8.1 Introduction 

The wafer thickness for sufficient absorption of the solar spectrum  is >700 μm. This is quite a 

large thickness for a Si wafer and is not desirable for commercial production of solar cells for two 

reasons: the wafer cost can be very high and its effectiveness for collection of photogenerated 

carriers will be small because it is difficult to have a minority-carrier diffusion length (MCDL) 

comparable to such a large wafer thickness. Thus, for practical reasons, wafer thickness must be 

less than this value. 

Clearly, when the thickness of a Si solar cell is reduced, some problems emerge. Just reducing the 

cell thickness will result in reduced absorption and thus, in a reduced photocurrent. To get a 

quantitative feeling of such a reduction in photocurrent, it is useful to look at the following figure, 

where the maximum achievable current density (MACD) generated by a planar solar cell, coated 

with an appropriate antireflection coating, is plotted against different cell thicknesses. [1] 

 

 
Figure 8.1 - Maximum achievable current density (MACD) from a planar, AR-coated Si solar cellas a function of cell 

thickness. These calculations assume an optimized AR coating and AM1.5 incident spectrum. 

 

The previous figure shows that the photocurrent increases with an increase in thickness and 

saturates at a thickness of about 700 μm. At a thickness of  about 300 μm, the current density is 

within 5% of the saturation value, which implies that a thickness of 300 μm is suitable for 

fabricating high-efficiency solar cells on planar substrates. This is fortunate because a similar 

demand on wafer thickness comes from requirements for maintaining a high yield in handling and 

processing other semiconductor devices.  

Recently, however, there have been many advances in wafer handling and in the development of 

gentler processing methods to accommodate high throughput. These advances have sparked interest 

in using thinner substrates for two reasons:  

-  To reduce the amount of Si for each watt of PV energy generation. Because the PV industry 

has gone through periods of Si shortage, an efficient use of Si can minimize such hardships. 

- To improve the efficiency of solar cells fabricated on low-cost substrates using improved 

cell designs. 
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Figure 8.2 - VOC of a Si solar cell as a function of thickness for high and low surface-recombination velocities. 

 

As shown above, for a given material quality, both for high and lower recombination velocities, a 

reduction in the cell thickness can result in improving the open-circuit voltage (Voc) and the fill 

factor. However, as the cell thickness is reduced, the surface recombination becomes an 

increasingly important component of the total recombination. In particular, surface recombination 

can severely degrade Voc. Thus, thinner cells can yield higher voltages and higher fill factors if the 

surface recombination demand are met. However, they can suffer a loss in the photocurrent unless 

the optical losses associated with thickness reduction are compensated through superior light 

trapping design. If these conditions are met, thinner cells can be more efficient than their thicker 

counterparts, especially when considering a reduction in Silicon used to manufacture this kind of 

cells. 

 

8.2 Optimization techniques 

The thin-film devices, featured by a thickness from hundreds of  nanometers up to a few ms, 

require efficiency optimization criteria different from the ones previously analyzed. In particular, 

techniques based on the Internal Quantic Efficiency (IQE) maximization, through the solar radiation 

confinement, have been experimented. Apart from the materials used (amorphous, crystalline or 

polycrystalline silicon) and from the model accuracy (in order to take into account, for instance, the 

Auger recombination effects), these efforts leaded to the definition of either a regular or an irregular 

texturing structure of the silicon surface, showing as a result in both cases an increase of the solar 

radiation contribution to the optical absorption of the cell. The photons hitting the cell surface are 

partly reflected away, partly absorbed by the material and, finally, partly transmitted through it. 

Anyway, only the absorbed photons give a contribution to the electrical conversion process. If we 

assume k as a refraction index for the material, the following parameter, also known as an 

absorption coefficient  gives us the measure of how much and at which wavelengths photons can 

penetrate the material before they are absorbed: [2] 

 

𝛼 =
4𝜋𝑘

𝜆
   [𝑐𝑚−1] 
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as a result, photons featured by different wavelengths can penetrate up to different depths the 

material before they get absorbed. This depth is equal to the absorption coefficient’s inverse. 

So, the following strategies have been implemented to improve the cell efficiency: 

 

- minimization of the metal contact on the cell surface, because photons hitting the contacts 

do not take part in the conversion process. 

- Reduction of reflection losses, through the coating of the cell surface with an antireflection 

coating (AR). 

- Reduction of reflection and transmission losses through the cell structure design, in order to 

increase the light optical path within the cell, to increase the probability to get the photons 

absorbed (IQE improvement). 

 

            
 

Figure 8.3 - The most important reflection losses for a photovoltaic cell 

8.3 Anti Reflection Coating (ARC) 
The ARC technology is based on the interference effect. Through the implementation of a dielectric 

layer on the cell surface, it is possible to minimize the interferences that are responsible for the light 

reflection away from the device. An adequate thickness dielectric layer is able to get a difference 

between the phases of the wave reflected from the cell coating and the wave reflected from the 

semiconductor substrate. This difference can eliminate the reflection phenomenon, avoiding the 

dispersion of reflected energy. The coating layer thickness is chosen taking into account the 

incident ray wavelength. Exactly, the dielectric material wavelength must be a quarter of the 

incident light wavelength. So, if we assume a material featured by a refraction index n1 and a 

wavelength of the light equal to =0, the dielectric thickness needed to coat the cell would be [2] 

 



_______________________________________________________________________Thin-film solar cells 

72 
 

𝑑1 =
𝜆0

4𝑛1
 

 

If  ≠ 0, the reflection effect is still present, but it is still much weaker than in the no-antireflection 

coating case. If we consider the following antireflection layer ARC, with a thickness d1, the 

presence of three different reflection indexes (n0, n1 and n2), an optimal thickness dielectric layer on 

the left and no ARC on the right: 

 

 
Figure 8.4 – Reflection and transmission phenomena in an ARC equipped device. This coating eliminates the reflection 

phenomenon through the interferences.  

 

the reflection index would be [2] 

 

𝑅 =
𝑟1

2 + 𝑟2
2 + 2𝑟1𝑟2 cos 2𝛽 

1 + 𝑟1
2𝑟2

2 + 2𝑟1𝑟2 cos 2𝛽 
 

 

𝑤𝑖𝑡   𝑟1 =
𝑛0 − 𝑛1

𝑛0 + 𝑛1
,    𝑟2 =

𝑛1 − 𝑛2

𝑛1 + 𝑛2
,    𝛽 =

2𝜋𝑛1𝑑1

𝜆0
 

 

𝑤𝑒𝑛   𝑛1𝑑1 =
𝜆0

4
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𝑡𝑒𝑛  𝑅 = 𝑅𝑚𝑖𝑛 =  
𝑛1

2 − 𝑛0𝑛2

𝑛1
2 + 𝑛0𝑛2

 

2

 

So, Rmin=0 if it is true 𝑑1 =
𝜆0

4𝑛1
. 

By the use of multiple AR layers it is possible to further reduce the amount of light reflected away, 

through the reduction of the reflectance, anyway, because of its high cost, a double ARC is used 

only in high efficiency cells.  

 

8.4 Texturing 

Texturing is a process through which some microstructures are created within the silicon surface, 

using adequate corrosion techniques. Alkaline solutions, based on KOH and NAOH can corrode the 

silicon, creating pyramids with a squared base in random positions. Modern manufacturing 

processes can control the depth of these structures within the material, controlling the temperature 

and the time during which the corrosion reaction takes place. Light is reflected from one pyramid to 

another, and it results in absorption increase. Rough surfaces and an asymmetric structure can 

improve the results of this method. Texturized surfaces, firstly used to reduce the reflectance, are 

now considered as a valid technology to increase the optical path. [63] 

Let us now consider the following parameter: 

 

𝑛 =
𝑐

𝑣
 

 

is called refraction index of a given medium with in respect to the vacuum. Where c is the speed of 

the light in the vacuum and v is the speed of the light in a given medium. 

