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Introduction

Monomial ideals and monomial algebras play an important role in Commuta-
tive Algebra. This is also because many questions about ideals can be more
casily studied via some corresponding monomial ideals.

For instance, in Grobner basis theory to any ideal in a standard poly-
nomial ring one associates the initial ideal, with respect to some monomial
ordering, and this permits to reduce several questions to an investigation of
combinatorial nature.

Monomial algebras are a basic tool in dimension theory. First of all, for
any monomial ordering, a homogeneous ideal and its initial ideal have the
same Hilbert function. Moreover, the graded Betti numbers of any homoge-
neous ideal in the polynomial ring are smaller than or equal to the graded
Betti numbers of its initial ideal. Using this result Sturmfels, see [Stu], pro-
vided a proof of the fact that determinantal ideals are Cohen-Macaulay:.

A peculiar monomial ideal is the initial ideal, with respect the Rev-Lex or-
dering, which arises after a generic lincar transformation v of the coordinates.
This monomial ideal is called the generic initial ideal and written gin(7). Gal-
ligo in [Gal, Bayer and Stillman in [BS] observed that generic initial ideals
preserve many homological properties of the starting ideal I, for instance
I is arithmetically Cohen-Macaulay if and only if gin(I) is arithmetically
Cohen-Macaulay and they have the same regularity, reg(/) = reg(gin(/)).

The generic initial ideal also has a fundamental role in the investigation
of many algebraic properties, for instance, as showed by Wiebe in [Wi], given
I homogeneous ideal of a standard polynomial ring R, we have R/I has the
Weak Lefschetz property iff R/ gin(/) has the Weak Lefschetz property.

Moreover, the polarization process allows to move from monomial ideals
to squarefree monomial ideals. This technique, first used by Hartshorne in
[Hal], became a fundamental tool in the study of monomial ideals after the
Hochster’s article [Ho|. Via this process many homological properties are
preserved as the height, the Cohen-Macaulayness, the projective dimension
and the graded Betti numbers. The systematic study of squarefree monomial
ideals began with the works of Stanley [St2] and Reisner [Re].
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Squarefree monomial ideals can be seen as a bridge between commutative
algebra and combinatorics. We can associate to a given simplicial complex
a squarefree monomial ideal in several different ways. In the study of the
Cohen-Macaulay property a particular squarefree monomial ideal has a cru-
cial role: the Stanley-Reisner ideal.

The result known as the Reisner’s criterion, uses the reduced homologies
to establish when the Cohen-Macaulay property holds for the Stanley-Reisner
ideal. Namely, a simplicial complex ¥ is Cohen-Macaulay over k if and only
if, for all faces F' of X, including the empty face, and for all 7 < dimy linky, F,
one has

H,(linky, F; k) = 0.

In Chapter 1 of this thesis we collected some basic definitions and theo-
rems which will be used in the rest of the work. In Chapter 2 we deal with
the Cohen-Macaulay property for monomial squarefree ideals of codimension
two.

Given a finite set N := {x1,..., 2y} and S C Cy yr, we associate to S an
ideal Ig of the standard polynomial ring k[N] := k[z1, ..., zx]. We define Ig
as the intersection of all the prime ideals generated by the element in S, i.e.

Is = ﬂ Ps,

seS

where, if s = {24, T}, Ps = Plz,.2,} 18 the prime ideal (x4, ;) C k[N].

Is is the Stanley-Reisner ideal of the simplicial complex (N '\ s|s € S).
The ideal I is a squarefree monomial ideal of k[N]. The aim of Chapter 2 is
to look under which conditions we have S Cohen-Macaulay, i.e. Is Cohen-
Macaulay. In this first part of the thesis we give three ways to characterize
the Cohen-Macaulay property on such a S.

In Section 2.3 we introduce, for subsets of A/, the notion of self-covered
in S, see Definition 2.2.5, this allows us to give a first characterization of the
Cohen-Macaulay squarefree monomial ideals of height two. We can charac-
terize them by looking at the minimal primes in their primary decomposition.

Theorem 2.3.10 Let S C C5 »r, denoted by S(z,) :=={s € S | z, ¢ s} and
by Sy, :={xpy € N | {x4, 2} € S}, then the following are equivalent:

1. S is Cohen-Macaulay;

2. for any z, € N, S(z,) is Cohen-Macaulay and S,, is self-covered in
S(za);

3. there exists z, € N such that S(z,) is Cohen-Macaulay and S,, is
self-covered in S(z,).



In Section 2.4 we characterize the Cohen-Macaulay squarefree monomial
ideals just looking at the minimal prime ideals of height 2 not in Min(/g).
In other words, given S C (5 »r, we relate the Cohen-Macaulay property to
a condition on S 1= Cyr \ S.

Definition 2.4.2 Let V' C (5, we say that V' contains a r-cycle if there
exists W C V of the type

W= {{xauxaz}v {xaw xas}v RN {xar—laxar}v {ajawxm}}:

and W does not contain properly a s-cycle. We say that a r-cycle W is
minimal in V if for any v € V' \ W we have

v < {ial,x@,x%, e 7'1:047'—171‘(17'}'
We prove the following theorem.

Theorem 2.4.11 S is Cohen-Macaulay if and only if S does not contain
minimal r-cycles, for any r > 4.

Many recent papers deal with special configurations of linear subvarieties
of projective spaces which raised up to Cohen-Macaulay varieties, for instance
partial intersections studied in [RZ6], k-configurations studied in [GHS], star
configurations studied in [GHM]. In [FRZ2] the authors, introducing the
notion of tower sets, generalize all this configurations in such a way to pre-
serve the Cohen-Macaulayness. The last part of Chapter 2, Section 2.5, also
contained in [FRZ2|, describes a special configuration which in some sense
characterizes the Cohen-Macaulyness.

Let A be a finite set and T C Dy := N X N\ {(a,a) | a € N}, we
denote by 71 (T") the set

m(T) = {i € N|(i,j) € T for some j}.

Definition 2.5.1 Let N be a finite set and T C Dj . We say that T is a
tower set if we can order the elements in 71(7"), a1 < --- < a4, such that if
(a;,b) € T then (a;41,b) € T.

In Definition 2.5.9, we introduce the notion of g-tower set for a subset
of Dy nr and analogously, see Definition 2.5.11, we introduce the notion of
g-towerizable set for a subset of Cs yr.

In Theorem 2.5.12 we show that this configuration preserve the Cohen-
Macaulayness.

Theorem 2.5.12 Let S C (5 s be a g-towerizable set then S is CM.



In the last part of Section 2.5 we will “reverse”this theorem to describe
as the g-tower sets characterize the Cohen-Macaulyness.

Definition 2.5.13 Let S C Cy 4,2y} and S € Coqyy, s
that S’ is a restriction of S if there exists a homomorphism

y we will say

v:ikly, ... yn] — Elx, ... o]

for which we have
IS = I/(IS/).

We prove the following.

Theorem 2.5.29 S C (5 y is CM iff there exists S’ a restriction of S' which
is a g-towerizable set.

In the study of algebraic invariants of Cohen-Macaulay ideals, by the
Artinian reduction, many questions can be investigated on Artinian graded
algebras. In this context, especially in the study of Hilbert function and
graded Betti numbers of a graded algebra A, an important tool is the mul-
tiplicative map by a form of degree d, xf : A; — Agi;. The case d = 1,
i.e. the multiplication by a linear form, leads to the study of the Weak Lef-
schetz Algebras. In the second part of this thesis we pursue the study of such
algebras.

An Artinian WL algebra A has, in some sense, a “generic” linear quo-
tient A/(A. So, it seems totally natural to study these algebras which arise
as generic linear quotient of WL Artinian graded algebras and try to under-
stand what they inherit from the starting algebra. Such an investigation is
similar to what one does in Algebraic Geometry when one studies the generic
hyperplane section of a projective variety. It is well known that if one starts
from an arithmetically Cohen-Macaulay variety of dimension > 0 then the
generic hyperplane section, since is done by a regular element, has the same
graded Betti numbers of the starting variety and consequently its Hilbert
function is just the first difference of the Hilbert function of the variety. In
the case of the generic linear quotient of a WL Artinian graded algebra A
the question is not so simple, since the form ¢ is no more a regular element.
So, while it is easy to see that its Hilbert function is just the positive part of
the first difference of the Hilbert function of A, the question is more tricky
for the graded Betti numbers.

Let R = k[zy,...,z.] be the standard polynomial ring over an alge-
braically closed field k of characteristic zero. Let M be a graded k-module,



M is said to have the Weak Lefschetz Property, WLP for short, if
there is a linear form ¢ € R; such that the linear map given by the multipli-
cation by /¢

x Mz — Mi—i—l

has maximal rank, for every integer ¢ (such a linear form will be called a WL
form). A module (algebra) with the WLP will be call Weak Lefschetz
module (algebra).

In Chapter 3 we give some basic properties about Weak Lefschetz modules
and algebras. It also includes an overview and recent developments of the
Weak Lefschetz property.

Let A = R/I be a standard graded k-algebra, A = &;A;, and £ € R;.
Denoted by ¢p; : A; — Aiq1 the linear map (as k-vector spaces) obtained
by the multiplication by ¢, we have, for every integer 7, the following exact
sequence

0 — Keryg; = A; RAEN Aiyr — (AJLA) 1 — 0.
Therefore the Hilbert function of the linear quotient of A is given by

HA/gA(i + 1) = AHA(Z + 1) + dlmk Ker (,0472'.

This allows us to give an equivalent definition of WLP for an algebra just
looking at its generic linear quotient.

Proposition 3.1.4 Let A be an Artinian standard graded algebra. The
following are equivalent

i) A has the WLP;

ii) there is an element ¢ € Ry such that Hyq = AH.

So, we can study the WLP for an Artinian algebra A just looking at the
good behavior of the generic quotient with respect to the Hilbert function.

The aim of Chapter 4, contained in the paper [FRZ1], is to extend this
good behavior with respect to the graded Betti numbers. In this sense we
generalize the WLP to the S-WLP.

In order to do this, in Section 4.1 we study the Hilbert function and
the graded Betti numbers for “generic” linear quotients of Artinian standard
graded algebras, especially in the case of Weak Lefschetz algebras.

Let A be an Artinian algebra we denote by H 4 the set of the Hilbert
functions of the linear quotients of A when ¢ varies in R.

Hy = {HA/ZA | (e Rl};



Since we have a natural surjection A — A/lA we see that Haja < Hy for
every ¢ € R;. Moreover, since A is Artinian, H 4 only have a finite number
of elements,

7'[A = {H17H27"'7Hr}

Now we define
Sam, = {[0] € Pe(Ry) | Hajea = H;}.
So we have that set-theoretically
Pp(Ry) = Sam, U---USam,-

Observe that {Sa g} is a partition of P,(R;). Since H 4 is a finite set, there
exists u such that S4 g, contains a non empty open subset U C P,(R;) and
there is only one element in H 4 with such a property.

Definition 4.1.1 With the above notation we say that A/¢A has the generic
Hilbert function with respect to A iff [(] € Sy, . In this case H, = Ha/ea will
be called the Hilbert function of the generic linear section of A and will be
denoted by HY™.

Moreover we have the following

Proposition 4.1.3 Let A = R/I be an Artinian standard graded R-algebra.
The poset H 4 has only one minimal element, precisely H5™.

Because of previous discussions we set
Sgen — SA’Hien

Analogously to what we did before, we define the set of the graded Betti
numbers of the linear quotients of A when ¢ varies in R.

Ba = {B(A/LA) [ [f] € 59"}

By a well known result due to Bigatti, Hulett, independently in charac-
teristic zero, and by Pardue, later on any characteristic, the set B4 is finite,
hence

Ba={p,..., 5}
Now, we set
Zg, = A{[l] € S*" | Bajea = Bi}-

Therefore we have a finite partition of 59",
S9N = Zg U---UZg .

Consequently, as before, there exists v € {1,...,r} such that Zg, contains a
nonempty open subset V' of S9".



Definition 4.1.4 With the above notation we say that A/¢A has the generic
Betti sequence with respect to A iff [(] € Z,. In this case (A/lA) will be
called the Betti sequence of the generic linear section of A and will be denoted

by 55"
Moreover, similarly as before, we have the following

Proposition 4.1.5 Let A = R/I be an Artinian standard graded R-algebra.
The poset B4 has only one minimal element, precisely 55".

We showed as H{™ and S have a similar behavior. In the same way as
HY™ is the only minimal element in H 4, 85" is the only minimal element in
Ba. The lowest value can be reached by H4,e4 is AH' and when this happen
A is a WL algebra.

the aim of section 4.2 is to search which conditions have to be required on
B4 to obtain the analogue situation. In order to do this we will study the
Betti sequences of the linear quotients of Artinian standard graded algebras
which have the Weak Lefschetz property.

Let A = R/I be a Weak Lefschetz Artinian algebra and ¢ € R; a WL form
for A. We want to study the graded Betti numbers, Bij (A), of the algebra

A= A/A= R/(I+ (1))

as a R-algebra, R := R//.
We set
t :=max{j | AHA(j) > 0} (1)

and J := I, the ideal generated by the elements of I with degree less than
or equal to t. We consider the following commutative diagram:

(R/1), = (R/J),,,
NN
(R/])t—i-l

where the maps ¢ and ¢ are both the multiplication by ¢ (hence ¢ = ¢y,
and p is the natural map).

Since the multiplication map by ¢ is injective up to ¢t and since the Hilbert
function of A/¢A is zero for degrees > t, we only have to check at degree
t + 1 to determine the degree of all the minimal generators of I + (¢). The
map 1 will be crucial in our investigation, as shows the following theorem.

Theorem 4.2.8

Bo t41(A) — Bo t+1(z) = dimy(Ker ¢) — dimy (Ker v)).



Moreover,

Proposition 4.2.9 With the above notation
i) ¢ is surjective iff 8y .1 (A) = 0;
ii) ¢ is injective iff By ;1 (A) = Bo 141(A) + AHa(t + 1).

Now, next goal will be to determine the graded Betti numbers of A. It
is important to note that, from a numerical point of view, this computation
was made by several authors. See for instance Lemma 8.3 in [MN2] where
the authors determined the value of B” (A) for i + j < t. Now we assume a

qualitative point of view and we study a minimal free resolution of A. We
will see that this has a strong connection with a minimal free resolution of

A.

Let us consider a graded minimal free resolution of A as a R-module
Foi0osF = o FESF 5 5FRo>R>A—0

and a graded minimal free resolution of A as a R-module

Co:03Cono G BG 1 — 5G >R A0.
Let my : Fy — G, a lifting of the natural map of R-modules 7: A — A
Theorem 4.2.12 With the above notation, for every i > 0, let

{71'17 oo 771'/32‘}7 deg%‘l S o S deg%gi,

be a minimal set of generators for Imd;, and u; := |{j | degv;; < ¢t +d}|. If
w; > 0 then {m_1(Vi1), ..., mi—1(Vw,;)} can be completed to a minimal set of
generators for Im d; with elements of degree > ¢ + 4.