The geometrical path of a ray of light within a medium with a given refraction index is the 

following one: 

 

𝑑 = 𝑡𝑣 = 𝑡
𝑐

𝑛
 

   

while the optical path is: 

 

Δ = 𝑑𝑛 = 𝑐𝑡 

 

that is the space travelled by the light in the vacuum in the same time needed to travel the distance d 

within the given medium. 

As a result, the texturing in a thin-film cell can lead to: 

- higher light absorption 

- lower recombination rate within the bulk (higher Voc) 
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8.5 Light trapping 
In order to maximize the open circuit voltage, it is necessary to reduce as much as possible the 

recombination effects over the whole cell. It is generally reached through thinner layers, that, on the 

contrary, have the drawback to generate lower absorptions in respect to thicker layers. So, if we 

want to use thinner layers, without compromising the light absorption, it is needed to guarantee, 

within the thin layer, an optical path of the same length as in the thick layer case. That is why light 

trapping techniques are getting largely used in modern photovoltaic industry. The purpose is to trap 

the solar light within the cell to guarantee the highest absorption probability, increasing the 

reflection within the same cell. It is generally reached making the shadowed part of the cell act as a 

mirror. The process consists in the modification of the plane surfaces geometry, through, for 

instance, the texturing techniques. [64]
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9 Thin-film cells optical model 
 

In this paragraph an optical model for thin-film silicon solar cells will be introduced. Surfaces and 

interfaces will be assumed to have small roughness (about 20% of the thickness).  

 

9.1 Multilayer thin-film structure 

Our model is based on the cell’s structure in figure below [3] 

 

 
Figure 9.1 – A thin-film cell multilayer structure scheme. 

It is a pile of M+1 layers with different optical properties in which the first film (labelled by i=1 and 

having a larger thickness) is generally made up by silicon dioxide (glass), while the last one (M+1) 

is a metal layer. The light horizontally hits the layer i=0, near to the glass layer and, generally, there 

is no transmission if electromagnetic radiation from the last metal layer to the ambient. The active 

part of the cell is made up by the M-2 layers, featured by a sub-micrometric thickness. Interfaces 

among adjacent layers are considered as diffusive regions so they can be used to adequately diffuse 

the light in order to increase the effective optical path through light trapping techniques. [1] 
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9.2 Parameters used in the simulation 
A structure as in the following figure is featured by different electromagnetic field amplitudes, each 

one related to a different interface. [3] 

 

 
Figure 9.2 – The electromagnetic field amplitudes featuring each interface. 

 

- E
LF

 is the left-forward amplitude 

- E
RB 

is the right-backward one 

- E
LB

 is the left-backward one 

- E
RF

 is the right-forward one 

- X
L
 and X

R
 are the random scattered amplitudes to the left and the right for the i

th
 layer 

considered 

 

Each layer is characterized by some internal specific parameters, like the following ones: 

 

- n(i) and K(i), that are the real and complex part of the refraction index 

- d(i), the layer thickness 

- 𝜍(i) that is the roughness parameter, used to act on the intensity of the light’s component 

diffused by the interface 

 

As for the simulation code, it is to say that it is made up by two modules: 

 

- The computation of the electromagnetic radiation propagation within the multilayer region 

through the Matrix method. For each layer of the cell, the code calculates the different 

components of the electromagnetic field: transmitted, diffused, absorbed and reflected. 

- The statistical computation of the random part through the use of Monte Carlo methods. 

The diffused component can be either again absorbed by the structure or emitted into the 

ambient. This second module calculates the contribution given by the diffused component to 

the total absorption. Since the diffused radiation is made up by a stream of photons with 

different angles with respect to the interfaces, the Monte Carlo simulation follows 

statistically the path of a certain number of photons. 
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9.3 Computation of the coherent absorption through the Matrix Method 

The Matrix Method allows us to exactly calculate the coherent electromagnetic radiation 

propagation in a structure like of the previous figure. The calculation is carried out: 

- associating a matrix operator for each layer of the structure that realizes the computation of 

the radiation propagating within the same layer (reflected, diffused, absorbed radiation and 

this last one only if the extinction coefficient K(i) is not equal to zero). 

- associating a matrix operator for any structure’s interface responsible for the relation 

between an electric field’s component and transmission and reflection coefficients related to 

the materials of the considered interface 

The parameters featuring the i
th

 layer are: 

- the thickness d(i) 

- the complex refraction index  𝑁 𝑖 = 𝑛 𝑖 − 𝑖𝑘 𝑖  where 𝑛 𝑖  is the real refraction index 

and 𝑘 𝑖  is the extinction coefficient, typical of the material. 

The i
th

 interface is featured by: 

- the ruggedness 𝜍(𝑖) 

- the angular diffused scattering 𝑃𝑠𝑐𝑎𝑡𝑡 (𝑖,  𝜃 ) distribution function to calibrate 

- the complex reflection and transmission coefficients (depending on the wavelength  and 

the hitting radiation), given b the following equations 

 

𝑟 𝑖 =  
𝑁 𝑖 − 1 − 𝑁(𝑖)

𝑁 𝑖 − 1 + 𝑁(𝑖)
 ,    𝑡 𝑖 =  

2𝑁(𝑖 − 1)

𝑁 𝑖 − 1 + 𝑁(𝑖)
  

 

If the interface is rugged, the previous formulas are modified according to the ―scalar scattering 

theory‖, from the layer i-1 to i: 

 

𝑟𝐹 𝑖 =  
𝑁 𝑖 − 1 − 𝑁 𝑖 

𝑁 𝑖 − 1 + 𝑁 𝑖 
 𝑆𝑟 𝑖 ,    𝑡𝐹 𝑖 =  

2𝑁 𝑖 − 1 

𝑁 𝑖 − 1 + 𝑁 𝑖 
 𝑆𝑡(𝑖) 

  

and from the layer i to i-1: 

 

𝑟𝐵 𝑖 =  
𝑁 𝑖 − 𝑁 𝑖 − 1 

𝑁 𝑖 − 1 + 𝑁 𝑖 
 𝑆𝑟 𝑖 + 1 ,   𝑡𝐵 𝑖 =  

2𝑁 𝑖 

𝑁 𝑖 − 1 + 𝑁 𝑖 
 𝑆𝑡

−1(𝑖) 

 

where 𝑆𝑡  and 𝑆𝑟  are the scattering coefficients defined by the following equations: 

 

𝑆𝑟 𝑖 = 𝑒
−

1
2 

2𝜋𝑛 𝑖−1 𝜍(𝑖)
𝜆

 
2

   𝑎𝑛𝑑   𝑆𝑡 𝑖 = 𝑒
−

1
2 

2𝜋[𝑛 𝑖−1 −𝑛 𝑖 ]𝜍(𝑖)
𝜆

 
2

 

 

The relations bounding the electromagnetic field amplitudes and the reflection and transmission 

coefficients, can be expressed as: 
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𝐸𝐿𝐹(𝑖)

𝐸𝐿𝐵(𝑖)
 =

 
 
 
 
 

1

𝑡𝐹(𝑖)
−

𝑟𝐵(𝑖)

𝑡𝐹(𝑖)

𝑟𝐹(𝑖)

𝑡𝐹(𝑖)

𝑡𝐹 𝑖 𝑡𝐵 𝑖 − 𝑟𝐹(𝑖)𝑟𝐵(𝑖)

𝑡𝐹(𝑖)  
 
 
 
 

    
𝐸𝑅𝐹(𝑖)

𝐸𝑅𝐵(𝑖)
  =  𝐼 (𝑖)   

𝐸𝑅𝐹(𝑖)

𝐸𝑅𝐵(𝑖)
  

 

Since the amplitudes 𝐸𝑅𝐹(𝑖) and 𝐸𝑅𝐵(𝑖) are related to the amplitudes 𝐸𝐿𝐹(𝑖 + 1) and 𝐸𝐿𝐵(𝑖 + 1) 

by the following: 

 

𝐸𝐿𝐹 𝑖 + 1 = 𝐸𝑅𝐹 𝑖 𝑒𝑖𝛽  𝑖 𝑑 𝑖   𝑎𝑛𝑑   𝐸𝑅𝐵 𝑖 = 𝐸𝐿𝐵(𝑖 + 1)𝑒𝑖𝛽  𝑖 𝑑 𝑖  

 

it is possible to express them also as: 

 

 
𝐸𝑅𝐹(𝑖)

𝐸𝑅𝐵(𝑖)
 = 𝐿 (𝑖)  

𝐸𝐿𝐹(𝑖 + 1)

𝐸𝐿𝐵(𝑖 + 1)
   

 

with  𝐿  𝑖 =  𝑒
𝑖𝛽 𝑖 𝑑(𝑖) 0

0 𝑒−𝑖𝛽 𝑖 𝑑(𝑖)
 =  𝑒

2𝜋

𝜆
𝑁 𝑖 𝑑(𝑖) 0

0 𝑒−
2𝜋

𝜆
𝑁 𝑖 𝑑(𝑖)

  

 

the effect given by a multilayer structure can be described as a composition of the effects coming 

from the single layers, in such a way that the relations between the amplitudes of the hitting 

radiation I, of the reflected one R and of the transmitted one T: 

 

 
𝐼
𝑅
 = 𝐼  1 𝐿  1 𝐼  2 𝐿  2 … 𝐼  𝑀 𝐿  𝑀 𝐼  𝑀 + 1  

𝐸𝑅𝐹(𝑖 + 1)

𝐸𝑅𝐵(𝑖 + 1)
 =  

𝑆11 𝑆12

𝑆21 𝑆22
   

𝑇
0
    

 

and the related intensities: 

 

𝑅 = 𝑅𝑒(𝑅 𝑁 0 𝑅)∗ 𝐼   𝑎𝑛𝑑   𝑇 = 𝑅𝑒(𝑇 𝑁 𝑀 + 1 𝑇)∗ 𝐼 

 

where I is the hitting wave’s intensity. 

for the i
th

 layer, by the use of the transmitted radiation T it is possible to calculate: 

 

 
𝐸𝑅𝐹(𝑖)

𝐸𝑅𝐵(𝑖)
 = 𝐿  𝑖 𝐼  𝑖 + 1 𝐿  𝑖 + 1 … 𝐼  𝑀 𝐿  𝑀 𝐼  𝑀 + 1  

𝑇
0
    

 

where T has been calculated from the equation 𝑇 =
1

𝑆11
 

 

It is possible to calculate the absorption profile intensity within the i
th

 layer, that contains: 

- the resulting forward wave 𝐸𝑓 𝑖, 𝑥 = 𝐸𝑅𝐹𝑒−𝑖𝛽𝑖𝑥  

- the resulting back wave 𝐸𝐵 𝑖, 𝑥 = 𝐸𝑅𝐵𝑒𝑖𝛽𝑖𝑥  

 

The resulting wave has: 

- electric field amplitude  𝐸 𝑖, 𝑥 = 𝐸𝑅𝐹 𝑖, 𝑥 + 𝐸𝑅𝐵 𝑖, 𝑥 = 𝐸𝑅𝐹(𝑖)𝑒−𝑖𝛽𝑖𝑥 + 𝐸𝑅𝐵𝑒−𝑖𝛽𝑖𝑥  
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- magnetic field amplitude 𝐻 𝑖, 𝑥 = 𝑁(𝑖) 𝐸𝑅𝐹 𝑖, 𝑥 − 𝐸𝑅𝐵 𝑖, 𝑥   

  

Through the Poynting’s vector 𝑃 𝑖, 𝑥 = 𝑅𝑒 𝐸 𝑖, 𝑥 𝐻(𝑖, 𝑥)∗ 𝐼 

it is possible to calculate the local and the layer’s absorption, respectively: 

 

𝐴 𝑖, 𝑥 = −
𝑑𝑷(𝑖, 𝑥)

𝑑𝑥
  𝑎𝑛𝑑  𝚪 i =  A i, x dx

d(i)

0

 

 

then, from the law of conservation of energy we have 

 

𝐼 = 𝑅 + 𝑇 +  𝜞 𝑖 

𝑖

+  𝑿 𝑖 

𝑖

 

 

and the diffused light’s intensity is calculated as: 

 

𝑋 𝑖 = 𝛼𝑛(𝑖)  𝐸𝑅𝐹(𝑖) 2 𝑟𝐹(𝑖) 2 1 − 𝑆𝑟
2(𝑖) +  𝐸𝑅𝐵(𝑖) 2 𝑡𝐹(𝑖) 2 1 − 𝑆𝑡

2(𝑖) 

+  𝐸𝑅𝐹(𝑖 + 1) 2 𝑟𝐵(𝑖) 2 1 − 𝑆𝑟
2 𝑖 + 1  +  𝐸𝑅𝐵(𝑖 + 1) 2 𝑡𝐵(𝑖) 2 1 − 𝑆𝑡

−2(𝑖)   

  

where 𝛼 is a normalization parameter. 

The diffused component 𝑿(𝒊) can be partially re-absorbed, partially reflected and partially 

transmitted by one of the structure’s layer. The method discussed so far, anyway, do not allow us to 

carry out an accurate evaluation of the way the diffused light is redistributed. The following 

paragraph is going to introduce a method able to do that. 

 

9.4 Light’s diffused component evaluation through Monte Carlo method 

The diffused component of the electromagnetic radiation can be, as already stated, either re-

absorbed by the structure’s layer or emitted in the ambient. The evaluation of the contribution of the 

diffused radiation on the total absorption of the structure requires a calculation method able to 

follow the trajectory of a certain number of diffused photons (about 10
5
). The method implemented 

in the simulation code is stochastic and it is based on a Monte Carlo simulation. The algorithm that 

follows the diffused photon’s trajectory works in the following way: 

- the radiation’s diffused component is considered apart from the coherent part, in order to 

calculate it with the Monte Carlo method. This method allows us to probabilistically 

calculate the diffused photons’ optical paths (Monte Carlo particles) as they are a series of 

events with a given probability: propagation within the layer (with a variable angle), 

absorption, specular reflection, coherent refraction, diffused reflection and diffused 

refraction. 

- The hitting photon, comes through the first interface on the border of the layer and is 

propagated within it following the optical path. If  is the angle between the photon’s 

propagation direction and the line vertical to the layers, the probability of the photon’s 

absorption within the i
th

 layer is given by the Beer’s law: 
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𝑃𝑎𝑏𝑠  𝑖 = 1 − 𝑒−
2𝜋𝑘 𝑖 𝑑(𝑖)

𝜆𝑐𝑜𝑠𝜃  

 

- if the photon is not absorbed, it can interact with one of the interfaces that are the borders of 

the layer and it depends on the  angle’s value. The probability that the photon is reflected 

is: 

 

𝑅 𝑎, 𝑏 = 0.5

 
 

 
 

𝑁(𝑎)
𝑐𝑜𝑠𝜃𝑎

−
𝑁(𝑏)
𝑐𝑜𝑠𝜃𝑏

𝑁(𝑎)
𝑐𝑜𝑠𝜃𝑎

+
𝑁(𝑏)
𝑐𝑜𝑠𝜃𝑏

 

2

+  
𝑁 𝑎 𝑐𝑜𝑠𝜃𝑎 − 𝑁(𝑏)𝑐𝑜𝑠𝜃𝑏

𝑁 𝑎 𝑐𝑜𝑠𝜃𝑎 + 𝑁(𝑏)𝑐𝑜𝑠𝜃𝑏
 

2

 
 

 
 

 

where 𝜃𝑎  and 𝜃𝑏are bounded by the Snell’s law: 

 

𝑛 𝑎 𝑠𝑖𝑛𝜃𝑎 = 𝑛 𝑏 𝑠𝑖𝑛𝜃𝑏  

 

while the reflected or transmitted scattering probabilities are: 

 