In particular, from this we get

Corollary 4.2.16 £ ;1(A) + dimy(Ker¢)) = B, 1,1 (A).

Proposition 4.2.17 §; 1;(A) = B, ,,;(A) for every i > 0 iff  is injective.

Collecting the previous results we can give a description of the graded
Betti numbers of A.

Bi; (A) ifj<t4+i—1
L Bij(A)+mi ‘ ifj=t+1
Bij(A) =4 Chsina (DB, (A) + (1) FLATTAHL () + mita (4.3)
fj=t+i+1
0 ifj>t+i+1

where m; > 0 and in part_icular mo = 0 and m; = dimy kere. If ¢ = 3 the
graded Betti numbers of A are determined by dim, Ker ¢.



Definition 4.3.2 We say that A = R/I has the Betti Weak Lefschetz Prop-
erty, briefly S-WLP, if there exists £ € R; such that

1. ¢ is a Weak Lefschetz form for A;
2. 1y is injective.

An equivalent version of this definition can be given looking at the graded
Betti numbers of the algebra

Proposition 4.3.3 Let A be a standard graded R-algebra. The following
are equivalent

1. A has the S-WLP and ¢ is a 5-WL form;

2. The graded Betti numbers of A/¢A are determined by (4.3) with m; = 0
for every 1.

Harima Migliore Nagel Watanabe, proved in Theorem 3.20 in [HMNW],
that if H is a Weak Lefschetz sequence then the set

W ={Ba| Hy = H and A has the WLP}

admits exactly one maximal element, say, 37. Because of this result we get

Proposition 4.3.4 Let H be a Weak Lefschetz sequence and let A = R/I
be an Artinian graded algebra with H4 = H such that A has the WLP. If
Bo t+1(A) = B, then A has the S-WLP.

It is known that if H is the Hilbert function of an Artinian Gorenstein
standard graded R-algebra of codimension 3 and ¥ — 3 is its socle degree then
the set of the Gorenstein Betti sequences compatible with H

Gy ={fa | Hx = H and A is a Gorenstein Algebra}

has only one maximal element ™% and only one minimal element 37"
(see [RZ4] Proposition 3.7 and Remark 3.8). Recently, Ragusa and Zappala
proved in [RZ2] that there exists a Gorenstein Betti sequence v € Gy,
such that every Artinian Gorenstein standard graded R-algebra with Betti
sequence in grater than or equal to v has the WLP (see Corollary 2.7 in
[RZ2]). We recall that

min

H g fori=t+1,0—-t—1
Yoi = : -
o otherwise

Actually in the next proposition we can improve this result.



Proposition 4.3.6 Let H be the Hilbert function of an Artinian Gorenstein
standard graded R-algebra of codimension 3. Then every R-algebra A with
Betti sequence B34 € Gy and B4 > v has the S-WLP.

Let A = R/I be a complete intersection Artinian graded standard k-
algebra which have the Weak Lefschetz property. Let I = (g1, ...,g.), with
deg g; < degg;,1 for 1 < i < ¢ — 1. For such an algebra it is easy to study
the 5-WLP.

Proposition 4.4.1 Let A be as above and t be as defined in 1 then
1. If deg g. >t then A has the S-WLP.
2. If degg. <t and AH4(t +1) = 0 then A has the 3-WLP.
3. If degg. <t and AH4(t+ 1) # 0 then A has not the 5-WLP.

The item 3 of the previous proposition in particular says that i, is not
injective but still it has maximal rank. This suggests to give a weaker form
of the Definition 4.3.2.

Definition 4.4.2 We say that A = R/I has the generators Weak Lefschetz
Property, briefly Bo-WLP, if there exists ¢ € R; such that

1. £ is a Weak Lefschetz form for A;

2. ¥y has maximal rank.
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Monomial ideals and the
Cohen-Macaulay property






Chapter 1

Monomial ideals, notation and
basic facts

In this chapter we introduce notation, give basic definitions and recall some
well-known results about modules and standard algebras. In Section 1.1
we recall some basic aspects of the Cohen-Macaulay property. A detailed
exposition of the fundamental facts in Section 1.2 can be found in the books
[Eil] and [Ei2].

In Section 1.3 and Section 1.4 we recall some basic facts about monomial
ideals and we describe combinatoric properties of the squarefree ideals which
arise with a simplicial complex. For a more exhaustive discussion of these
issues see the book [HH].

1.1 Cohen-Macaulay Rings

1.1.1 Height and Krull dimension

Let R be a Noetherian ring and P C R a prime ideal. We say that the length
of the chain of prime ideals

Pc---CcP_iCP.

is r if the chain cannot be refined i.e. for any prime ideal ) such that
P; C Q C Pj41 we have QQ = Pj or Q = Pjjq
The height of a prime ideal P C R, written ht P, is the supremum of
lengths of the chains of primes contained in P. If I C R is any ideal, then
ht I = min{ht P|/ C P and P € Spec(R)}.

We define the Krull-dimension (or simply the dimension) of a ring R,
written dim R, as the supremum of the heights of the prime ideals in R.

1



Note that dim(Rp) = ht P, where Rp is the localization of R at P.

Now let R be a ring, and I C R an ideal, the dimension of I, dim [, is
defined as the Krull dimension of R/I.

The codimension of I, written codim I, is the difference

dim R — dim R/I.

1.1.2 Regular sequences and depth

Let R be aring and M a R-module. A sequence of elements in R, zq, ..., zq,
is called a regular sequence, or a M-sequence, if z; is a non-zero divisor
on M and

z; is a non-zero divisor on M /(z1,...,2_1)M

fori=2,...,d.

A R-regular sequence is simply called a regular sequence. That is,
21,...,2q is a regular sequence if z; is a non-zero-divisor in R, z3 is a non-
zero-divisor in the ring R/(z1), and so on.

In geometric language, if X is an affine scheme and zy, ..., z4 is a regular
sequence in the ring of regular functions on X, then we say that the closed
subscheme V' (z1,...,24) C X is a complete intersection subscheme of X.

Let R be a Noetherian ring, I an ideal in R, and M a finitely gener-
ated R-module. The depth of I on M, written depthy(/, M) or just
depth(Z, M), is the supremum of the lengths of all M-regular sequences of
elements of /. When (R, m) is a Noetherian local ring and M is a finitely gen-
erated R-module, the depth of M, written depth (M) or just depth(M), is
depthy(m, M); it is the supremum of the lengths of all M-regular sequences
in the maximal ideal m of R. In particular, the depth of a Noetherian local
ring R is the depth of R as a R-module.

For a Noetherian local ring R, the depth of a nonzero finitely generated
R-module M is at most the Krull dimension of M, that is

dim M := dim R/ Anng M

where Anng M is the kernel of the natural map R — Endg(M) of R into the
ring of R-linear endomorphisms of M.

1.1.3 Maximal regular sequences and grade

Let R be a Noetherian ring and M a R-module. If zq, ..., z, is a M-sequence
then we have a strictly ascendant sequence of ideals

(Zl) - (21722) - (21722723) c--C (217227' . '7zn)'



A M-regular sequence {zy,29,...,2,} C [ is called a maximal M-
sequence if any

y € I\ {0} is a zero divisor in M/(z1, 29,...,2,) M.

By Noetherianity a M-sequence can be extended to a maximal one. The
following theorem due to Rees shows that, in a local ring, all maximal M-
sequences in an ideal I with M # I M have same length. This is called grade
of I with respect to M and denoted by grade(/, M).

Theorem 1.1.1 (Rees). Let R be a Noetherian local ring, M a finite R-
module, and I an ideal such that IM # M. Then all mazimal M -sequences
in I have the same length n given by

n = min{i : Exty(R/I, M) # 0}.

Anideal I C R is called a complete intersection ideal if it is generated
by a R-sequence. If I is a complete intersection ideal, the algebra R/I is
called complete intersection algebra.

The following lemma describes some relations among the invariants so far

defined

Lemma 1.1.2. If M is a module over a local ring R and z is a regular
element of M, then

e depth(M/zM) = depth(M) — 1;
o dim(M/zM) = dim(M) — 1.

The depth is always bounded above by the Krull dimension. Equality
provides some interesting conditions.

1.1.4 Cohen-Macaulay property

Let (R, m) be a Noetherian local ring. A nonzero finite R-module M is called
Cohen-Macaulay if
depth(M) = dim(M).

If R is a Cohen-Macaulay R-module then R is called a Cohen-Macaulay
ring, i.e. there exists a regular sequence as long as its dimension.

More generally a ring is called Cohen-Macaulay if all of its localizations
at prime ideals are Cohen-Macaulay.

Let I C R be an ideal, we say that I is a Cohen-Macaulay ideal, for
short CM, if R/I is Cohen-Macaulay.

They are so named in honor of the mathematicians Francis Sowerby
Macaulay and Irvin Sol Cohen. They proved the unmizedness theorem during
different periods and in two different cases.



1.1.5 The unmixedness theorem

An ideal I of a Noetherian ring R is called unmixed if all its associated
prime ideals have the same height. The unmixedness theorem is said to
hold for a ring R if every ideal I generated by ht(/) elements is unmixed.

Macaulay proved in 1916 the unmixedness theorem for polynomial rings;
Cohen proved in 1946 the unmixedness theorem for formal power series rings.
These facts explain the nomenclature Cohen-Macaulay only together with the
next theorem.

Theorem 1.1.3 ([BH], Theorem 2.1.6). A Noetherian ring R is Cohen-
Macaulay if and only if every ideal I generated by ht(I) elements is unmized.

1.2 Backgrounds of homological algebra

From now on R := k[z,...,z. denotes the standard graded polynomial
ring over a ficld of characteristic zero. We denote by m := (zy,...,x.) the
homogeneous maximal ideal in R. All ideals considered will be homogeneous
and all modules will be finitely generated and graded.

1.2.1 Free resolutions and graded Betti numbers

Let M = @, My be a R-module whose d-th graded component is Ay. Be-
cause M is finitely generated, each M is a finite-dimensional k-vector space,
and we define the Hilbert function of M to be

For any graded module M, we denote by M (a) the module M shifted by a,
le.

M(a)q = Maya.

Let {mq,...,m,} be a system of homogeneous generators of M with degree
respectively aq, ..., a,. We define a map ¢ from the graded free module Fj =
®;R(—a;) onto M by sending e;, the standard element of its basis, to m;.

The map ¢ is a graded map, i.e. ¢ is a degree-preserving map. The
module Kere C Fj is also a finitely generated module. So, there is again
a graded free R-module F} and a graded epimorphism F; — Ker(g), whose
kernel is a submodule of F;. Composing F; — Ker(e) with the inclusion map
Ker(e) — Fp, we get a homomorphism d; : F; — Fj such that

F-%E M=o



is exact. Proceeding in this way one constructs an exact sequence called a
graded free resolution of M

N LI LI LN N )

Since each d; preserves degree, we get an exact sequence of finite-dimensional
vector spaces just taking the degree d of each module in the sequence, so we

have ‘
Ha(d) = 3 (1) Hr (d).

Let M be a R-module. An exact complex
d; dq do
Fo: -+ = F —- =2 F —F—M-=0

of finitely generated free R-modules is called a minimal (graded) free
resolution of M, if for each i, Imd; C mF;_;.

A minimal free resolution always there exists, precisely we can get it just
repeating the construction above choosing at each step a minimal system
of homogeneous generators of Ker(d;_1) = Im(d;). In a free resolution the
module Ker(d; ;) = Im(d;) is called the i¢-th syzygy module of M and its
elements are called i-th syzygies. If F, is a minimal free resolution of M,
where the morphisms are graded as described above, we can write for each ¢

B =@ (i)

for some positive integers 3;;.

Any two minimal free resolutions F, and G, of M are isomorphic. In the
sense that there exists a graded isomorphism of complexes ¢ : F, — G,. In
this case we will write

F, = G,.

Therefore the numbers f3;; are invariants for M as a graded R-module,
so, given a minimal free resolution, we can write 3;;(M) := §;;. We can also
obtain them as the homological invariants

61]<M) = dlmk TOI'Z(]\L k)J

since Tor®(M, k) = Hi(F, ® k) = F; ® k = F;/mF;, where k is seen as the
graded R-module k = R/m, see [Ei2] Proposition 1.7.

The numbers 3;;(M) are called the graded Betti numbers of M. Given
an integer i, we set 3;(M) := rank F; = >, ;;(M). The number 53;(M) is
called the i-th Betti number of M.



Suppose M has a finite free resolution, then the maximal number ¢ with
Tor;(M, k) # 0, i.e. 5;(M) # 0, is called the projective dimension of M,
and denoted by proj-dim(M), so

proj-dim(M) = max{i|3;(M) # 0}.

The AuslanderBuchsbaum formula, introduced by Auslander and Buchs-
baum (1957, Theorem 3.7 [AB]), describes a relation among the projective
dimension and the depth.

Theorem 1.2.1 (Auslander-Buchsbaum). Let (S,m) be a Noetherian local
ring, and M # 0 a finite S-module. If proj-dim M < oo , then

proj-dim(M) + depth(M) = depth(S).

In particular for a R-module M, let ¢ be an integer such that §;(M) # 0,
we have i < proj-dim(M) < c.

For a R-module M the graded Betti numbers are a finer invariant than
the Hilbert function. Namely, if {3;;} are the graded Betti numbers for a
R-module M, let B; = > ,(—1)'f;;, then, see Corollary 1.10 in [Ei2],

HM(d)=ZBj(C+i:{_1>. (1.1)

Moreover, only the values of the B;’s can be recursively deduced from the
function Hjs(d) via the formula

_ . c+j—k—1

By =)= Y Bk< o ) (1.2
{klk<j}

Interesting questions arise about what sequences of integers could be

Hilbert functions of suitable algebras.

1.2.2 Hilbert functions of graded algebras

Let h be a natural number, for any integer d we can write h uniquely as

k ko k
ha) :=(;)+(dd_11)+---+(11>, where kg > kg1 > -+ >k > 0.

This expression is called the d-binomial expansion of h. Now let a,b € Z,

we set f P ;
a . dta -1t a 1+ a
(h(d))b'_(d+b>+<d—1+b>+ +<1+b>'



We say that h = (ho, h1, ha, . ..) is a O-sequence if hgy1 < (higy)t], d>
0.

Macaulay gave a characterization, also pointed out by Stanley in [St1], on
the maximal grow for the Hilbert function of a standard k-algebra R/I,
where [ is a homogeneous ideal of the polynomial ring R.

Theorem 1.2.2 (Macaulay [Mal]). Let I C R = k[zy,z9,...,2.] be a ho-
mogeneous ideal, then there is a monomial ideal L such that Hgr/;, = Hpr.
Furthermore, let H = (hg, hi,ho,...) be a sequence of numbers, then the
following are equivalent

i) H is the Hilbert function of some standard graded algebra;
ii) H is a O-sequence.