𝑃𝑠𝑐𝑎𝑡𝑡
𝑅  𝑎, 𝑏 = 1 − 𝑒

− 
2𝜋𝑛  𝑎 𝜍 𝑎 ,𝑏 𝑐𝑜𝑠𝜃𝑎

𝜆
 

2

 

 

𝑃𝑠𝑐𝑎𝑡𝑡
𝑇  𝑎, 𝑏 = 1 − 𝑒

− 
2𝜋(𝑛 𝑎 −𝑛 𝑏 )𝜍 𝑎 ,𝑏 𝑐𝑜𝑠𝜃𝑎

𝜆
 

2

 

 

- four combinations of the events coming from the interaction between the hitting photon and 

the interface are possible, with an associated probability: 

 

a) diffused reflection 𝑅 ∗ 𝑃𝑠𝑐𝑎𝑡𝑡
𝑅  

b) specular reflection  1 − 𝑅 ∗ [1 − 𝑃𝑠𝑐𝑎𝑡𝑡
𝑅 ] 

c) diffused refraction  1 − 𝑅 ∗ 𝑃𝑠𝑐𝑎𝑡𝑡
𝑇  

d) coherent refraction  1 − 𝑅 ∗ [1 − 𝑃𝑠𝑐𝑎𝑡𝑡
𝑇 ] 

 

- If the selected event is a scattering one, the new angle is evaluated by the angular 

distribution preset. The angular diffusion probability is to be considered as a function to be 

calibrated on the basis of the type of interface. 

- The end of the optical path can be recognized either through the photon’s absorption in a 

layer or the propagation towards the ambient. By the evaluation of a large number of 

photons’ trajectories, it is possible to calculate both the lost and trapped diffused radiation’s 

quantities. 
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9.5 Matlab simulation code 

9.5.1 Input data and optical calibration  
The trapping_coer script in the simulation code requires some input data: 

- inpfile, a text file containing the geometrical parameters and the indexes of the materials of 

the cell for the M layers and the M+1 interfaces. They are, respectively, (thicknesses d(i), 

ruggednesses 𝜍(i), material indexes I, containing the information about the optical materials’ 

features, retrieved from an associated database 

- datafile, a text file containing the refraction indexes n() and the extinction coefficients 

based on the different wavelengths (from 300 to 1300 nm) of 19 different materials    

- iglass, to be indicated before the code runs, that is the number of layers of the inpfile cell. 

 

i-glass 1 2 3 4 5 6 7 

d(i) 3500000 800 20 1000 20 20 150 

σ(i) 0 160 2 100 2 2 15 

i-type 19 13 7 5 6 18 14 

 

Table 9.1 – Example of a text file (inpfile) for a simulated cell. 

9.5.2 Computation of the absorbed radiance 

For any wavelength, the simulation code calculates the coherent intensity component. 

- Absorbed in the different layers 𝐴 =  𝐴𝑖𝑖  

- Diffused X 

- Reflected by the multilayer R and, eventually, the transmitted one T  

 

After the matrix method calculation for rough surfaces, we will have: 

 

𝐼 = 𝑅 + 𝑇 + 𝐴 + 𝑋 > 𝑇 + 𝑅 + 𝐴 

The absorption in the different layers of the diffused absorbed 𝐴𝑑(𝑖), reflected 𝑅𝑑  and transmitted 

𝑇𝑑  components is then calculated through the Monte Carlo method. A good statistical estimation is 

gained through the use of about 10
5
 particles per layer. The calculated values are then summed to 

get the total values for the different quantities: 

 

𝐴𝑡𝑜𝑡  𝑖 = 𝐴 𝑖 + 𝐴𝑑 𝑖 ,   𝑅𝑡𝑜𝑡 = 𝑅 + 𝑅𝑑 ,   𝑇𝑡𝑜𝑡 = 𝑇 + 𝑇𝑑  

 

The current version of the code only considers a Lambertian angular distribution and the outcome 

angle of the diffused photons is calculated stochastically through this distribution. 

In the database we can find the following materials: 
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1 Intrinsic cristalline silicon 

2 Intrinsic amorphus silicon 

3 n-type amorphus silicon 

4 p-type amorphus silicon 

5 Intrinsic microcrystalline silicon 

6 n-type microcrystalline silicon 

7 p-type microcristalline silicon 

8 ZnO sputt undoped  

9 ZnO sputt lowdoped  

10 ZnO sputt doped  

11 ZnO sputt highdoped  

12 ZnO LPCVD  

13 SnO2 APCVD  

14 Ag 

15 Al 

16 ZnO+Ag (smooth) 

17 ZnO+Ag (rugged) 

18 ZnO+Al (smooth)  

19 Glass  

 

Table 9.2 – Materials included in the database. 

9.5.3 Simulation and results 

The simulation code has been tested when using different kinds of photovoltaic cells. The cells, 

manufactured using well-known materials, are case-studies through which it is possible to analyze 

the results obtained and, then, to evaluate the interesting parameters. 

 

- Single-junction cells 

The cell in the figure below is in the characteristic p-i-n configuration. The chosen materials 

and the related geometrical features are the following ones: 
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Thickness [nm] Material Ruggedness [nm] 

350 Glass  = 0 

800 SnO2  = 160 

20 c-Si:p  = 2 

10
6
 c-Si:i  = 100 

20 c-Si:n  = 2 

20 ZnO:Al  = 2 

150 Ag  = 15 

 

Table 9.3 – Chosen materials and their geometric features 

             
Figure 9.1 – A p-i-n solar cell 

 

The roughness is about 10% of the thickness, apart for the glass ( = 0) and for the TCO layer, that 

has a roughness equal to 20% of the thickness. The same simulation has been carried out changing 

the material contained in the TCO layer, but maintaining the same thickness and roughness values 

for each layer. 

  Thickness [nm] Material Ruggedness [nm] 

350 Glass  = 0 

800 ZnO2 highdoped  = 160 

20 c-Si:p  = 2 

10
6
 c-Si:i  = 100 

20 c-Si:n  = 2 

20 ZnO:Al  = 2 

150 Ag  = 15 
 

Table 9.4 - The chosen materials and the related geometric features 
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Figure 9.2 – The modified solar cell 

The simulation results (using 10
5
 Monte Carlo particles) for the respective cells are reported in the 

following figures. The charts represent the absorption for the single layers of the cell, when 

changing the wavelength.  

 

Figure 9.3 – Absorption versus wavelength for each layer for the first cell 
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Figure 9.4 – Absorption versus wavelength for each layer for the second cell 
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Figure 9.5 - Total absorption for the investigated cells 

 

Figure 9.6 - Total absorption for the investigated cells within the active layer 
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9.5.4 Tandem cells 

The materials used for the tandem cell are reported in the following table: 

 

Thickness [nm] Material Ruggedness [nm] 

350 Glass  = 0 

600 SnO2  = 120 

20 a-Si:p  = 2 

300 a-Si:i  = 30 

20 a-Si:n  = 2 

20 SnO2  = 2 

20 c-Si:p  = 2 

1.7*10
6
 c-Si:i  = 170 

20 c-Si:n  = 2 

20 ZnO:Al  = 2 

150 Ag  = 15 
 

Table 9.5 - The chosen materials and the related geometric features for the tandem cell 

 

                         

                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                               Figure 9.7 – The analyzed tandem cell structure. 
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When changing some materials and maintaining the same features, we tried to evaluate the 

following configuration: 

Thickness [nm] Material Ruggedness [nm] 

3.5*10
6
 Glass  = 0 

600 ZnO  = 120 

20 a-Si:p  = 2 

300 a-Si:i  = 30 

20 a-Si:n  = 2 

20 ZnO  = 2 

20 c-Si:p  = 2 

1.7*10
3
 c-Si:i  = 170 

20 c-Si:n  = 2 

20 ZnO:Ag  = 2 

150 Ag  = 15 
 

Table 9.6 - The chosen materials and the related geometric features for the modified tandem cell 

 

 

 

              Figure 9.8 – The modified tandem cell 
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Simulation results (10
5 

Monte Carlo particles) are reported in the following figures. The charts 

represent  the absorption of the single layers of the cell, when changing the wavelength.  