Given H a O-sequence we can easily see that there can be more than one
ideal I C R such that the Hilbert function of R/I is H. We can distinguish
such ideals looking at their graded Betti numbers.

So, a question we can ask is: given a O-sequence H, what sets of numbers
are graded Betti numbers for an algebra A with Hy = H? The question is
still open. Introducing the order {8;;(A)} < {f;;(A")} if and only if 5;;(A) <
Bij(A") for all i and j, an important result due to Bigatti, Hulett and Pardue,
show that there is an upper bound for the poset of all graded Betti numbers
compatible with H. This in particular says that there are only a finite number
of possibilities.

1.2.3 Maximal Betti numbers and cancellations

We introduce the lexicographic order on the monomials of R, precisely if

2§ afe 2% . abe € Ry we say that

b(:

ai ac b1
':Cl ...a’/‘c <lexx1 ...;EC

if and only if a; < b; or a; = b; and there exists i such that a; < b;, and
a; = b; when j <.

The lexicographical order is a well-ordering relation.

A monomial ideal L is a lex-segment ideal if given mq, my € Ry such
that m; € L and my >, m; then my € L. So, Ly is a k-vector space
generated by the largest, with respect to the lexicographic order, monomials
for cach degree d. If L C R is a lex-segment ideal, the algebra R/L is called
lex-segment algebra.

Macaulay, proving the first part of Theorem 1.2.2, showed that, given
a Hilbert function of an algebra R/I, if in each degree d we exclude the



smallest hq = Hp/;(d) monomials, with respect to the lexicographic order,
the remaining monomials are a k-base for a lex-segment ideal L. Furthermore

Hpyp(d) = hg, d > 0.

Therefore, given a Hilbert function H, there exists a unique lex segment
ideal Ly such that Hp/r, = H, for this reason such an ideal is called the
lex-segment ideal associated to H.

The graded Betti numbers of the lex-segment ideal are the upper bound
we talked about before.

Theorem 1.2.3 (Bigatti [Bi|, Hulett [Hu|, Pardue [Pa]). Let I be a homo-
geneous ideal of R, and let H = Hg,;. Then

Bz](R/I) S ﬁzg(R/LH)v fOT any Z?J

Since the integers f;;(R/Ly) only depend by H we will denote them with
Bii(H).

Given a O-sequence H, Theorem 1.2.3 implies that, all the graded Betti
numbers for an algebra with Hilbert function H must be obtained from 3;;(H)
by suitable variations. To preserve the Hilbert function, as we showed in the
formula 1.2, we must preserve the value of the B;’s. So the only alterations
allowed are the so called cancellations that now we describe.

Given a sequence of positive integers {3;;}, we define a cancellation the
following procedure: fix an index j, and choose ¢ and ¢’ such that one of the
numbers is odd and the other is even; then replace 3;; and B;/; respectively
by f;; —1 and by 8; — 1. In particular we get a consecutive cancellation
when i —i| = 1.

The terminology is justified by the fact that we delete elements from the
multi-sets

{aij| degree of minimal generators of the i-th syzygy module},,

and the cancellations are consecutive when we consider graded Betti numbers
of consecutive homological degrees.

By the result in [Pe], the graded Betti numbers of an algebra A having
Hilbert function H are obtained from Bij(H ) only by consecutive cancella-
tions. Note that this is obvious for ¢ = 3.

Campanella, see [Cal], proved that for O-sequences of codimension two,
H = (1,2, hg,...), all the cancellations from the maximal Betti numbers are
graded Betti numbers of some algebra. Therefore given H, a O-sequence of
codimension two, the set {{f;;(A)}|H4 = H} also admits a minimal element.

In higher codimension consecutive cancellations could be not allowed.



Example 1.2.4. Let R = k[x,y, z] and
I = (2% 2%y, 222, y") + m®,

Then A = R/I has Hilbert function H4 = (1,3,6,7,8,0,...) and minimal
free resolution

R(=3)°
R(-5) R(—4)3 @
0 — @ — & - R(-4) —- A —- R — 0.
R(-7)3 R(—6)'7 @
R(=5)°

So the only cancellation we could achieve is between p4 and ;4. But,
suppose J C R has minimal free resolution

dy dg

0 — @ — ® — ® - R/J — R — 0

then, let {g1, 92,93} be a k-base of J; and {1, 2} a k-base of the vector
space ker(d;), C R(—4)? ® R(—6)'". We have

a1g1 + azgs +asgs = 0
bigi + bago + b3gs =
Uy + U =0

o

where (1,05 € Ry,
dl((pl) = (al, ag, as, O, Ce ,O) and dl(gpg) = (b17 b27bg7 0, Ce ,0)

By l1dy(p1) + l2da(p2) = 0 we have a;f; + bils = 0, for i = 1,2,3. Note
that ¢; ¢ (¢3) and a;,b; € Ry, so we have b; € (¢1), for i = 1,2,3. This is a
contradiction because ¢y is part of a minimal system of gencrators for the
first syzygies module.

Of course, Theorem 1.2.3 raises the dual question about the existence
of only one minimal element in the poset of all the graded Betti numbers
compatible with a given O-sequence. Many examples show that there could
be more than one minimal element, see for instance [Ri] and [RZ1].

The following example makes use of Proposition 2.3. in [RZ3], where
there is a characterization of all the Hilbert functions of complete intersection
ideals which have the only one minimal element required.



Ezample 1.2.5. Let R = k[x,y, z] and consider the O-sequence
H=(1,3,4,4,3,1,0,...).

Let
I = (x2,y2,z4) CR

and
J = ($27 Ty +rz, ygv 92237 Z5) - R

One can check that Hr/; = Hg/y = H, but

R(—4) R(-2)?
0 - R(-8) — ® — & — R/I - R — 0.
R(-6) R(—4)
and
R(=3)
R(—6) ® R(-2)?
@ R(—5)? @
0 - R(-7) — & - R(-3) — R/J - R — 0.
S R(—6)3 @
R(-8) @ R(-5)?
R(=T)

Numerically there could be only one minimal set of graded Betti numbers.
But if this is the case, we have an algebra with such a resolution

0 - R(-8) — R(-6)? — R(-2)?

and this is not allowed since, for instance, we miss a syzygy of degree < 4.

An algebra A with a finite number of non-zero entries in H, is called
Artinian. Of course, there are many different ways to define an Artinian
algebra, in this context we looked at the finite dimension property of the
Artinian algebras.

1.2.4 Artinian reduction

Let B = R/I be a standard k-algebra. We recall that an algebra is Cohen-
Macaulay if the length of the longest regular sequence is its the Krull dimen-
sion. If B is a Cohen-Macaulay k-algebra of Krull dimension d, then, see
Chapter 1 in [Mi], there exists a maximal regular sequence in B consisting



of forms having degree 1, say {¢1,...,¢;.} Therefore A = B/({1,...,{4) is an
Artinian algebra. This process is called Artinian reduction.
Now, we can write A as

AZR/(gl,...,Ed,[) %’k[xl,...,xc_d]/J,

where J C k[z1,..., 24| is isomorphic to I C R/((y,...,{y). If we set
R = k[xy,...,%.q], A has a minimal free resolution, as R-module, like the
following

He: 05F 44— -—>F>F—>R—>A-0

Moreover, by Theorem 1.3.6 in [Mi], the graded Betti numbers of B (as a
R-module) are the same as the graded Betti numbers of A (as a R-module).
We can also compute H 4, the Hilbert function of A, from Hp.
Recall that if H = (hg, hy, ha, ..., hs,...) is a sequence of numbers, the
first difference of H is the sequence

AH: (ho,hl—ho,hg—hl,...,hs—hs_l,...).

Recursively the n-th difference of H, A"H, is the first difference of the
n-1-th difference of H, i.e.

A"H = (ho, A" *H(1) — A" ' H(2),...,A" *H(s — 1) — A" 'H(s),...).
It is easy to see that if A is the Artinian reduction of B then
Hy = A"Hp.

If A is an Artinian algebra then the finite sequence of positive integers in its
Hilbert function, h = (1, hy, ..., hy), is called the h-vector of A.
For Artinian algebras of codimension ¢ = hy the formula 1.1 on page 6

can be write as .
D (1B (A) = —AH ().
1.2.5 Betti sequences

Let k be an infinite field and R = k[zy,...,z.] the polynomial ring in ¢
variables. Let A = R/I be an Artinian standard graded R-algebra (of codi-
mension ¢) with minimal free resolution (as a R-module)

0= P R(=j)*17 = = PR - P R(-H)"™ =R —A-0.
J J J



We denote the set of the i-th graded Betti numbers of A with [5;(A)] :=
{Bi;(A)};, with this setting we call

Ba = ([Bo(A)); [Br(A)]; - - - [Be-1(A)])

the graded Betti sequence of A.

Especially in the examples, when 3;;(A) # 0, we use for short the notation
3% to indicate that there are (3;; independent i-th syzygies of degree j of
A.

The algebras A for which [8._1(A4)] = {#%-10} v := B.14 > 1 are re-
ferred to in the literature as level algebras of type . An algebra A is said
to be a Gorenstein Algebra if it is a level algebra of type 1.

1.2.6 Gorenstein Algebras

Let H = (1, ho, hq, ..., hs,0,...) be a O-sequence, H is called a SI-sequence
if h; = hs — 4 (it is symmetric) and its first half,

A
H' = (Lo, b5, 0,.00),

is differentiable, i.e. if AH’ is a O-sequence.

The study of the possible Hilbert functions of an Artinian Gorenstein
algebra, also called Gorenstein h-vectors, is a central problem in commu-
tative algebra. Stanley and larrobino conjectured that, in any codimension,
a h-vector is a Gorenstein vector if and only if it is a ST-sequence. A Goren-
stein h-vector, by duality, is symmetric, moreover, Migliore-Nagel, in [MN1],
and Cho-larrobino, in [CI], show that a SI-sequence is a Gorenstein h-vector
in any codimension. But the conjecture is false. Initially, Stanley, [St1],
gave an example in codimension 13 that not all Gorenstein h-vectors are
unimodal. Later, with the works of Bernstein, larrobino, Boij, Laksov, see
[BI], [Bol, [BL], it has been proved that the conjecture is false in codimen-
sion > 5, where there are Gorenstein h-vectors, with h; > 5, that are not
S I-sequences.

Macaulay proved that in codimension 2 all Gorenstein h-vectors are SI-
sequences, see [Ma2]. Indeed a Gorenstein algebra A = R/I of codimension
two A is a complete intersection algebra. So the Gorenstein h-vectors, with
hy = 2, are all of the form

Hs=1(1,2,3,...,a—1,a,a,...,a,a,a—1,...,3,2,1),
——

optional

which are clearly ST-sequences.



Stanley proved, using the Buchsbaum-Eisenbud structure theorem, that
the conjecture is true in codimension 3, see [Stl]. In codimension 4, the
conjecture is still open, we do not know if a Gorenstein h-vector, h =
(1,4, ho, ..., hy),is a SI-sequence or at least unimodal. Tarrobino and Srini-
vasan in [IS] show that, if hy < 7, then A must be a SI-sequence.

There is a fundamental result which characterizes the graded Betti num-
bers of Gorenstein algebras in codimension 3.

Let A = R/I be an Artinian Gorenstein algebra of codimension 3 with
minimal free resolution (as R-module)

0 — R(—0) > P R(-5)™ — P R(—j)™ - R— A—0.
j j

All the possibilities that occur for the sets [5y;(A)] and [f1;(A)] were
found by Diesel, see [Di], and described in [RZ4]. Precisely these results
follows by the following proposition.

Proposition 1.2.6 ([RZ4], Proposition 1.1). Given 2m + 1 integers dy <
dy < ... <dop, there exists a Gorenstein Algebra A = R/I with I minimally
generated in these degree if and only if

2m
0 = 2120 dZ
m
is an integer and 0 > d; + dopy1 4, fori=1,...,m.

In particular given the generators’ degrees we can compute all the graded
Betti numbers since the only second syzygy occurs in degree 6 and the first
syzygies occur in degree § — d;, for i = 0,...,2m.

Moreover given a Gorenstein h-vector there exists one maximal set of
graded Betti numbers of a Gorenstein algebra whose Hilbert function is h.
Proposition 1.2.6 also implies that if {§;;} are the maximal graded Betti
numbers of a Gorenstein algebra A of codimension 3, we must do an even
number of cancellations to get a new set of graded Betti numbers, precisely
if ji, jo are such that j; + jo = 0, 5;;, # 0 and 3,j, # 0 then

{/81]|] ?é j17j2 and 7 = 07 1} U {5@'1 - 176ij2 - 1|Z = 07 1}
are graded Betti numbers of some Gorenstein algebra. On the other hand,

all the Betti sequences of a Gorenstein algebra can be obtained via this
numerical procedure.



1.3 Monomial ideals

It is well known that an ideal I C R is called a monomial ideal if it is
generated by monomials. We use the notation x* = z{* --- 2% to indicate a

monomial in R = k[zy,...,x., i.e. a product of the variables each of them
with a non negative exponent. If x® and xP, are monomials then
XaLXb _ Xa+b

The importance of the monomial ideals was here pointed out for example
in Theorem 1.2.2 and Theorem 1.2.3, now we study some basic properties of
these ideals.

The set of monomials of R is a k-basis of R. Therefore any polynomial
f € R can be written uniquely as a k-linear combination of monomials.

If I is a monomial ideal then the quotient ring R/I is called a monomial
ring.

Monomial ideals can be characterized by the following proposition.

Proposition 1.3.1 (1.1.3.[HH]). Let I C R be an ideal. The following
conditions are equivalent:

a) I is a monomial ideal;

b) for all f € R one has: f € I if and only if each monomial in f belongs
to I.

A similar property holds for an ideal of the graded polynomial ring R,
i.e.; I is a homogeneous ideal if and only if, whenever f € I, all homogeneous
components of f belong to I.

When we use monomial ideals we often take a minimal system of mono-
mial generators of I, it is called a monomial basis of I, and written G(I).
The next proposition guarantees that it is unique.

Proposition 1.3.2. Fach monomial ideal has a unique minimal monomial
set of generators. More precisely, let G(I) denote the set of monomials in
I which are minimal with respect to divisibility. Then G(I) is the unique
minimal set of monomial generators.

Proof. Let Gy = {uy,...,u.} and Gy = {vy,...,vs} be two minimal sets of
monomial generators for the monomial ideal I. Since u; € I, there exists
v; € Gy such that w; = Av; for some monomial A. The same argument is
true for v;, so there exists u; € G and a monomial p such that v; = pug.
Therefore u; = Apuyg. Since G is a minimal set of generators of I, we conclude
that k =1 and A\p = 1. In particular, A = pu = 1 hence u; € Gs. This shows
that G; C G5. The same argument holds inverting the roles of G; and Gs,
so we get Go = Gy. O



1.3.1 Squarefree ideals and polarization process

A monomial x* is said to be squarefree if a;,...,a. € {0,1}. A mono-
mial ideal [ is said to be squarefree monomial ideal if it is generated by
squarefree monomials.