 

Figure 9. 9 - Absorption for each layer in the first tandem cell evaluated 
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Figure 9.10 - Absorption for each layer in the second tandem cell evaluated 

 

Figure 9.11 - Total absorption for the tandem cells evaluated 
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Figure 9.12 - Absorption within the active layer (a-Si:i+c-Si:i) for the tandem cells evaluated 

9.6 Results analysis 

The results obtained from the simulations underline similar behaviors in both single junction and 

tandem cells. In particular, when comparing the total absorption, for both kinds of cells, it is 

possible to understand that the  use of ZnO in the TCO layer, instead of SnO2, can strongly increase 

the total absorption, for wavelengths between 900 and 1200 nm. Moreover, the total absorption in 

tandem cells maintain absorption values between 0.9 and 1.0 for wavelengths between 300 and 600 

nm, thanks to the presence of a double active layer embracing amorphous intrinsic (a-Si:i) and 

microcrystalline intrinsic (c-Si:i). It is clear that this values are much higher than the total 

absorption values of the single junction cells. 

The results demonstrate that the tandem cell with the use of ZnO appears to be, among all the 

simulated ones, the one with the best conversion efficiency. That is why it has been chosen as a 

prototype cell to be implemented in an optimization routine. This optimization model, based on a 

Genetic Algorithm, is going to be discussed in the following paragraph. 
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10 Thin-film silicon solar cell optimization through a Genetic Algorithm 

10.1 Introduction to Genetic Algorithms  

A Genetic Algorithm is a global and stochastic search method based on the emulation of a 

biological evolution process. In biology, the term ―evolution‖ is related to progressive and 

continuous modifications that generate, over a long enough period of time, substantial changes in 

living beings. This process can take place thanks to two events, that are the selective reproduction 

of new variants and the constant addition of these new variants to the original genetic data set. It is a 

process using the genetic transmission channel from an individual to his/her children also including 

the eventual random mutations that interfere with the genetic heritage. Thus, the biological 

evolution depends on a genetic selection process (random transmission and mutation), that is part of 

a global and larger natural selection process embracing also all the factors related to the 

environment adaptation and cooperation with the other organisms. [51] 

The evolution idea, starting from the biological analogy, indicates, in a more general way, a search 

method working on a huge number of possible solutions, that are all the organisms able to 

reproduce themselves and adapt to the environment. Thus, the adaptation idea is the main principle 

leading the researcher to the best solution, that is the optimal one. 

In a similar way, the Genetic Algorithm operate over a large set of potential solutions, and use the 

―survival‖ of the best adapted individuals in the current generation, as it is in nature, recombining in 

a adequate way these solutions in such a way that they can evolve towards the optimum, that is the 

nearest solution to the real solution of the problem. 

Genetic Algorithms are applicable to the resolution of a large number of optimization problems, 

that cannot be solved through the classical algorithms, including those problems whose objective 

function is strongly discontinuous, not derivable, stochastic or strongly not linear; in general, they 

are algorithms suitable to the realization of parallel computations and to the research of a strategy 

that can choose the further sequences to optimize. These problems require, typically, the research of 

an optimum among a large set of solutions; research influenced as well by a large number of 

variables interfering with the solutions themselves (for instance, the Artificial Intelligence research 

is an example of the application of Genetic Algorithms). 

 

10.2. GA theory in brief 

Let us suppose we have a geometrical or physical parameters modifiable set  

 

𝜆 =  𝜆1 ,  𝜆2 …𝜆𝑘  

 

whose values can vary within the parameters’ space 

 

𝜆𝑖
𝑚𝑖𝑛 ≤ 𝜆𝑖 ≤ 𝜆𝑖

𝑚𝑎𝑥   𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑘 

 

let us suppose, moreover, we have an observable measures set 

 

𝑔 = 𝑔 𝑔1 , 𝑔2 …𝑔𝑀  
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where g depends on the k variables that are contained in the vector 

 

𝑔 = 𝑔 𝜆1, 𝜆2 …𝜆𝑘  

 

The general problem is to determine the value of the structure’s parameters set, subjected to the 

specified constraints, in such a way that the following objective function would be maximum or 

minimal: 

 

𝐹[𝑔 𝜆 ] 

 

the optimization algorithms are global search methods according to which, when fixed a set of 

initial values for the chosen parameters, the algorithm goes on according to a stochastic search 

towards the finding of the values of the parameters near to the global objective function maximum 

or minimum (this phenomenon is called convergence). [7] 

Such algorithms are featured by some important features: 

- they are not very dependent on the initial solution 

- they do not require the objective function to have particular properties 

- they produce a set of sub-optimal solutions (apart from the optimal one) 

- they allow us to study problems featured by a large number of parameters 

- their convergence is slow 

- they require the calibration (based on one’s experience) of some simulation parameters 

An adequate combination of the optimizing parameters set produce an individual, that is a possible 

solution for the optimization problem. 

A solution can be biuniquely codified in a binary code thanks to the J. Holland’s (GA inventor) 

intuition. 

The specific sequence (string) made up by 0 and 1 that constitute the individual (candidate solution) 

is called chromosome (codified candidate solution using a string of bits). 

It is called gene encoding (binary for instance) of the  parameter: 

 

𝐵𝑟 =  𝜆𝑟
𝑚𝑖𝑛 , 𝜆𝑟

𝑚𝑎𝑥  →   𝛼1, 𝛼𝑛𝑟
 : 𝛼𝑗 ∈  0,1 , 𝑗 = 1,2, …𝑛𝑟  

 

𝑤𝑖𝑡  𝑛𝑟 = 𝑛

𝑘

𝑟=1

 

 

The chromosome will be the sequence of the single individual’s genes 

 

𝑝𝑛 =  𝐵 𝜆1 , 𝐵 𝜆2 , …𝐵(𝜆𝑘)  

 

A set of individuals would be a population: 

 

𝑃 =  𝑝1, 𝑝2, … , 𝑝𝑁  
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Considering that the algorithm leads to a temporal evolution of the population, we define 

generation, the population at a given time. 

In nature, individuals reproduce themselves and mix their genes transmitting to the newborn 

individuals a new genetic heritage, that is a combination of the mother and father’s one. The natural 

selection, that is the choice and reuse of either the best or the best adapted solutions, makes the 

strongest individuals survive and reproduce themselves, generating this way again the best adapted 

individuals or the one featured by the highest fitness to the environment (the solutions nearest to the 

optimum). Over the time, the average population fitness, going on along this selection criterion, will 

tend to increase generation after generation, determining the population’s evolution. 

We define evolution the iteration of the optimization process that allows us to modify the 

population’s individual genes through a sequence of operators 

 

𝑃𝑖 → 𝑃𝑖+1 

 

The parameter that allows us to evaluate the goodness of the found solution is defined fitness. 

Usually, the total fitness is defined as the weighted average of the fitness functions associated to the 

different observable measures: 

 

𝐹𝑝 = 𝐹 𝑝𝑛 =  𝑤𝑗𝐹𝑗 [𝑔𝑗  𝜆𝑛 ]

𝐽

𝑗=1

 

 

where 𝑤𝑗  are the weights, whose sum is 

 

 𝑤𝑗 = 1

𝐽

𝑗 =1

 

 

The theoretical structure for a GA is the following one: [51] 

- Initial generation definition. 

 Definition, even if randomly, of a first set of possible solutions for the relevant problem 

- Evaluation of each solution and selection of the best one. 

Evaluation of each solution, associating at each of them a quality indicator (or fitness), in 

such a way that it is possible to sort them 

- Definition of a new generation. 

Definition of a new group of solutions, through the adequate modification of the solutions 

with the highest quality, in order to make them evolve instead of the worst ones 

- Conclusion of the elaboration. 

If either the defined number of iterations has been reached, or the best available solution 

quality is acceptable, it is possible to stop the algorithm, otherwise, it is needed to go again 

to the second step in order to define a new group of solutions. In the first case, the best 

individuals are defined ―parents‖ of the following generation. 

Starting from these individuals, an even number of individuals belonging to the next generation is 

generated. This process can take place through two genetic operators, whose task is to combine 
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genes (elements making up the chromosomes) of the different solutions, in order to explore the new 

ones: 

- Mutation. 

It introduces in an aleatory way new genes in some chromosomes, creating individuals with 

completely new features. Thus, some chromosomes are randomly selected (according to the 

mutation probability) and in these chromosomes one or ore bits are changed randomly. 

- Crossover. 

Emulating the reproduction, it realizes the both parents’ genes combination. 

Let us look at the following example: 

 

Elimination   ABCDE – FGH → ABCE – FGH 

Duplication   ABCDE – FGH → ABCBCDE – FGH 

Inversion   ABCDE – FGH → ADCBE – FGH 

Mutual translocation  ABCDE – FGH MNOCDE – FGH 

--------- 

MNOPQ – R ABPQ – R 

Crossover at one point 

 

(parent number 1)  011010 – 10100 (son number 1) 011010 - 01010 

(parent number 2)  011101 – 01010 (son number 2) 011101 - 10100 

    

The algorithm goes on until we do not get the convergence of the features, that is when the parents 

extracted from a population cannot be further improved. Generally, when starting from a starting 

population, a genetic algorithm produces new generations usually containing solutions better than 

the previous ones. If it happens, it is gained a general evolution of the generations towards the 

fitness function global optimum. 

Thus, the generation process is iterated until a stopping condition is met. The most common ones 

are: 

- a solution satisfying the minimum criteria is found  

- the maximum number of generations declared at the beginning is reached 

- the economic/time limit defined at the beginning is reached 

- a manual control on the algorithm stop is created 

- the best result already gained do not evolve until a given number of generations elapses 

- within a given number of generations no individual within the solution space is found (the 

problem cannot be solved). 

 

The following model could be considered for a GA: 

 

Choose an initial population of chromosomes; 

while termination condition not satisfied do 

repeat 

if crossover condition satisfied then 

{select parent chromosomes; 
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choose crossover parameters; 

perform crossover} 

if mutation condition satisfied then 

{choose mutation points; 

perform mutation}; 

evaluate fitness of offspring 

until sufficient offspring created; 

select new population: 

endwhile 

 

10.3 The optimization problem  
According to the results gained in the previous section, the tandem cell is the best one as for the 

total absorption, among all the simulated cells. It is possible to further improve these starting values, 

through the modifications of thickness and roughness values of the different tandem cell layers. By 

increasing the thickness in the different layers and, especially, in the active layers, (in this case a-

Si:I and c-Si:i), it is possible to notice a proportional increase of the absorbed radiance. [23] Thus, 

the optimization and increase of the radiance could seem a banally solved problem. Actually, this 

thickness increase cannot be carried out without taking into account the economic cost of the 

manufacturing process to get materials like the crystalline silicon. That is why, the thickness 

increase must be accurately investigated. This last statement gives us some real production limits 

influencing the cell performance.  

The optimization problem in our case has the target to find a good balance between the layer 

thickness and the production cost. 

In order to get a realistic cost, since we do not know the real production cost, the following 

calculations will be based on these assumptions: 

- Photovoltaic equipment power = 3 kW 

- Income coming from the equipment sale = 10 k€  

- Number of photovoltaic panels = 20 

- Income coming from the single panel sale (Y) = 500 € 

- Production cost for the single panel (C) = 250 € 

- Net profit Ru = 250 € 

 

10.4 Mathematical formalization  
The optimization problem, formulated as above, requires the search of an optimum that should be a 

trade-off between the thickness variation and the layers materials production costs. So, the function 

to optimize is in this case a multiobjective function: 

 

max    𝑅𝑢 = 𝑌 − 𝐶  

 

while we want  max 𝑌   𝑎𝑛𝑑  min 𝐶 

with 𝑌 = 𝛼𝑄𝑒 ;    𝐶 = 𝑇𝑝𝑟𝑜𝑐 𝑅𝑐  

where  is a proportional factor, 𝑄𝑒  is the quantic efficiency and 𝑇𝑝𝑟𝑜𝑐  is the time needed to 

produce a film: 
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𝑇𝑝𝑟𝑜𝑐 = 𝑇𝑓𝑖𝑥𝑒𝑑 + 𝑇𝑣𝑎𝑟 = 𝑇𝑓𝑖𝑥𝑒𝑑 +
𝑋

𝑣
 

 

where 

-  𝑋 is the thickness of the intrinsic layer in nm 

- v is the velocity of the process = 0.2 nm/sec 

- 𝑅𝑐  is a ‖cost rate‖ expressed in [€/ton] 

 

Moreover, let us assume that the ratio between 𝑇𝑓𝑖𝑥𝑒𝑑  and 𝑇𝑣𝑎𝑟  is 1:2. 

Now, let us have a look at the following figure, representing the tandem cell to be optimized 

together with the variables chosen for the problem. 

 

 
 

Figure 10.1 – Scheme for a tandem cell to be optimized together with the chosen variables. 
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Thus, we have chosen as our variables the thickness of the c-Si:i layer and the roughness of the 

tandem cell layers, for a total amount of 12 variables. 

Taking into account the material cost when choosing the intrinsic layer thickness and the fact that it 

is not possible to use on the interfaces a too high roughness value with respect the thickness itself, 

the following constraints have been imposed: 

 

 

Interface Roughness [nm] 

1 (1) = 0 

2 d*(2)  (2)  d*(2)+d*(2)*0.3 

I=3:11 d*(1)  (i)  d*(i)+ d*(i)*0.2 

 

Table 10.1 – Constraints imposed for the problem. 

 

For the layer c-Si:i thickness (di) is assumed the following: (di - di * 0.3)  di  (di + di * 0.3), 

where di is the initial thickness. 

 

10.5 Simulation and results  

The optimization problem proposed in the previous paragraph has been performed using a Matlab 

simulation code, with the algorithm used in the section dedicated to the GAs on the multiobjective 

functions. [12] 

The code calibration has been carried out by using: 

- A population made up by 20 individuals 

- 50 Generations as a maximum 

The obtained results are the following ones: 

 

 
Figure 10.2 – Results obtained at the last generation, with respect to the initial reference point. 
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It is possible to notice that the reference point is (250, 500). In the chart we can find the results 

obtained from the last generation, while, in the following figure, it is possible to look at the results 

extracted from the last generation and at some selected points (in yellow): 

 
Figure 10.3 – Results obtained after the last generation, with special attention to the selected points (in yellow). 

10.6 Results analysis 

To better understand the Pareto charts shown before, it is necessary to define what we mean when 

referring to the optimal solution for a multiobjective programming problem. 

If the solver has already found a Pareto optimum and he wants to further decrease the value of one 

or more objective functions, we have to be willing to accept a consequent increase in one or more of 

the other problem functions. Thus, we can state that, within the objective space, the Pareto optima 

are ―equilibrium points‖ on the boundary of the image Z of the feasible region within the objective 

space (𝑍 = 𝑓(𝐹)). In the chart above, we can notice that, respect to the reference point (250, 500), 

the chart is divided in four parts. The point that improves, simultaneously, both Y and C is the one 

with (239, 508) as coordinates. This point, in yellow, is in the left-upper part of the chart. 

Both the variables, Y and C, actually increase simultaneously. While, in the right-upper part of the 

chart, the Y values improve and the C values get worse and in the left-upper part the C values 

improve and the Y values worsen. This is the analytical demonstration of what we just stated about 

the Pareto optima. 



________________________________________Multiobjective optimization for effective solar cell design 

100 
 

11 Multiobjective optimization for effective solar cell design 

Introduction 

The method we are going to introduce is focused on the analysis and optimization of a solar cell. It 

is composed, essentially, by four algorithms. [12] 

- Morris algorithm. Focused on sensitivity analysis, to analyze the parameters that are 

influential on the output and to select the sensitive parameters for the optimization. 