An immediate property occurs for squarefree monomial ideals.

Proposition 1.3.3. Let I C R be a squarefree monomial ideal and let M be
a squarefree monomial in R. Then if F is a monomial such that F € (M)
and F- € I: (M) then F € 1.

Proof. By hypothesis F' = MG, for some monomial G. Moreover, M F' =
M?G € I, so, since I is a squarefree monomial ideal, we have MG € I. [

In the monomial case prime ideals are easy to describe. Indeed, a mono-
mial ideal is a prime ideal only if it is of the form (x;,,...,x;, ).

Squarefree monomial ideals admit a special primary decomposition, as
show the next proposition.

Proposition 1.3.4 ( 1.3.4. [HH]). A squarefree monomial ideal is intersec-
tion of monomial prime ideals.

More precisely, denoted by Min([/) the set of all the minimal prime ideals
containing I, we have:

Proposition 1.3.5 (1.3.6.[HH]). Let I C R be a squarefree monomial ideal,

then
I = ﬂ p.

pEMin(I)

If we are interested in homological properties of a monomial ideal, we
can assume that it is squarefree without loss of generality, this is allowed by
the so-called polarization process. Polarization is a deformation that assigns
to an arbitrary monomial ideal a squarefree monomial ideal in a new set of
variables. The polarization process is based on the following theorem.

Theorem 1.3.6 (1.6.1.[HH]). Let I C R = k[xy,...,x; be a monomial
ideal and A = R/I be the monomial algebra associated. Then, there exists
a squarefree monomial ideal J in the polynomial ring R = klxy,..., x4,
where ¢ > ¢ and a reqular sequence of homogeneous elements of degree one,
say {l1,...,lo_c}, such that, denoted by B = R'/.J, we have

A2 B/, L)



In the process described above, J C R’ is called a polarization of I C R.
By polarization process, many questions concerning monomial ideals can be
reduced to squarefree monomial ideals.

Corollary 1.3.7 (1.6.3.[HH]). Let I C R be a monomial ideal and J C R’
one of its polarizations. Then

1. ht(I) = ht(J);

2. proj-dim R/I = proj-dim R’/ J;

3. R/I is Cohen-Macaulay iff R'/J is Cohen-Macaulay;
4. R/ is Gorenstein iff R'/J is Gorenstein;

5. Bij(R/I) = Bij(R'/J) for alli and j.

1.4 Simplicial Complexes

The aim of this section is to recall some basic definitions about the simplicial
complexes and describe combinatoric properties of the squarefree ideals which
arise from a simplicial complex. See [HH], for a more detailed exposition of
these issues.

Let V' = {x1,...,z.} be a finite set. A simplicial complex A on V,
the vertex set, is a set of subsets of V' closed under inclusion. Sometimes
is also required that {z;} € A for all 7. An clement F' € A is called face
and its dimension is dim F' := |F'| — 1. The dimension of A is the maximum
among the dimension of the faces. A zero dimensional face is called vertex,
a maximal face (under inclusion) is called facet.

A simplicial complex A is determined by the set of all its facets F(A), if
F(A)=A{F,..., F.}, we will write

A=(F,....F).
F is called nonface of A if F CV and F ¢ A, we denote by N(A) the set

of all minimal nonfaces in A.

1.4.1 Stanley-Reisner ideal and the Alexander Dual

Let S := k[V] = k[zy,...,z.] be the polynomial ring, on a field of character-
istic zero, with the standard gradation. For each F' C V' we set

Xp = Xy
T, €F



and
pr = (x;|lx; € F).

Let A be a simplicial complex on V, we can associate to A a squarefree
monomial ideal in several ways. The Stanley-Reisner ideal of A is

In == (xp|F € N(Q)).

I is a squarefree monomial ideal minimally generated by the monomial xp
with F7 ¢ A.

The facet ideal of A is the ideal generated by the squarefree monomials
in correspondence with the facets of A

I(A) = (xp|F € F(A)).
The Alexander Dual of a simplicial complex A is defined by
AV :={V\ F|F ¢ A}.
Since AV is a simplicial complex, see Lemma 1.5.2 in [HH], it is generated
by (V\FIFe N(A)}.
For a subset FF C V we set F' =V \ F and for a simplicial complex A let
A= <F|F € F(A)>.
The next lemma connects all these objects just defined.

Lemma 1.4.1 (1.5.3, 1.5.4 [HH)).

Inv=I(A)  and  In= () (pp)
FeF(A)

The equalities in Lemma 1.4.1 give us a method to compute G(Iav). Let
In = (pr) N ...N (pg,) the primary decomposition of I, then

g(IAv) = {CUFU‘-wam}-

1.4.2 A combinatorial approach to Cohen-Macaulay

property
For a face F' = {v;,...,v;,}, we define an oriented g¢-face [v;,,...,v;,] as
the set of g-tuples obtained by [v;,,...,v;,] after an even permutation of the

indexes. So, two orderings of indexes are equivalent if they differ with an even
permutation. We denote by C,(A) the free R-module, R := k[zy,..., 2.,



generated by all oriented ¢-faces modulo [v;,, ..., v; | + [viy, ..., v, v, ]. We
define a k-linear map
dy: Cy(A) = Cypr (A)

by
q .
dy([viys - v3,]) = Z(—D]_l[%’u ey iy, 0]
j=1
where 0;; means that v;; is erased from [v;,, ..., v;].

The g-th homology of the complex
0 = Caim(a)(A) = -+ = C1(A) = Co(A) = k — 0,

is called the g-th reduced simplicial homology of A, and denoted by
H,(Ak) =kerd,/Tmd,,,.

The k-algebra k[A] := R/IA is called the Stanley-Reisner ring of
A. The Stanley-Reisner ring is a basic tool in the field of combinatorial
commutative algebra. Its properties were investigated by Richard Stanley,
Melvin Hochster, and Gerald Reisner in the early 1970s. We say that A
is Cohen-Macaulay over k if k[A] is Cohen-Macaulay. In his thesis, in
1974, Gerald Reisner gave a complete characterization of Cohen-Macaulay
complexes. This was soon followed up by more precise homological results
about face rings due to Melvin Hochster. Stanley had the idea to prove sev-
eral conjectures in combinatorial algebra by translating them into problems
of commutative algebra, so as to use homological techniques. This was the
origin of the rapidly developing of combinatorial commutative algebra.

If A is Cohen-Macaulay, all the minimal prime ideals of Io have the same
height. Therefore the facets of A, that by Lemma 1.4.1 correspond to the
minimal prime ideals of /5, have the same dimension (we say A is pure).

The next results due to Hochster and Reisner describe homological prop-
erties of the Stanley-Reisner ideal. We need to introduce some notation.

Let A be a simplicial complex on V. For a face F' € A we call link of F’
in A the complex

linka F:={G € A|[FUG € A,FNG = 0}.

Theorem 1.4.2. ([HoJ) Let A be a simplicial complex on' V = {xq,...,z.},
then the graded Betti numbers of A, B;;(1a), can be computed by the formula

Bij(IA) = Z dimk [:[Z'_1(hnkAV F; k)
FeAV, |Fl=c—j

A criterion for the Cohen-Macaulay property of the Stanley-Reisner ring
is due to Reisner, see [Re].



Theorem 1.4.3 (Reisner). A simplicial complex A is Cohen-Macaulay over
k iff, for all F € A, including the empty set, we have

H;(linka F; k) =0 for all i < dimlinka F.

The next corollary of Reisner’s Theorem will be useful inthe next chapter.

Corollary 1.4.4. Let A be a Cohen-Macaulay simplicial complex and F' € A.
Then linka F' is Cohen-Macaulay.

Proof. Let G € linka F' we have
hnklinkA F G = llIlkA<F U G)

So the proof follows by Reisner’s Theorem. O]






Chapter 2

Characterization of height 2
Cohen-Macaulay squarefree
monomial ideals

In this chapter we study CM squarefree monomial ideals of height 2. In
Section 2.1 we describe an exact sequence that will be an important tool in
the study of the Cohen-Macaulyness. Moreover we recall the Hilbert-Burch
Theorem which characterizes the structure of the Cohen-Macaulay ideals in
codimension 2. Lastly, we introduce some basic notation of this chapter and
we prove some preliminary results. In Section 2.3 and Section 2.4, we find
two characterizations for the Cohen-Macaulyness. In Section 2.5, using the
results of the previous sections, we describe the special configuration, intro-
duced and studied in [FRZ2], that the minimal primes of a CM squarefree
monomial ideals of height 2 assume.

2.1 Preliminary results

An important tool in the study of the CM property comes from an exact
sequence that we will refer as Mayer-Vietoris exact sequence. For a more
detailed study of the Mayer-Vietoris sequence see for instance Chapter 3,
Section 25 in [Mu].

2.1.1 Mayer-Vietoris exact sequence

Let R be aring and let M, N C P be R-modules. Then we have the following
short exact sequence of modules, where the maps are the obvious ones,

O—MNN-—-M&N —M+N —0.
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In the next section, this sequence will be called Mayer-Vietoris sequence.

As a consequence of the exactness, if M, N and M N N are Cohen-
Macaulay modules of projective dimension ¢ then proj-dim(M + N) < ¢+ 1.
This follows because the mapping cone resolution of M+ N is a free resolution
(not necessarily minimal) of M + N of length ¢ + 1.

On the other hand if M, N are Cohen-Macaulay modules of projective
dimension ¢ and M + N is a Cohen-Macaulay module of projective dimension
¢+ 1 then also M N N is Cohen-Macaulay.

This directly follows by the construction of the mapping cone resolution.
Namely, let

Ge:0=G,.— -+ =G - Mo®&N—=0

a minimal free resolution of M & N. If M N N is not Cohen-Macaulay and
Fo: oo —Fg1—F.— > F—>MNN-—=0

is an its minimal free resolution, then the mapping cone resolution of M + N
is

He: - —Fi—F.—F. 106G — - G —>G —>M+N—=0

that contradicts the Cohen-Macaulay property on M + N since, from the
minimality of F,, in the resolution H, no cancellation is allowed between
F.iq and F,.

We now recall a basic theorem for Cohen-Macaulay ideals of codimension
2, the Hilbert-Burch Theorem.

2.1.2 The Hilbert-Burch Theorem

The Hilbert-Burch Theorem shows that ideals of a local ring with a minimal
free resolution of length 1 are determinantal ideals.

David Hilbert in 1890, see [Hi|, proved a version of this theorem for
polynomial ring, furthermore, Lindsay Burch in 1968, see [Bu], proved it in a
more general case. Here we give the statement as given by Eisenbud in [Ei2],
see Theorem 3.2.

Let U be a £ x m matrix over a local ring R and let 0 < m < /. For
t =1,...,m we denote by [,(U) the ideal generated by the determinants of
t x t submatrices. Moreover, we set [;(U) = R for t < 0 and [,(U) = 0 for
t>m.

If p : I — G is a homomorphism of finite free R-modules, then ¢ is given
by a matrix U with respect to bases of F' and G. Although U depends on
the choice of the base, the ideal [,(U) only depends on ¢. Therefore we may
set Ii(¢) = I(U).



Let R be a Noetherian ring. A non-zero finite R-module M is perfect
module if proj-dim M = grade M. An ideal [ is called perfect ideal if R/
is a perfect module.

Theorem 2.1.1 (Hilbert-Burch). Let R be a Noetherian ring, and let I be
an ideal with a free resolution of length 1

F: 0—R*"5S R 5 T0.

Then there ezists a R-reqular element a such that I = al,,(p). If I is pro-
jective, then I = (a), and if proj-dim I = 1 then I,,(p) is perfect of grade 2.
Conversely, if o : R* — R"™! is a R-linear map with grade I,(p) > 2, then
I = 1,(p) has free resolution F.

2.2 Cohen-Macaulay squarefree monomial
ideals

In order to give a combinatorial characterization of squarefree monomial
ideals of height 2, in this section we introduce terminology and some technical
facts.

Let N := {z1,...,xn} be a finite set, we consider the set of all subsets
of cardinality 2 of N, i.e.

C'2,/\/’ = {{xa,buxa,xb € N7 Ty 7£ xb}'

Given a set S C Cy s, we associate to S an ideal Ig of the standard poly-
nomial ring k[N := k[z1,...,xn]|. We define Is as the intersection of all the
prime ideals generated by the element in 5 i.e.

Ig := n Ps,

seS

where, if s = {24, 2}, Ps = P{za,2,} 15 the prime ideal (z,,2;) C k[N

If S = () we assume for convention that Is = (0).

The ideal Ig is a squarefree monomial ideal of k[A]. The aim of this
chapter is to look under which conditions on S we have I Cohen-Macaulay.
For this reason, we say that a set S C Uy nr is Cohen-Macaulay, for short
CM, iff Ig is CM.

Remark 2.2.1. Note that Ig is the Stanley-Reisner ideal of the simplicial
complex

(N'\ s|lse€S).



We start with a very useful lemma.
Lemma 2.2.2. If Is is CM then (Is : ;) is CM, for any x; € N.
Proof. Tt follow by Corollary 1.4.4 just using Remark 2.2.1. O

For a given x, € N, we will use the following notation

S(xg) == {{xi,x;} € Slwg & {zi,x;}} C Conr.

S(x,) is the set of the elements in S which not contain x,. The following
lemma makes clear the link between Ig(,,) and Ig.

Lemma 2.2.3. Let x, € N then

(]5 . :Ea> = Ig(za’).

Proof. Let F' be a monomial and suppose z,F € Ig. Take {z;,z;} € S(z,)
then z,F' € (z;,z;). Since z, ¢ {z;,z;}, we have F' € (z;,z;), hence I' €
Is(z,)- On the other hand, let F' € Ig(,,) be a monomial, it is trivial to observe
that ., F € (v;,x;) for all {z;,2;} € S. O

Corollary 2.2.4. If S C Cy y is CM then S(z,) is CM, for any x, € N.
Proof. Tt follows from Lemmas 2.2.2 and 2.2.3. 0
Definition 2.2.5. Let S C Cyy and x, € N we define the set

Es(z,) = {{xi,z;} € SH{zi,z.} ¢ S and {z;,z,} ¢ S}

We say that z, is S-covered, or covered in S, by W C N iff for any
{z;,2;} € Es(x,) we have {x;,z;} N W # 0. Let A C N we say that A is
self-covered in S iff we can write A as

A={xy,...,2.,}
and x,, is S-covered by {x,, ,,...,%q,} for any h.

From now on, when we say that a set A = {x,,,...,Z,,} is self-covered,
we will mean that the z,,’s are in the right order. So, by definition, for all
{zi,2;} € Eg(x,,) we have x; or x; belongs to {z,,,,,..., %, } for any h.
Remark 2.2.6. Let A = {x,,,...,z,,} be self-covered in S then, since z,, is
S-covered by the empty set, we have Eg(z,,) = 0.

Proposition 2.2.7. Let A ={z,,,...,z,,} be self-covered in S then the set
{@ays - Za,_,} is self-covered in S(z,,). Therefore Eg, \(%a,_,) = 0.



Proof. If Es(y, )(Ta;) = 0, x4, is trivially covered in S(z,,) by the set

{Zarirs- s Tay_, }- Let {xq, 20} € Esa,,)(Tq,) thus in particular {z,,z} €
Es(xq;) 50 {@q, 2p} N {Zayys. - %0, } # 0. Since {x,, 2} € S(x,,) we get
{l‘a, 33()} N {mai+l7 s 7l'an—1} 7é @ U

Let W C N we denote by
PW = H x; € k’[M
z,eW

the monomial given by the product of the variables in correspondence with
elements of W. If W = () for convenience we set Py := 0.

2.3 A first characterization of CM: looking at
Min(lg)

Proposition 2.3.1. Let S C Copnr and A C N. If A is self-covered in S

then Is + (Pa) is equidimensional.

Proof. Let x, € A and {x,,xs} € S then Is+(Pa) C (24, Xy, xs). {2y, 2, } ¢
S and {z,,zs} ¢ S then {z,,zs} € Eg(x,). Since A is self-covered in S, we
can assume z, € A so Is + (Pa) C (x,,z), and we are done. O

Corollary 2.3.2. Let x, € N such that Es(z,) = 0, then z, divides all the
generators of Is except one i.e. Is+ (x4) = (F,x,).

Proof. By Proposition 2.3.1, since the set {x,} is self-covered in S, Is+(x,) is
equidimensional. Thus, any minimal prime p € Min(Is + (z,)) is of the type
p = (z4,y), for some y € N. Let F € G(Is + (z,)) be a minimal monomial
generator of I+ (x,) such that F' ¢ (x,) then

F= H Y.

{y:(za,y)EMin(Is+(wa)}
Hence Is + (z,) = (F, x,). O
Given z, € N we set
Sy, i=4x; € N|{za, 2} € S} CN.
This set provides an useful decomposition of /g as the next lemma shows.
Lemma 2.3.3. Let S C Cypr and let x, € N be such that S, # 0, then
Is = (Is: 24) N (T4, Ps,, ).



Proof. From S = S(z,) U {{x,,x;} € S} and S,, # 0, we easily have

Is = Ig(z,) N ﬂ (74, 3),

$¢'ESM
so it follows by Lemma 2.2.3. O

Proposition 2.3.4. Let S C Cy y and let y € N. If Is) + (Ps,) is a height
2 CM ideal then Is is a height 2 CM ideal.

Proof. Denoted by W := S,, by Lemma 2.3.3 we get the following Mayer-
Vietoris exact sequence

0— Is — Igy) ® (y, Pw) — Is + (y, Pw) — 0.

Since y is a regular element in k[N]/(Is(,) + (Pw)) and since, by hypothesis,
Isw) + (Pw) is a height 2 CM ideal, I« + (y, Pw) is a height 3 CM ideal.
Moreover, observe that (y, Py) is a height 2 CM ideal, using the mapping
cone argument, as showed in Section 2.1.1, we get [g is a height 2 CM
ideal. O

Corollary 2.3.5. Let S C Con and y € N. Let Igy) be a CM ideal and
Ps, € Is then Is is a height 2 CM.

Proof. Tt follows just using Proposition 2.3.4. O
The next theorem give a sufficient condition on S to be CM.

Theorem 2.3.6. Let S C Cop and y € N. If S(y) is CM and S, is self-
covered in S(y) then S is CM.

Proof. Let A := S, = {zq4,,...,%q,} and S" := S(y). By Proposition 2.3.4 it
is enough to prove that Is + (Pa) is a height 2 CM ideal. First observe that

Is + (Pa) = ((Usr = @a,) + (Tay *+* Ta,y)) N (Lsr, Ta,, ).

In fact, if F' is a monomial in Igs + (Pa) we have F € Ig or F' € (Pa)
hence I € ((Ig : xa,) + (Tay -+ Ta,_,)) N (Isr,24,). On the other hand, let
Fe ((Is : xq,) + (Tay - Ta, ;) N (Lsr, g, ), and F ¢ I, we have either
F € (z,,) and z,, F € Ig/, thus, by Proposition 1.3.3, F' € I, or F € (z,,)
and F' € (xg, - - - T4, ,) and then F' € (Pa).

Furthermore by Corollary 2.3.2 (Ig, x,,) = (f, %4, ), for some f € G(Ig),
so applying again Proposition 2.3.4 we have that Ig is CM if

((Isr = @a,) + (Tay *+* Ta,_y)) + (f) = (Lsr : Ta,) + (Tay ** Tayy_y)



is a height 2 CM ideal. Now, by Lemma 2.2.3 we have (Iy : 2,,) = Is/(z,,)
and by Proposition 2.2.7 {x,,, ..., 2,,_, } is self-covered in S’(z,, ), so we can
repeat the same argument as above. In this way we reduce the question to
prove that

((Isr : wq,) : Ta, ,) o0 Xay)

is CM, but this follows by Lemma 2.2.2 since by hypothesis S’ = S(y) is
CM. O

In order to prove the vice versa of the Theorem 2.3.6 we need the following
crucial lemma. We skip the proof here. We will prove it in Section 2.5.1 on
page 39.

Lemma 2.3.7. Let S C Cyn be CM and let A C N. If Is + (Pa) is CM
then there exists x, € A such that Eg(x,) = 0 i.e. Is+ (x) = (f,z4) for
some [ € Ig.

This lemma allows us to prove the next result.

Theorem 2.3.8. Let S C Cop be CM and let A CN. If Is + (Pa) is CM
then A s self-covered in S.

Proof. If A = () the statement is trivial, so we assume |A| = n > 0. Since
Is+(Pa) is CM, by Lemma 2.3.7 there exists z,, € A, such that Eg(z,) = 0,
and so Is + (z,,) = (f, x,,). Now we observe that

(Is + (Pa)) : (%a,) = (Is : Za,) + (Pa\(a,,))

that is CM by Lemma 2.2.2. Therefore if n = 1 we are done, otherwise, by
Lemma 2.3.7, there exists z,, , € A\ {zq,} such that Eg, (z,,_,) =0 i.e.
Es(x,, ,) is S-covered by {z,,}. By repeating this argument the statement
of the theorem follows. O

Now we are in position to prove the following theorem.

Theorem 2.3.9. Let S C Cypr be CM and y € N, then S, is self-covered in
S(y)-

Proof. 1f S(y) = 0 then for all z, € S, we have Es(z,) = (). Otherwise the
statement follows from Theorem 2.3.8 because, as showed in Section 2.1.1,
we have proj-dim(Zs,) + (y, Ps,)) < 3 hence proj-dim(Ig) + (Ps,)) < 2, and
SO

2 < ht(]s(y) + (Pgu)) < pI"Oj—dim([S(y) + (Psy)) < 2.



Collecting the previous results we get the main theorem of this section.
We give a characterization of the CM squarefree monomial ideals of height
two just looking at the minimal primes in their primary decomposition.

Theorem 2.3.10. Let S C Csy r, then the following are equivalent:
1. S is Cohen-Macaulay;

2. for any z, € N, S(z,) is Cohen-Macaulay and S,, is self-covered in
S(‘ra);

3. there erists v, € N such that S(z,) is Cohen-Macaulay and S,, is
self-covered in S(x,).

Proof. 1f S is Cohen-Macaulay then, by Lemma 2.2.2; for any =, € N, S(z,)
is Cohen-Macaulay and, by Theorem 2.3.9, S, is self-covered in S. Now, let
suppose there exists x, € N such that S(z,) is CM and S, is self-covered
in .S, then by Theorem 2.3.6, S is CM. O

Example 2.3.11. Let consider the set

S = {{w1, xa}, {2, 23}, {23, 14} }.

S(x3) = {{x1,x2}} is trivially Cohen-Macaulay. Moreover, note that S,, =
{9, x4} is self-covered in S(x3) = {{z1,22}}, so, by Theorem 2.3.10, S is
Cohen-Macaulay.

Example 2.3.12. Let

S = {{151, 1’2}, {!l’z? xS}v {1'3, 1'4}7 {$47 :E5}7 {:E57 ml}}

We have that S(z5) = {{z1, 22}, {za, 23}, {x3, 24} } is CM by example 2.3.11.
Take now Sy, = {1, 24}, since Eg(g,)(21) and Eg(g,)(x4) are non empty sets
we conclude that S, is not self-covered in S(z5), and hence S is not CM.

Ezxample 2.3.13. Let

S = {{‘Tlv xQ}? {:E?? x3}7 {x& 1‘4}, {$47 :E5}v {:E57 1‘1}, {1‘5, xd}}

We have that S(z5) = {{z1, 22}, {z2, 23}, {ws, x4} } is CM by example 2.3.11.
Now we get Sy, = {21, 23,24}, and so Eg(zy)(21) = {{23,24}}, Esg)(r3) =
0, and Eg(uy)(24) = {{z1,22}}. It is easy to check that S,; = {@4, x1, 23} is
self-covered in S(z5). By Theorem 2.3.10, S is Cohen-Macaulay.



2.4 A second characterization: looking out-
side Min(fg)

In this section we characterize the Cohen-Macaulay squarefree monomial
ideals of height two giving a condition on the set of the minimal prime ideals
of height 2 not in Min(/g). In other words, given S C Cs »r, we relate the
CM property to a condition on S := Cyr \ S.

Remark 2.4.1. Note that, given S C Oy n, the minimal monomial generators
of Ig are strongly linked with S, since it is to check

S = {{za, 1} € Con|F ¢ (z4,13), for some F € G(Ig)}.

Definition 2.4.2. Let V' C (5 y, we say that V' contains a r-cycle if there
exists W C V of the type

W = {{xal’llaQ}’ {$a2’ $a3}7 Tt {xa’r‘—17mar}7 {$ar7 xGl}}’

and W does not contain properly a s-cycle. We say that a r-cycle W is
minimal in V' if for any v € V' \ W we have

VL Aoy, Tayy Tagy - -+ s Tay_ys Tay }-

The following theorem give a necessary condition for a squarefree mono-
mial ideal of height two to be CM.

Theorem 2.4.3. Let S C Cy pr be Cohen-Macaulay then S contains no min-
imal r-cycle for any r > 4.

Proof. Let V := {{Za;, Tap }s {Taz» Taz }s - - s {Tar_1» Tar }s {Tar» Tay }} e @ min-
imal r-cycle contained in S, r > 4. After applying recursively Lemma 2.2.2,
we get that " := SN Cy (4, 2a,....00,} 15 Cohen-Macaulay and

Tag s

y = O2,{xa1,za2,...,xa,,.} \ S/ =V

Thus, by Theorem 2.3.10, S} := {Za,, ..., Zq, , } is self-covered in S'(z,,).
But, since r > 4, for any z,, € S;,al we have

{xaz;l ) ':CQH»I} € ES’(Ial)(xaz‘)'

Then, since the set Esi(z, )(3) is not empty, for any x;, € S;al, by remark
2.2.6 we get a contradiction. O

The next goal of this section is to prove the vice versa of the above
theorem. We start with a remark.



Remark 2.4.4. Let S C Oy n and y € N If Cy an gy \ S(y) contains a minimal
r-cycle, then also S contains a minimal r-cycle. This follows by S = S(y) U
{{y, .} € S}, because

S = (Con \ S)) N (Con \ {{y, za} € 5}) D Copngyy \ S(v)-

Let S C Cyp be not CM and y € N, if S(y) is not CM, in order to prove
that S contains a minimal r-cycle, for some r > 4, Remark 2.4.4 allows us to
prove the assertion for S(y) N Cyan gyy- Thus, repeating this argument, after
renaming, we can suppose that S C Cy y is not CM and, for any z; € N,
S(x;) is CM.

In order to define a “minimal” covering we recall the Definition 2.2.5. We
say that x, is covered in S by W C N iff for any {x;, z;} € Es(z,) we have

Definition 2.4.5. Let S C (4, we say that W C N is a minimal cov-
ering for z, iff Fg(x,) is S-covered by W and Eg(z,) is not covered by
W\ {zp}, for any x, € W. Given z, € N, we denote by I, the set of all the
minimal coverings for z,.

Let z; € N, for short we denote by G(Is)|., the set of all monomials
divisible by x;.
Lemma 2.4.6. Let S C Copn and x; € N, then

G(Is) = G(Is)., U | {Ps,, - Pa}.
=
Proof. Let F' € G(Is) and F' ¢ (x;) then F' = Ps, - Py, for some Q C N.
Therefore, since F' is a minimal generator for /g, () is a minimal covering for
x;. The other inclusion follows similarly. O

Lemma 2.4.7. Let S C Cy r be not CM and let Es(x,) = 0. Then S(z,) is
not CM.

Proof. By Lemma 2.3.3, we have Ig = (Ig : x4) N (Zq, Ps,, ). Since Eg(z,) =
0, by Lemma 2.4.6, we get Ps, € G(Ig). If (Is : x,) is CM, we get a
contradiction since, by Lemma 2.3.5, Ig is not CM. O

Lemma 2.4.8. Let S C Cy pr be not CM and let S(y) be CM for anyy € N
Then for any x,,x, € N, with x, # xp, we have Sy, # Sy,

Proof. If S,, = S, for x, # x3, then Ps, = P, and I'y, =T, Therefore
G(Is)|xe = G(Is)|xp, so F € (xp) if and only if F' € (x,). Hence, by Lemma
2.4.6, Is and Ig(,,) have the same number of minimal generators and, one

can easily checks, also the same number of minimal first syzygies. But Ig is
CM and Ig(z,) is not CM. O




Theorem 2.4.9. If S C Cy is not Cohen-Macaulay then S contains a
minimal r-cycle, for some r > 4.

Proof. By Remark 2.4.4 we can suppose Ig : z; to be CM for each x; € V.
By Lemma 2.4.7 Eg(x;) # 0 for any x; € N. Let {x1,23} € Eg(x2), i.e.
{x1, 29}, {z9,23} € S and {x1,23} € S. Now we show that there exists
xy € N such that {z3,24} € FEs(23), certainly such an element will be
different from x,. By Lemma 2.4.6 we have

G(Is) = G(Is)e, U | J {Ps,, - Pa} =

A€Ty,

=G(Is)loy U | {Ps., - Pa}-

A€l

By Lemma 2.4.8 we can take G € G(Ig) such that G € (x2) and G ¢ (x3).
Then, there exists Az € T',, such that G = ]_[Te A, Ti Ps,, . Since Ps, & (z2)
then we get xo € Ag, ie. there is x4 € N such that {9,724} € Fs(x3).
Repeating this argument on Eg(xy) we find z, € N such that {x3,z,} €
Es(xy), if z, = x1 we are done, otherwise we go on until we have {z1,..., .},
for some r > 3, such that

{xh 332}, {$27 1'3} ey {:Ll'l“—h xr}v {ajlv xr} S g?

and {7;, 7,12} ¢ S (the indexes are supposed to be “mod 7”). Therefore
there is at least a minimal 4-cycle in S. OJ

Corollary 2.4.10. Let S C Cyn be a not CM ideal such that S(x;) is CM
for any x; then S is a minimal r-cycle.