- Multiobjective optimization. To optimize simultaneously the key objectives: fill factor and 

efficiency. 

- Decision making. To select the best solutions of the optimization. 

- Robustness analysis. To assess the robustness of the candidate solutions. 

This methodology has been integrated with Synopsys TCAD Sentaurus and it has been tested and a 

2D model for an homogeneous emitter (HE) solar cell. 

 

11.1 The optimization algorithm 

The new Electronic Design methodology chosen is based on Pareto Optimality, and it is called 

PAREDA. The proposed optimization algorithm is a stochastic black-box optimization algorithm 

inspired on the clonal selection principle derived from the immune system. A problem is an antigen 

and a candidate solution is a B-cell. The affinity between an antigen and a B-cell is given by the 

objective function(s) of the optimization problem. Each B-cell is thus a vector of n real values, 

where n is the dimension of the problem. Each candidate solution has associated an age  that 

indicates the number of iterations since the last successful mutation and, initially, it is set to zero. 

An initial population P
(0)

 of dimension d is randomly generated, with each variable constrained in 

the bounds. However, it could be useful to use and ad-hoc population to start the optimization 

process (for instance, performing a local optimization). PAREDA can take in input a starting point 

pst and it uses this point to initialize one candidate solution of the population and the remaining d-1 

with perturbation of pst. The algorithm is iterative, each iteration is made of a cloning, a mutation 

and a selection phase. 

The algorithm stops when the maximum number of objective function evaluations is reached. The 

cloning phase is responsible for the production of copies of the candidate solutions. Each member 

of the population is cloned dup times producing a population Pclo of size d x dup, where each cloned 

candidate solutions takes the same age of its parent, simultaneously, the age of the parent is 

increased by one. 

After the Pclo population is created, it undergoes to the mutation phase in order to find better 

solutions; in this phase, the hyper-mutation and hyper-macromutation are applied to each candidate 

solution. Firstly, Firstly, the hyper-mutation operator mutates a randomly chosen variable xi of a 

given candidate solution using a self-adaptive Gaussian mutation computed as  

 

𝑥𝑖
𝑛𝑒𝑤 = 𝑥𝑖 + 𝜍𝑁 0,1 ,   𝑤𝑒𝑟𝑒  𝜍𝑖

′ = 𝜍𝑖𝑒
  𝜏𝑁(0,1) +(𝜏 ′ 𝑁𝑖 0,1 )  

 

Successively, the hyper-macromutation applies a convex perturbation to a given solution by setting 

 

𝑥𝑖
𝑛𝑒𝑤 =  1 − 𝛾 𝑥𝑖 + 𝛾𝑥𝑘  
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where 𝑥𝑖  is a variable randomly chosen such that 𝑥𝑖 ≠ 𝑥𝑘  with 𝛾 ∈ [0,1] a uniformly distributed 

random variable. Since variables 𝑥𝑖  and 𝑥𝑘  typically have different ranges, the value 𝑥𝑘  is 

normalized within the range of 𝑥𝑖  using the following equation: 

 

𝑥𝑘
𝑛𝑜𝑟𝑚 = 𝐿𝑖 +

 𝑥𝑘 − 𝐿𝑘 

 𝑈𝑘 − 𝐿𝑘 
 𝐿𝑖 − 𝑈𝑖        (1) 

 

where 𝐿𝑖  and 𝑈𝑖  are the lower and upper bounds of 𝑥𝑖  and 𝐿𝑘  and 𝑈𝑘  are lower and upper bounds of 

𝑥𝑘 . The value used to mutate the 𝑥𝑖  variable is 𝑥𝑘
𝑛𝑜𝑟𝑚 . These mutation operators are controlled by 

the specific mutation rate ; for the hyper-mutation we define 𝛼 = 𝑒−𝜌𝑓 , instead for the hyper 

macromutation we adopted 𝛼 =
1

𝛽
𝑒−𝑓  where f  is the objective function value normalized in [0,1]. 

These operators are applied sequentially; the hyper-mutation operator acts on the Pclo producing a 

new population Phyp. The hyper-macromutation mutates Phyp generating the Pmacro population. After 

mutations, the population Pmacro is evaluated; if a candidate solution achieves a better objective 

function value, its age is set to zero otherwise it is increased by one. The aging operator is applied 

on P
(t)

 and Pmacro; it erases candidate solutions with an age greater than b+1, where b is a parameter 

of the algorithm. The deleted candidate solutions are stored into the archive BCarch; since the 

archive contains at most sa solutions, if there is enough space, the candidate solution is out into the 

first available locations, otherwise it is put in a random location. Finally, the selection is performed 

and the new population P
(t+1)

 is created by picking the best individuals form the parents and the 

mutated candidate solutions; however, if  𝑃(𝑡+1) < 𝑑,   𝑑 −  𝑃(𝑡+1)  candidate solutions are 

randomly picked from the archive and added to the new population. In many real applications, it is 

common to deal with constraints, which could be imposed on input and output value. In general, a 

constraint is a function g(x) that certificates if a solution for a given optimization problem is feasible 

or not. We consider constraints defined as 𝑔 𝑥 : 𝑅𝑛 → 𝑅  𝑖𝑓  𝑔(𝑥) ≤ 𝜃 where  is a feasibility 

threshold. The algorithm considers the constraint values during the selection procedure. Given two 

individuals p1 and p2, if both are feasible the one with the lowest objective function value is picked; 

if p1 is feasible and p2 is unfeasible, p1 is chosen, otherwise if p1 and p2 are unfeasible, the one with 

the lowest constraints violation is selected. In order to face and solve the circuit design problems of 

the next paragraphs, the parameters have been set to: 

 

- d = 20 

- dup = 2 

- b = 50 

-  = 1 

-  = 7 

- sa = 160 

 

to select the more robust and effective design, the optimization algorithm has been integrated with 

the following pre and post-processing methods: 
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- sensitivity 

- epsilon-dominance 

- robustness analysis 

 

We will not give details on this methods, since here we just want to underline their utility in this 

work. In order to show how the methods have been integrated, we will show an example of circuit 

sizing. 

 

11.2 Sensitivity analysis 
It allows determining if there are some values of the parameter vector that do not affect the 

performances. In particular this analysis gives a value of mean and standard deviation for each 

parameter variations, where a high mean indicates a parameter with an important overall influence 

on the output and a high standard deviation indicates that either the factor is interacting with the 

others factors or the factor has nonlinear effects on the output. The output considered are the two 

objective functions. The following figure shows the results of the Sensitivity Analysis (SA) with 

respect to the first objective function (A), to the second one (B) and to the normalized sum of both 

of them (C). In this case all the considered parameters influence the two objective functions, but in 

some cases if a parameter has the values of  and  near to zero, they can be neglected in the next 

step, that is the optimization phase. So, when this step begins, the algorithm searches for the best 

designs that respect the specifications, therefore, it produces as output several feasible points, i.e. 

points that satisfies the constraints on the performance. 

 

 
Figure 11.1 – Sensititvity analysis with respect to the relevant objective functions.  
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11.3 Robustness analysis 
In order to add information and to select robust solutions, a further step is executed; the robustness 

analysis. For each solution is assigned an index of robustness called Global Robustness (GR). It is 

calculated by perturbing N times all the variables of a given candidate solution with Gaussian noise 

with zero mean and a standard deviation equal to 1% of parameters. The samples whose 

performance do not deviate more than 1% from the original values are considered robust and the 

value of GR is calculated as the ratio between robust samples and the total ones. At this point we 

can choose the most efficient and robust design. In particular, the following solutions have been 

selected: the solution minimizing the power consumption, robustness/power consumptions, 

gain/robustness and, finally, gain/power consumption/robustness. The first three ones are 

immediate, while the other ones are calculated by normalizing the objective functions and the 

robustness values, calculating the distance from the ideal point (GR=1, PowerConsumption = 0, 

Gain =1) and choosing the solutions at the minimum distance. 