Proof. By Theorem 2.4.9 S contains a minimal r-cycle but not S(z;), for
each x;. So each x; appears in that cycle. O

The following theorem resumes the main result of this section.

Theorem 2.4.11. S is Cohen-Macaulay if and only if S does not contain
minimal r-cycles, for any r > 4.

Proof. The sufficient part is the Theorem 2.4.3. The necessary part follows
by Lemma 2.4.4 and Theorem 2.4.9. O

Definition 2.4.12. We say S to be connected if for any vy,v, € S there
exists w € S such that v; Nw # () and vy Nw # ). In this case we say that
v; and vy are connected.



Remark 2.4.13. Note that if S is not connected then S fails to be Cohen-
Macaulay. In fact let S be not connected and suppose {1, z2}, {x3, x4} € S
and

{z1, 23}, {z1, 2a}, {22, 23}, {22, 24} & S.

Therefore S contains a minimal 4-cycle and, by Theorem 2.4.3, S is not
Cohen-Macaulay.

FExample 2.4.14. If S contains a minimal 5-cycle then S fails to be Cohen-
Macaulay. Let

{xh 552}7 {$2’ $3} {x?n $4} ) {$4, 265}, {£E5, xl}

be a minimal 5-cycle in S, then

{1, @3}, {ws, w5} {ws, w2}, {w2, 24}, {24, 21}
is a minimal 5-cycle in S.
Ezample 2.4.15. If |G(Is)| < 3 then Ig is CM. Let G(Ig) = {F}1, Iy, F3} and,
for i = 1,2,3, let W; := {z; € N|F; ¢ (v;)}. By Remark 2.4.1, we have
S = Cow, U Co, UCo sy, 50 S does not contain a minimal r-cycle, » > 4.

2.5 Some general configurations with the CM
property

Many recent papers deal with special configurations of linear subvarieties of
projective spaces which raised up to Cohen-Macaulay varieties, for instance
partial intersections studied in [RZ6], k-configurations studied in [GHS], star
configurations studied in [GHM]. In [FRZ2| the authors, introducing the
notion of tower sets, generalize all this configurations in such a way to pre-
serve the Cohen-Macaulayness. In this section we study height two Cohen-
Macaulay squarefree monomial ideals which arise from special configurations
of their minimal primes.

Theorem 2.3.10 and Theorem 2.4.11 characterize the monomial ideals Ig
which are CM looking at Min(/g). In this section we will show that, when S
is Cohen-Macaulay, the elements of S assume a special configuration. Such a
configuration, introduced and investigated in [FRZ2], will be called g-tower
set.

2.5.1 Tower sets in codimension 2

All the definitions in this section are given for the height 2 case, for a general
discussion see Section 1 and 2 in [FRZ2].



Let A be a finite set and T C Dy := N X N\ {(a,a) | a € N}, we
denote by m1(T") and m2(T") the sets

m(T) :={i € N|(i,7) € T for some j},

and
mo(T) :={j € N|(i,j) € T for some i}.

Definition 2.5.1. Let N be a finite set and T C D, 5. We say that T is
a tower set if we can order the elements in m(7"), say a; < --- < a4, such
that if (CLZ', b) € T then (az’—l—l) b) eT.

Let T' C D, y, we denote by T{;«) and T{s ;), where ,j € N, the sets
T(iﬂ) = {] S N|(27]> S T}7

T(.}j) = {Z S N|(Z,j) € T}
Remark 2.5.2. Note that, by Definition 2.5.1, in a tower set T if i, j € m(7T)
and ¢ > j then T{;¢) 2 T(; ).

The following proposition provides another equivalent version of Defini-
tion 2.5.1.

Proposition 2.5.3. Let T' C Dy . T is a tower set iff for all (a,b) and
(a, B) € T we have (a,p) € T or (a,b) € T.

Proof. If T is a tower set the condition follows by definition. Vice versa we
must order the elements of 7 (7). Given a,a € N we compare T(4q) with
T(a,e)- If there is an element b € T(g.e) \ T(a.e) then for every f € Tine) we
have (a,3) € T, 50 T(a,e) € T(a,e) and then we put a > «. (Similarly we get
a > a.) If T(ge) = T{a,e) the choice of the greater element is not influent. In
this way we have that 1" is a tower set. O

We will need to make use of some results of the previous sections, so we
associate to T" a subset of U5 s defining a natural map

@ : DQ’_/\/' — 027/\/'

such that

¢((a,b)) == {a,b}.
Moreover, given S C Cy nr, we define the set Tg := {T C Doy | ¢(T) =
S, T =15}

Definition 2.5.4. We say that S is a towerizable set iff there exists a
tower set T € Ts.



Proposition 2.5.5. (s is a towerizable set.

Proof. Let consider on N := {xy,...,zx} the order given by the indexes.
Let T := {(x4, xp)|a > b} and 7 (T) with the order induced by V. It is easy
to check that T' € Tg and T is a tower set. O

Theorem 2.5.6. Let S be a towerizable set then S is CM, i.e Ig is CM.

Proof. By hypothesis there exists a tower set T € Tg. Let 1 < 29 < -+ < z,
be the order on m(7T), then S(z1) is a towerizable set and, for any y € S,,
and z; € m(T), we have (z;,y) € T, hence Eg(y) = (. The statement can
be proved by Theorem 2.3.10 using an inductive argument on |m (7). O

The next example shows that there are Cohen-Macaulay sets which are
not towerizable.

Example 2.5.7. Let N = {x1, ¥, 3,24, T5, T} and

S = {{a1, 22}, {xs, 24}, {w5, w6}, {wa, w6}, {21, 2}, {21, 26} }.

Then a simple computation shows that
Is = (21236, L1245, T1T4T6, T2T4Te )

is the determinantal ideal generated by the order 3 minors of the Hilbert-
Burch matrix

T 0 0

T2 T3 Ty

0 Ty 0 ’

0 0 Tg

so S is aCM. Let us suppose that S is towerizable. Then there exists a tower
set T € Tg. Of course |T| = 6 and there is not a variable x;, such that the
ideal (z) contains 4 of the 6 minimal primes of I5. Consequently, |m(7)| < 3
and for every y € my(T") we have |1, ,)| < 3, so only three possibilities could
occur

1) 7T1(T) = {a, b} With |T(a7.)| =3 and |T(b7.)| = 3;
2) m(T) = {a,b,c} with [Tq.e)| =2, [T(se)| = 2 and |T{ce)| = 2;
3) 7T1(T) = {a,b, C} With |T(a,.)| = 3, |T(b,.)| =2 and |T(C7.)| =1.

The first two cases cannot occur since Ig does not contain monomials of
degree two.



Therefore, by item 3), T(4e) D Tipe) DO T(c,e) and T(qey = {h1, ho, hs},
Tiv,e) = {h1, ha}, T(ce) = {h1} for some h;’s and thus

T = {(h,a), (ha,a), (hs,a), (h1,b), (ha,b), (h1, ) }.

But zs, x3 and x5 belong each to one only element of S whereas in T' there
are only two such elements, precisely h3 and c.

Therefore it is interesting to describe more special configurations which
are CM.

2.5.2 Generalized tower sets in codimension 2

In order to introduce a new configuration we need some preliminary notation.
Let T' C Do pr be a tower set and h € 71 (T") Nmo(T) then, using Definition
2.2.5, we set

Er(h) :={veT [¢v) € Exn)(h)}

and
FT(h) = Wl(ET(h))

The following proposition provides an equivalent representation of Fr(h)
which directly looks at the tower set 7'

Proposition 2.5.8. With the above notation
Fr(h) ={i e m(T)|(i,h) ¢ T and Tie 2 Tne} CN.

Proof. Let (i,7) € Ep(h), then {i,h} & o(T) and {j,h} & p(T'). Since T is a
tower and 1,6y D T{ie) We have T4 e) € T(ie). On the other hand let W :=
{i € 7T1(T)|(Z7h) ¢ T and T(z;.) 2 T(h,)} and let i € W. If] € T(i#) \T(hﬁ.),
we will prove that (¢, j) € Ep(h). Since j & T(5.4), we have (h,j) ¢ T. Since
i € W, we have that (i,h) ¢ T. From T(;4) 2 T(ne) we get (h,i) ¢ T. If
(4,h) € T we get T e 2 T(i,e) 2 J. Hence we have (i, j) € Ep(h). O

Note that if i € Fip(h) then i > h.

Let T C Dy, we say that 7' is connected iff p(7") is connected (sce
Definition 2.4.12).

Now we are in position to “generalize” the notion of tower set.

Definition 2.5.9. Let T C Dy s, we say that T is a g-tower set if

1) T is connected;



2) T = T UT where T is a tower set and for every (i,j) € T" we have
i €m(T) Nme(T) and j & mi(T) U me(T),

Moreover, for every j € mo(T"), let T(’. )= {i1,...,4;} where i), < i1, then

3) Fr(in) C {ins1,-..,1t}, for every iy.

Remark 2.5.10. Item 3) in Definition 2.5.9 implies that T(’., ;) 1s self-covered in
©(T'). On the other hand if W C 71(T') is self-covered in ¢(7) then condition
3) holds for W.

Definition 2.5.11. We say that S C Cy v is a g-towerizable set, iff there
exists T' € Tg such that T' is a g-tower set.

Let W C Dy n and h € N, we will use the following notation
W(h) :={veWlh¢ p)}
Theorem 2.5.12. Let S C Cy pr be a g-towerizable set then S is CM.

Proof. Let T = TUT" a g-tower set such that T' € Tg. We proceed by induc-
tion on |mo(T")]. If mo(T") = B then S is a towerizable set, so the statement
follows by Theorem 2.5.6. If mo(7") = {71} then S(j;) is a towerizable set
and, by Remark 2.5.10, S;, = TJ, ; is self-covered in S(j1), so the state-
ment follows by Theorem 2.3.10. Let m(T") = {ji1,...,jp} and let p > 2.
Assume by contradiction S is not CM, so by Theorem 2.4.11 we have that
S :={z € Cyn|z ¢ S} contains a minimal r-cycle V, for some r > 4. Note
that {j,, s} € S, for all @ # b € {1,...,p}. Moreover, by inductive hypoth-
esis S(j;) is CM for any j; € {j1,...,Jp}. Thus, j; € v for some v € V. So,
since {j4, 75} € S for all a # b, if p > 3 we get V is not minimal. Finally
let 7T2<T/) = {j17j2} and V = {{jl,jg}, {jg,ig}, {i37i4}, Cey {Zh]l}} Since S
is connected, by Remark 2.4.13, we get r > 5, therefore {i3,i,.} € S. Let us
suppose (i, 13) € T, analogously we proceed if (i, i,) € T. We claim that

Tiive) 2T, 100 2 2 Tiis0)-

By the claim we have i, € Fr(i,—1) and then, by definition of g-tower,
(ir,j1) € T, so we get a contradiction.

To prove the claim it is enough to observe that if (i,,7,) € T and a—b > 2
then (iq—1,%) € T, and (iq,ip41) € 1. This follows by T(;, ey 2 T(;,.) and
therefore (ip,7,—1) € T. On the other hand if (ip41,4,) € T, then T(;,,, ¢) 2
Tlia,e) 2 b, that is a contradiction.

U



In the last part of this section we will “reverse” the theorem to describe
as the g-tower sets characterize the Cohen-Macaulyness.

Definition 2.5.13. Let S C Cy 4. 2yy and S C Co gy, g}y With N >
N’ we will say that S" is a restriction of S if exists a set of monomials
{Hy,...,Hn'} C k[z1,...,zx] such that via the homomorphism

v:iklyr, ... yn| = klxy, . 2N
for which v(y;) = H;, we have
Is =v(lg).
We will prove the following.

Theorem 2.5.14. Let S C Cy v be CM. Then there exists a restriction of S
which is a g-towerizable set.

In order to prove the Theorem 2.5.14, we proceed in few steps.
In the first step we make use of a peculiar Hilbert-Burch matrix for Ig.

Step 1
Lemma 2.5.15. Let S C Cy v, then Is admits a Hilbert-Burch matriz of the
form
Mo, 1 0 0 0
Di  Mys ... Mg, 0
0 Doy 0 0 M2, oq 41 My 0
0 0 Dy 0 0 0 Ms ap41 - Msag 0
0 S . D,

where we enumerate the rows from 0 to n, the rank of the matriz, and the
columns from 1 to n. So, D; is in the position (i,7) and M, ;, where i < j, is
the only other mon zero entry in the column j.

Proof. Take G(Is) the set of minimal monomial generators for Ig, then the
first syzygy module is minimally generated by a set ® of n elements acting
each only on two generators. Moreover there are at least two generators of Ig
on which only one syzygy acts. Let Fy be one of these generators and let ¢
be the syzygy acting on Fy and let I the other generator on which ¢, acts.
Now we call ¢, ..., ¢, all the other syzygies in ® acting respectively on Fj
and Fy, ..., F,, € G(Is). Iterating this procedure we get our matrix. O



A matrix of the type as in Lemma 2.5.15 will be called a Hilbert-Burch
matrix of standard form for /s.

Given M = (my;), a Hilbert-Burch matrix of standard form for Ig of size
(n+ 1) x n, a natural map o arises,

o:{1,...,n} —{0,...,n— 1},

precisely o(j) is the only integer ¢ less than j such that m;; # 0. So, we can
denote the entries M;; = M,(;); in M, just by M;. Note that o(1) = 0,
0(2) =1and, for j > 2, 0(j) >0o(j —1) >0.

Let i € {1,...,n}, we denote with p(7) the set

w(i) = {i,o(i),0%(),...,a" (i)},

where h is the only integer such that o”(i) = 1. For short we will write
j & uG) i€ {1, .., n} \ ().

We denote by F; the determinant of the matrix obtained by removing the
row ¢ for 0 < ¢ < n. By the Hilbert-Burch theorem, up to sign, we have

G(Is) ={Fo,...,F.}.

Note that Fy = Dy --- D,. In the following proposition will compute all the
other generators.

Proposition 2.5.16. For any i € {1,...,n}, with the above notation, we

have
Fi= ] M- I Dw.