The last three selected points are optimal and robust circuits. It is important to underline that the 

best trade-off between the minimum power consumption, the maximum gain and robustness is an 

epsilon-dominance point. This shows how epsilon-dominance analysis combined with the 

robustness analysis, help to select an optimal and robust design from the feasible points found by 

the optimization algorithm.  

Finally, it is important to note that the Robustness analysis algorithm has the same computational 

effort of the optimization algorithm for the nominal design problems; for both methods, the 

stopping criterion is the same: the maximum number of simulations performed. 

 

11.4 Identifiability analysis 

In statistics, identifiability is a property which a model must satisfy in order for precise inference to 

be possible. We say that the model is identifiable if it is theoretically possible to learn the true value 

of this model’s underlying parameter after obtaining an infinite number of observations from it. 

Mathematically, this is equivalent to saying that different values of the parameter must generate 

different probability distributions of the observable variables. Usually the model is identifiable only 

under certain technical restrictions, in which case the set of these requirements is called the 

identification conditions. 

A model that fails to be identifiable is said to be non-identifiable or unidentifiable. In some cases, 

even though a model is non-identifiable, it is still possible to learn the true values of a certain subset 

of the model parameters. In this case we say that the model is partially identifiable. In other cases it 

may be possible to learn the location of the true parameter up to a certain finite region of the 

parameter space, in which case the model is set identifiable. 

Let ℘ = {Pθ: θ∈Θ} be a statistical model where the parameter space Θ is either finite- or infinite-

dimensional. We say that ℘ is identifiable if the mapping θ ↦ Pθ is one-to-one: 

  

𝑃𝜃1
= 𝑃𝜃2

⟹  𝜃1 = 𝜃2  𝑓𝑜𝑟 𝑎𝑙𝑙 𝜃1, 𝜃2  ∈  𝛩 

 

This definition means that distinct values of θ should correspond to distinct probability 

distributions: if θ1≠θ2, then also Pθ1≠Pθ2. If the distributions are defined in terms of the probability 

density functions, then two pdfs should be considered distinct only if they differ on a set of non-
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zero measure (for example two functions ƒ1(x)=10≤x<1 and ƒ2(x)=10≤x≤1 differ only at a single point 

x=1 — a set of measure zero — and thus cannot be considered as distinct pdfs). 

Identifiability of the model in the sense of invertibility of the map θ ↦ Pθ is equivalent to being able 

to learn the model’s true parameter if the model can be observed indefinitely long. 

Thus with an infinite number of observations we will be able to find the true probability distribution 

P0 in the model, and since the identifiability condition above requires that the map θ ↦ Pθ be 

invertible, we will also be able to find the true value of the parameter which generated given 

distribution P0. 

So, we have performed the identifiability analysis to the Pareto optimal designs of the solar cell 

obtained during the optimization process as follows: 

 

 
Table 11.1 – identifiability analysis applied to the Pareto optimal design (non-dominated points) obtained during the 

optimization process.  

 

and then, the same analysis have been applied as follows to the Pareto optimal and the -non 

dominated ( = 10
-5

) designs of the solar cell model obtained during the optimization process: 

 

 
Table 11.2 – Identifiability analysis applied to the Pareto optimal (non-dominated points) and the ϵ- 

non-dominated (ϵ = 10−5) designs of the solar cell model obtained during the optimization process. 

 

where: 

- pi is the index of the functional relation according to the index of the response parameter 

- r
2
 indicates how much variance of the response can be explained by the predictor 

- 𝑐𝑣 =
𝑠𝑡𝑑 (𝑝)

𝑚𝑒𝑎𝑛 (𝑝)
 helps us to practically distinguish identifiable from non-identifiable 

parameters 

-  indicates how often has this special tuple been found 

- The parameters group indicated the tuples assigned to have a functional relation 

 

the function relations are ranked according to the following criteria: 
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- the more often a functional relation has been found (), the better 

- the more variance of the response can be explained by the predictors (r
2
), the larger the 

effect of the fixation of parameters on the standard deviations of the fitted parameters. 

Values of r
2
 > 0.9 are very good and 𝑐𝑣 > 0.1 are given one. If, additionally, the functional 

relation has been found more than once, another * is assigned. 

 

11.5 Experimental results 

We change the parameters one at a time (OAT one-at-a-time design) several times and measure the 

mean and variance of the effect produced on the output. The parameters used are number of fingers, 

wafer width, substrate depth, metal width and metal depth. All the parameters result influential on 

the output. High mean indicates linear influence on the output. high standard deviation shows a 

non-linear influence on the output or a relation with another parameter. 

A derivative-free, evolutionary, immunological algorithm has been used. It can handle discrete, 

integer and real variables and can face Constrained Single and Multi-Objective Optimization 

problems. The main features of the algorithm are: 

- the cloning operator, which explores the neighborhood of a given solution 

- the inversely proportional hypermutation operator, which perturbates each candidate 

solution as a function of its objective function value 

- the aging operator, that eliminates the oldest candidate solutions from the current population 

in order to introduce diversity and thus avoiding local minima during the search process 

The parameters selected  are the same of the sensitivity analysis, their ranges are: 

 

Parameter Range Step 

Number of finger 25-125 1 

Width wafer 136000-186000 m 100 m 

Depth substrate 90-270 m 0.01m  

Width metal 10-150 m 0.01m 

Depth metal 0.01-0.10 m 0.0001 m 

 

The objective functions are: 

- Maximize Fill Factor 

- Maximize Efficiency 

 

the Pareto optimal points are shown in the figure below, together with the points that maximize both 

the objective functions, the best trade-off (by calculating the distance from the ideal point and 

choosing the points at minimum distance) and the other sampled and tested. 
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Figure 11.3 – Optimal transformations  (y axis) found for the five parameters pi, i=1,…,5 (x axis) using the non-

dominated points obtained during the optimization process. This plot shows the relation among these five 

parameters. 
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Conclusions 
 

 

The development of this thesis has led to some innovative results. 

The definition of a geometrical structure for a homogeneous emitter solar cell is able to improve, 

from a modeling standpoint, the efficiency performances of the analyzed cell. 

The considered structure, taking into account a p-n
+
 junction, starts from some geometrical 

parameters that are the initial values for the design variables. Then, through the use of a genetic 

algorithm combined with the TCAD Sentaurus tool for the mathematical modelization, the 

optimization starts and it has been left going on until it led to the solution of the multiobjective 

problem. So, after 300 generations, some results improving the literature values for the considered 

cell have been found. We have been able to push the cell until an efficiency of 20.65% and a fill 

factor of 0.83, while the literature reference structure barely get a 17% efficiency. 

This is also a design issue because the algorithm involves the contacts design in order to maximize 

the current at collected at the contacts without increasing the natural shadowing effect.  

So, Efficiency and Fill Factor have been chosen as objective functions while the geometrical 

parameters have been chosen as decision variables. 

The second important result for the cell design has been obtained on the thin-film structures. 

Under the pressure for cost reduction in photovoltaic industry, due to the large development of large 

scale panels manufacturing, the thin-film technology arises, as a way to reduce the wafer thickness 

to save material. These kind of cells are made up by many layers, once with a given thickness and 

roughness. In these cells, as it is clear, an efficient design is more important than ever. 

The simulation in this case, consisted in a two steps module. The first one calculates the 

electromagnetic radiation through the matrix method, the second one uses the Monte Carlo method 

to calculate the light's diffused component. After that, again, a genetic algorithm has been used to 

optimize the cell behavior. In this step, the absorption of the cell for the different wavelength, 

coming from the  previous optical calibration, led to a profit maximization problem, bound to the 

minimization of production cost for the panels against the layer thickness. 

The results are related to the optical model for a thin-film cell. An open issue for future 

development of this work could be the inclusion of an electrical module along with the optical 

model gained from the calibration already performed in order to also evaluate the electrical effects. 
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