JE() hé u(i)

Proof. Let i € {1,...,n}, and let H be the square matrix obtained from M
by removing the row containing D,. Since M; is the only entry in the ¢-th
column of H, we compute the determinant by using the Laplace expansion
along its i-th column. Thus, up to sign, F; = M;G;, where G is the de-
terminant of the matrix H; obtained from H by removing the row o (i) and
the i-th column. Note that M, is the only entry in the o(7)-th column of
Hy, hence F; = M;M,;)G2, where Gy is the determinant of the matrix H,
obtained from H; by removing the row ¢%(i) and the o(i)-th column. So,
by iterating this computation, we get F; = Hjeu(i) M; - G', where G’ is the
determinant of the matrix H’ obtained from H by deleting the rows o(j)
and the columns j, for all j € u(7). Finally, we observe that H' is an upper
triangular matrix, therefore G' =[], ) Db O

The above proposition allow us to give a simple proof of Lemma 2.3.7.



Proof of Lemma 2.3.7. Let J := Is + Pa be a CM squarefree monomial
ideal of height 2 and let M ; be a standard form Hilbert-Burch matrix, as
in Lemma 2.5.15. Let F € G(J) be a minimal monomial generator for J
such that Py € (F). Since either F' € (D,,) or F' € (M;), we have either
{z;|D, € (z;)} € A or {z;|M; € (z;)} € A. In both cases the statement is
proved because D,, and M; divide all the generators of Ig except one. O

Using Proposition 2.5.16, in the next step we define a suitable set Sy
and we prove that it is a restriction of .S.

Step 2

Let M be a Hilbert-Burch matrix of standard form for Ig. Let n := rank M,
we denote by Ay a set of cardinality 2n,

NM = {ylv"'vynvzl)---azn}-

Let
v KNy — kN

be the homomorphism such that v(y;) = D; and v(z;) = M;, we set

St = {{a,b} € ConylTs € (v(a), v(D))}.

We claim that Sy, is a g-towerizable set which is a restriction of S, as
required in Theorem 2.5.14.
First of all we have to prove the following proposition.

Proposition 2.5.17. With the above notation, Sy is a restriction of S.
Proof. We prove that
Is= () @l(a),v(®) =v(s,.)-
{a,b}eSnm

Trivially Is C v(Ig,,). On the other hand let f € Ig,, be a monomial. Let
us consider the set

{0y udilf € (=) and f ¢ (v)}-

Let r the maximum of this set, we will show that v(f) € (F,). Since {z;,y,} €
Sim for any j, we have that f € (y;) for any j > . Soif r =0orr =1 we
are done. So we can suppose r > 1. If v(f) ¢ (F,), we have f ¢ (z,) for
some h € p(r), so from Proposition 2.5.16 we get {z,y.} € Sn, and hence
f € (y,) that contradicts the definition of r. O



Since the minimal set of monomial generators only depends on the posi-
tions of the non-zero entries in M we have

G(Isy,) _{HyJ}U{HZ] Hyh“—l ,n}.
jen(i) hé (i)

In the sequel, we will denote the elements in G(Ig,,) by fo = H?’Zl y; and,
fori=1,....n, by fi:=[Licui) % - iy Un-

Remark 2.5.18. Ig,, is a squarefree monomial ideal of k[N ]. Moreover, Ig,,
is Cohen-Macaulay since it is the determinantal ideal of the Hilbert-Burch
matrix (of standard form) v~*(M). Therefore, by Remark 2.4.13, Sy is
connected.

In the order to prove that Sy, is a g-towerizable set, in the next step we
will characterize the elements in S.

Step 3

We need a simple lemma.

Lemma 2.5.19 Leti,j € {1,...,n},
(i) if j € (i) then u(j) C u(i);
(ii) if j,h € p(i) and j < h then j € p(h);
(iii) there exists h € {1,...,n} such that u(i) N wu(j) = p(h).

Proof. (i) and (ii) follow by definition of p.
(iii)Let h := max(u(i) N u(7)), by item (i) we have p(h) C p(i) N w(y).
Let k € (i) N u(j) then h > k and so, by item (ii), we get k € u(h).
U

The following proposition characterize the elements in Sy,.

Proposition 2.5.20 With the notation above, we have
(1) {Ya, 2} € Sp it b € p(a).

(i) {ya o} € Saas ff @ & p(b) and b ¢ pu(a).



Proof. ()If {ya,2p} € S then fo € (Yo, 2). But fo & (va), hence f, € (),
i.e. b € u(a). Vice versa, let b € p(a). If fi & (ya,2s), we have b ¢ p(k) and
a € u(k). Then, by Lemma 2.5.19 (i), we get a contradiction because

b€ p(a) € u(k) and b & p(k).

(11) It {yaayb} € S./\/l then fa € (yaayb)' But fa ¢ (ya)v hence fa € (yb)7 Le.
b ¢ p(a), analogously we get a ¢ p(b). On the other hand, let a ¢ p(b) and
b ¢ u(a). If fr  (Ya,ys), we have a,b € p(k) and then, by Lemma 2.5.19 (ii),
or a € u(b) either b € p(a). O

Now we denote by

S = i 2} € Smls € n(n)} U {{yi y;} € Sl
and by
Sh = {{yi, 2} € Smlj ¢ n(n)}.
From the previous proposition we have the following partition
Sp= S U Sy
In the next step we will prove that S%, is a towerizable set.

Step 4

In order to prove that S§, is a towerizable set we need to introduce some
order on Ny,. So, we set

¥n(2) == max(p(i) N p(n)).

Therefore, using 1, we can introduce a partial order on the set {y1,...,yn}.
We say that

It is easy to check that ¢, (i) < i and v, (i) =i iff i = 0%(n) for some u.
Now we describe some other properties of 1),.

Lemma 2.5.21. If ¢, (i) > ¥, (j) and j € u(i) then j € p(n)

Proof. 1 j ¢ () then since j, 6(i) € (i) and j & (i) we get v (i) €
w(7). Hence, we have pu(i) N u(n) = w(j) N p(n) that contradicts 1, (i) >

V() O

Furthermore we have the following lemma.



Lemma 2.5.22 With the notation above, we have
(1) If {yi,y;} € Sa and 1, (7) > ¥, (j) then j ¢ u(n);
(ii) If j ¢ p(n) and ¢y, (1) > ¥ (j) then {yi, y;} € Su.

Proof. (i) If j € p(n) then j € u(y) Nu(n) 2 wu(i) N pu(n). Hence j € (i)
which contradicts {y;,y;} € Sum.

(i) Let {yi,y;} ¢ Sm. Then, if j € p(i), by Lemma 2.5.21, we have
J € pu(n). Otherwise, if i € p(j), we have 1,(2) < ¥,(j). O

Remark 2.5.23. Observe that, by Proposition 2.5.20 (i), if {y;, z;} € S$, then
Un(d) < (i)

Lemma 2.5.24. Let i,j be such that (i) = ¢¥(j) and {y;,y;} € S then
for all h such that ¥(h) > (i) we have {yn,y;} € Sm.

Proof. By Lemma 2.5.22 (i), j ¢ pu(n). Moreover, by Lemma 2.5.22 (ii), since
Un(h) > ¥, (i) we get {yn, vi} € Sum. O

Theorem 2.5.25. S?M 1s a towerizable set.

Proof. We proceed by induction on n = rank M = rankv='(M). If n = 1
then SO, = {{v1, 21}} that is trivially a towerizable set. Let us suppose the
statement true up to n — 1. We set

T .= {(yi, )|{yi» 2} € SN} U {wir yi)|{wir v} € Sa (@) > ¥(4)}-

Note that 71 (T%) = {y1,. .., Yn}-
Let i,5 € {1,...,n} be such that ¢,(i) > 1,(j), we want show that
TO

(o) 2 T(,0) Let (yj,zn) € T° then by Proposition 2.5.20 (i) we have
h € u(j). So
h€ (i) N p(n) C p(@) N p(n).

Hence h € u(i), i.e. (y;,2n) € TC.

Let (y;,yn) € T° then we have ¢,,(7) > 1, (j) > 9n(h), and so by Lemma
2.5.22(ii), it is enough to show that h ¢ p(n). This follows by Lemma
2.5.22 (i) since (y;,yn) € T and ¥, (j) > ¥,(h). So T is a tower set.

Now for each ny € p(n), we set

B(ny) = {{i, v} ¥n(i) = ¥u(j) = ni}.

We remark that by Lemma 2.5.22 (i), if {vy;,y;} € B(ni) then 4,5 ¢ p(n).
We claim that B(ny) is a towerizable set. If this is the case then there exists
a tower set T'(ng) € Tp,), for each n, € pu(n), and therefore, we see that



T :=T°U{T(ng) | nx € u(n)} € Tsy, 1s a tower set. This follows from the
construction of 79, by Lemma 2.5.22 (ii) and by Lemma 2.5.24, since we can
refine the partial order in m1(7") to a total order just using the ordering of
each m (T'(ng)). To get the claim take ny € p(n) and let o’ be the restriction

of o on
U w6

{i L Yn (Z)=nk}

In correspondence with ¢’ we have a sub-matrix M’ of M, that is a Hilbert-
Burch matrix of standard form. M’ is obtained by M by deleting the row
and column u if u ¢ Ug . 4, ()=n,(2). Since rank M’ < n, by inductive
hypothesis Sy is a towerizable set, moreover, by Proposition 2.5.20 (i) and
(i),

B(nk) = Sp \ {{yi 2} | J € p,, (1)}

that is easily also a tower set. O

Corollary 2.5.26. Let M be a matriz of standard form such that o(a) =
a—1, for any a € {1,...,n}, then Sy is a towerizable set.

Proof. 1t follow by Proposition 2.5.25, after we observe that, by Proposition
2.5.16, F,, = [, M, hence Sy = S8 = {{vi, 2} | i € {1,...,n} and j €
{1,...,i}}. O

Let T € ’7}9\4 the tower set constructed in the proof of Theorem 2.5.25
and

T = {(yi» %) | {wi, %} € S}

in the last step we prove that, with the notation of Definition 2.5.9, TUT" €
Ts,, is a g-tower set.

Step 5

In order to prove that Sy is a g-towerizable set we have to verify on
T U T’ the last two conditions in Definition 2.5.9. So, the following theorem
conclude the proof of Theorem 2.5.14.

Proposition 2.5.27. With the above notation, let j ¢ p(n) and let T..,) =
{yiu v 7yit}7 with Yir, < Yipyrs then

1. zj ¢ m(T) Um(T);

2. FT<yih) - {yih+1> o3 Ya, }, for every Yiy, -



Proof. The proof of item 1 is immediate.

Moreover, since ¢(7 U T") is CM we have, by Lemma 2.2.2, o(T U
{(Ya, ) | @ : j € m(a)}) is also CM. So, by Theorem 2.3.10, T, = {ya|J €
m(a)} C m(T) is self-covered in T. By remark 2.5.10 we are done. O

Lemma 2.5.28. Let S’ be a restriction of S, if S" is CM then also S is CM.

Proof. Tt follows since I and Is: have the same number of minimal generators
and so a Hilbert-Burch matrix of Ig/, via the map v, is a Hilbert-Burch matrix
of I S- ]

Collecting all the results of this section we finally get the following theo-
rem.

Theorem 2.5.29. S C Cy yr is CM iff there exists S a restriction of S which
is a g-towerizable set.

Proof. The necessary part is the Theorem 2.5.14. On the other hand if S’ is
a g-towerizable which is a restriction of S then S’ is CM by Theorem 2.5.12.
So, by Lemma 2.5.28 also S is CM. O

Ezample 2.5.30. Let N = {x1,..., 711} and
S = {{xla '1’12}7 {'1717 1'4}’ {xlv 1'6}, {l‘l, 338}, {331, :Lll()})
{1'3, x4}7 {x37 ng}) {333, $10}) {ZC4, '176}7 {'1757 xG}a {$57 xlO}v

{ze, 27}, {s, 38}, {ws, w10}, {@s, To}, {ws, 210}, {@10, 211} }.

Note that the following picture describes a structure for the elements in S.

T T3 Te Tg T5 T11 | L9 Ty Ty
T X X X X X X
rg X X X X
ry X X X
re X X X
T X

Moreover, the following represents a restriction S’ of S.

L1 T3 Te Iy Ts Ti1 | Lo Y
0 X X X X X X
rg X X X X
gy X X X
Te X X
To X
where v(y) = z527 and v is the identity map on the set {xy,..., &7, ... 211}

Note that S’ is a g-towerizable set and so S is CM.
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Chapter 3

Basic facts about the Weak
Lefschetz Property

In this chapter we introduce notation, give basic definitions and recall some
well-known results about the Weak Lefschetz Property.

The aim of Section 3.1 is to recall some basic facts about the Weak
Lefschetz algebras, a more complete description can be found in [MN1] and in
[HMMN] where the authors give an overview of the Lefschetz properties from
many perspectives. Finally Section 3.2 describes the WLP for the standard
graded modules.

3.1 The Weak Lefschetz Property

Let R := k[x1,...,z.] be the standard polynomial ring over a field of char-
acteristic zero.

Let ¢ € R; be a linear form and A = R/I be a standard graded algebra,
we will use the following terminology:

][g] = I+(€), A[g] = R/I[g]7 E[g] = R/(g), T[g] = [[g]/(f) and Z[g] = E[g]/f[g]

(of course, Z[g] = Ay as rings), when there is no ambiguity, we will write R,
I and A, instead of E[@], 7[4] and Z[@].

In this setting A; will denote the k-vector space consisting of the j-th
component of the graded algebra A = R/I. Let i be an integer, we will
denote by ¢ : A; = A;41 the linear map (as k-vector spaces) obtained by
multiplication by ¢. An Artinian standard graded algebra is said to have the
Weak Lefschetz Property, WLP for short, if there is a linear form ¢ € R,
such that, for every integer 7, the linear map ¢;; : A; — A; 41 has maximal
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rank (such a linear form will be called a WL form). An algebra with the
WLP will be call Weak Lefschetz algebra.

In the case of one variable, all the algebras have the WLP since all the
homogeneous ideals are principal. The case of two variables also has a nice
result.

Theorem 3.1.1 ([HMNW], Proposition 4.4.). Let I be a homogeneous ideal
in k[z,y] then R/I has the WLP.

3.1.1 Hilbert Function and WLP

A O-sequence (1,hq, ..., hy), with hy # 0 is called unimodal if there is an
integer t such that

hy <o <hy>hypy > > by

If A has the WLP and ¢ is a Lefschetz form such that the multiplication
map ¢y, is surjective then, for any » > 1, the multiplication map ¢y, is
also surjective. This follows immediately from the fact that A is a standard
algebra. As a consequence we see that if A is an Artinian algebra with the
WLP then the Hilbert function of A is unimodal.

But the WLP is a strictly stronger condition. An Artinian standard
graded algebra can have an unimodal Hilbert Function and fails the WLP.

Ezample 3.1.2. Let [ = (2%, xy, 22)+ (z,y, 2)* C k[z,vy, 2]. Observe that R/I
has unimodal Hilbert function,

HFpj; = (1,3,3,4,0,...).
But, as above observed, an algebra with this h-vector fails the WLP, since
the multiplication map from (R/I); to (R/I)s could never be surjective.

We have, for every integer ¢, the following exact sequence
0 — Ker P — Az ﬂ} Ai+1 — (A[Z])i—i-l — 0.
Therefore
Ha(i+1) = AH4(i 4 1) + dimy, Ker ¢g;. (3.1)

By this equation, and using the unimodality of H 4, it follows that if ¢ is
a WL form for A then
Hy, = AHY,

where, for any n,
AHF(n) = max{AHa(n),0}.

The previous property can be reversed.



Remark 3.1.3. A has the WLP if and only if there is a linear form ¢ € R, for
which Ha, = AH}. Indeed, from this equality and equation (3.1), one gets
that, for all 7, g, : A; = A;41 has maximal rank.

Remark 3.1.3 allows us to give an equivalent definition of WLP for an
algebra just looking at its generic linear quotient.

Proposition 3.1.4. Let A be an Artinian standard graded algebra. The
following are equivalent

i) A has the WLP;

ii) there is an element { € Ry such that HA[@] = AHZ.

The Weak Lefschetz O-sequences, i.e. the Hilbert functions of alge-
bras with the WLP, have been completely classified.

Theorem 3.1.5 (Proposition 3.5, [HMNW)]). Let H = (1, hy, ha,..., hs) be
a finite sequence of positive integers. Then H is the Hilbert function of a
graded Artinian WL algebra A if and only if H is an unimodal O-sequence
and AHF is a O-sequence.

Migliore and Zanello showed that some Hilbert function force the WLP
to hold.

Theorem 3.1.6 ([MZ1]). Let H = (1, hq, ha, ..., hs) be a O-sequence, and let
t be the smallest integer such that hy < t. Then all the Artinian algebras hav-
ing Hilbert function H are WL algebras if and only if, for allt =1,2,...,t—1,
we have

hiz1 = ((hi)@))1-

3.1.2 Graded Betti numbers and WLP

Let H be a Weak Lefschetz O-sequence, then there is a sharp upper bound
on the graded Betti numbers among k-algebras having Hilbert function H
and the Weak Lefschetz property.

Let H be a Weak Lefschetz O-sequence and ¢,t" such that

H=(hy<hy<:--<hg=--=hy>hpy1 > >hs>0).

We denote by {3;;(AHT)} the maximal Betti numbers for AH, namely the
graded Betti numbers of the lex segment ideal L, HY in R = R//{, having

Hilbert function AH+, see Theorem 1.2.3, i.e.
Biy(AHY) = Bij(Lag:)-
With this settings we have the following theorem.



Theorem 3.1.7 (Theorem 3.20, [HMNW]). With the above notation, we
have

i) Let A = R/I be a k-algebra with the WLP, and let ¢ € Ry be a WL
form. Then the graded Betti numbers of A satisfy

Bi(AHY) ifj—i<t
Bis(A) < S By(AHE) = Aha( —i) - () ift +1<j—i<t+1
—Aha(j—1) - (9) ifj—i>t+2

ii) Let H be a Weak Lefschetz O-sequence. Then there is an Artinian
algebra A = R/I having the WLP and H as Hilbert function such that
equality is true in i) for all integers i, j.

3.1.3 Level Algebras and WLP

It is hard to establish if a standard algebra R/I does have the WLP, the
following result is helpful for level Algebras.

Theorem 3.1.8 (Proposition 2.1, [MMN]). Let A = R/I be an Artinian
standard graded algebra and let ¢ be a general linear form. ¢; ==, ; + A; —
Aiy1 the multiplication map by ¢. Let dy > 0

i) If @a, is surjective then g is surjective for all d > dy.
i) If pa, is injective g is injective for all d < dy.

iii) In particular, if A is level and Ha(dy) = Ha(dy + 1) then A has the
WLP if and only if va, is injective (and then is an isomorphism,).

Hence to prove the WLP for a level algebra it is enough to look just at two
(or occasionally one) critical degrees. However, also for Gorenstein algebras
many questions are still open.

3.1.4 Gorenstein Algebras and WLP

It was showeded by Stanley, see [St3], that any monomial complete intersec-
tion algebra has the WLP.

Theorem 3.1.9. Let I C R = k[xy,...,x.] be an Artinian monomial com-
plete intersection algebra, i.e.

I=(z%,... 2%).



Let ¢ be a general linear form. Then
peit (R/1)i = (R/1)ipa
have maximal rank, for any 1.

A consequence of this theorem is that a general complete intersection
algebra with fixed generator degrees has the WLP. So the question is if all
Artinian complete intersections have the WLP. The question is trivial in one
and two variables. In more variables we only have the following result.

Theorem 3.1.10 ([HMNW], Theorem 2.3.). Let R = k[x,y,z|. Let I =
(F1, Fy, F3) be a complete intersection ideal. Then R/I has the WLP.

Complete intersection algebras are special cases of Gorenstein algebras.
Gorenstein algebras can fail the WLP, the first example was given by Stanley
in 1978, see [St1]. He showed that (1,13,12,13,1) is a Gorenstein h-vector
which clearly fails the WLP since it is not unimodal. Bernstein-larrobino
([BI]), Boij-Laksov ([BL]) and Boij ([Bo]) gave later many other not unimodal
Gorenstein h-vectors of codimension 5 or greater.

WLP does not necessarily hold even for a Gorenstein algebra with uni-
modal Hilbert function. For instance, an example in codimension 4 was given
by Tkeda [Ik] in 1996. The question in three variables is still open, but in
recent years has some progress been made. In [RZ2] the authors prove that
Gorenstein algebras with Hilbert function

hy <hy <---<hy="h1=hiyo > hyys---

have the WLP.

In [BMMNZ] the authors reduce the problem to an investigation of the
WLP for the compressed Gorenstein algebras of odd socle degree. They an-
swer affirmatively for the case H = (1, 3,6, 6,3, 1). We recall that an Artinian
level standard algebra A = ©%_,A; of type t is said to be a compressed al-
gebra if its Hilbert function is given by

H 4 (i) = min{dimy, R;, t dimy Rq_;}.

In four variables the results are very limited, the biggest obstruction is
that we do not have a characterization theorem for Gorenstein algebras in
more then three variables. Ikeda, as mentioned above, showed that WLP
not necessarily holds for a Gorenstein algebra. On the other hand in [MNZ]
the authors show that if the Hilbert function of a Gorenstein algebra A is
Ha = (1,4, ho,h3, hy,...) and hy < 33 then A has the WLP. More recently
Seo and Srinivasan, [SS|, extended this result to hy = 34. Then a Gorenstein
algebra A = R/I has the WLP if I has a generator of degree 4.



3.1.5 Almost complete intersection and WLP

We recall in the previous section that if I is a complete intersection ideal of
height 3 then R/I has the WLP. So a question we can ask if this property
continues to be true increasing the number of minimal generators for the
ideal defining the algebra. For instance, for the Artinian standard graded
algebras of codimension 3 defined by an almost complete intersection
ideal i.e. an ideal minimally generated by 4 forms.

In [RZ5] the authors prove that the Hilbert function of an almost complete
intersection algebra is a WL O-sequence. However, in [BK]| the authors show
that A := k[z,y, 2|/(23, 3, 23, zyz) fails the WLP. The question of WLP for
almost complete intersection algebras is currently highly studied, especially
for monomial level algebras, sce for instance [MMN], [CN], [CN1] and [LZ].

3.2 WLP for standard modules over polyno-
mial rings

In the previous section, we studied some general properties about WLP. We
described how difficult is to give a full answer for algebras which are supposed
to be WL, for example the complete intersection algebras. There are very
few results concerning the WLP for graded modules over a polynomial ring,
so also the “two variables case” is interesting. In this section we study
some useful general properties and in particular we look for some conditions
which ensure the WLP for graded modules over a polynomial ring in two
variables,most of these results can be found in [FT].

3.2.1 Some useful Lemmas

Let R be the standard graded polynomial ring in ¢ variables over a field k of
characteristic zero. Let M = My @ My & - -+ @ M, be an Artinian graded R-
module with h-vector Hyr = (ho, ..., hs). We recall that the Weak Lefschetz
property is an open condition, so a module M has the WLP if, for each ¢,
there exists a linear form ¢; € R; such that the map x/¢; : M; — M;,, has
maximal rank, for each . An Artinian graded R-module which have the
WLP is called WL module.

Remark 3.2.1. Let M be a WL module with h-vector Hy = (ho, ..., hs). If
h; > h;y1, by definition, there is a linear form ¢; such that the multiplication
map given by ¢; : M; — M;, is surjective. Thus ¢; injective for the dual
spaces.



Let M = My&® M; & --- ® M, be an Artinian graded R-module with h-
vector Hy; = (ho, ..., hs). In this section, we are interested to find a criterion
to check the if the WLP holds for M. By definition and by remark 3.2.1, we
can assume M = My@ M, and its h-vector to be Hys = (hg, hy) with hy < h;.

We start with the following intuitive observation.

Remark 3.2.2. Let M = My & M; be a graded R-module with A-vector
Hy = (ho,h1), let hg < hy. If N is a submodule of M with a decreasing
h-vector then the multiplication map by a generic linear form is not injective
on N. Thus M fails the WLP.

The following lemma generalizes the Remark 3.2.2.

Lemma 3.2.3. Let M = My® M, be a R-module with h-vector Hy; = (hg, hy)
and hy < hy. Let N be a submodule of M with h-vector Hy = (r,r). Then

e If N has the WLP then M has the WLP if and only if M/N has the
WLP;

o [f N fails the WLP then M fails the WLP.

Proof. The Hilbert function of M/N has the same behavior of the Hilbert
function of M so we need to check the injectivity. Let ¢ € R; be a generic
linear form and assume N has the WLP. Let m € M such that fm = 0y,
then ¢m € N. Since ¢ is surjective on N there exists w € Ny such that
lw = m, therefore, since ¢ is injective on N, m = w. If ém = 0 then ¢m =0
so if M/N has the WLP m € N but the multiplication by ¢ is injective on
N and so m = 0. OJ

Erample 3.2.4. Let R = klx,y,2] and [ = (22 222, 2y% 2vyz) + m*. Let
M = ((R/I)3)(—2), and let £ € Ry be a generic linear form. We easy
compute that Hy, = (6,6), so we have to check the injectivity of ¢. Note
that N = (vy + I) has Hilbert function Hy = (1,1) and trivially N has
the WLP. So by Lemma 3.2.3 M has the WLP only if M/N has it. But
(x> + 1 =0¢€ M/N and then M fails the WLP.

A module M is said to be indecomposable if whenever M = N & P,
where N and P are submodules of M, then either N = (0) or P = (0).

Indecomposable modules play an important role in the study of WLP, as
describe the following remark.

Remark 3.2.5. Let M be a graded R-module and let suppose M can be
decomposed as a direct sum of indecomposable submodules

M=Na&N&...&N,;



then M has the WLP if and only if all the direct summands N; have the WLP
and their Hilbert functions have an uniform behavior, i.e. if, in each spot, the
Hilbert function of one summand is strictly increasing (strictly decreasing)
then the Hilbert functions of the other summands are also strictly increasing
(strictly decreasing).

3.2.2 WLP for standard modules over K|z, y]

In this section we study the WLP for standard graded modules over the
standard graded polynomial ring R = k[z,y|, where k has characteristic 0.
Our aim is to find which conditions ensure the WLP for a graded R-module.
It is known that cyclic R-modules have the WLP. It is easy to find a non-
cyclic R-module who fails the WLP.

Ezample 3.2.6. Let I = (2%, 2y,y*) C R and I, = (z,y) C R. Let M =
R/I; & R/I, be the standard graded module over R. The Hilbert function
Hyof M is Hy = (2,2,0,...). The multiplication by any generic linear form
from M, to M; can not be injective because it is not injective on the second
component.

3.2.3 An algorithm to check the WLP

In order to give a systematic method to check the WLP let
xr: My— My and Xxy: My— M,

be the multiplication maps by x and y.
The following algorithm checks the WLP for Artinian R-modules

Step START (M)

i)

1 Xz is injective 2 M has the WLP
4 no

2 X9 is injective LGN M has the WLP
$no

3 Ker(xz) NKer(xy) # (0) £ M does not have the WLP
$no

4 |yKer(xz) NzKer(xy) # (0) L5 M does not have the WLP
$ no

) M <« M and go to start




The first two steps are clear. Now let be dimy Ker(xz) = r > 0 and
dimy Ker(xy) = s > 0. If m € Ker(xx) N Ker(xy) we have m = 0 for a
generic linear form ¢ € Ry, i.e. the algorithm ends at the third step. Now
we can assume that Ker(xz) N Ker(xy) = (0) and go to the next step. If
y Ker(xx) NaxKer(xy) # (0), then

dimy (y Ker(xx) + z Ker(xy)) <r + s.

This means that the submodule Ker(xz) 4+ Ker(xy) C M have a strictly
decreasing Hilbert function so, by Remark 3.2.2, M fails the WLP. Finally
we have

dimy(y Ker(xx)) = dimy, Ker(xx) = r

and
dimy (x Ker(xy)) = dimy, Ker(xy) = s.

Since y Ker(xxz) Nz Ker(xy) = (0), we get N := (Ker(xx) 4+ Ker(xy)) C M
has Hilbert function Hy = (r+s,r+s) and x +y € Ry is a WL element for
N. So by Lemma 3.2.3, M has the WLP if and only if M = M/N has the
WLP. Note that Hy; = (hg — r — s,hy —r — s) is still not decreasing, then
we can back to the START and we apply the algorithm on M.

This algorithm ends in a finite number of steps because after each cycle
the Hilbert function of the module decreases by at least two in each degree.

The algorithm can be used to study the WLP for indecomposable modules
over the standard graded polynomial ring R = k[z, y].

3.2.4 Indecomposable modules and WLP

Using the algorithm in Section 3.2.3, we can prove the following result which
reverse the implication of the Remark 3.2.2 for modules over k[z,y].

Theorem 3.2.7. Let M be an Artinian graded R-module such that every its
submodule has a non-decreasing Hilbert function, then M has the WLP.

Proof. 1t is enough prove the theorem for a module M with Hy; = (h;, hiy1),
and h; < h; ;1. Every submodule of M has a non-decreasing Hilbert function
hence we can use directly the algorithm in Section 3.2.3 to check the WLP.

Suppose that the first two steps in the algorithm give us negative answers,
by hypothesis the third and fourth step also give a negative response, thus
we have to prove the WLP for M.

We conclude the proof observing that each submodule of M has a non-
decreasing Hilbert function. Let T = (Ker(xz) + Ker(xy)) and let P be a
submodule of M. Then P+T is a submodule of M and it has a non-decreasing



Hilbert function, we prove that P also has a non-decreasing Hilbert function.
In fact, denoted by @ := PN T, since @ is a submodule of M it has a non-
decreasing Hilbert function, so the proof follows from:

dim, Py = dimy Py — dimg(Ker(xx) + Ker(xy)) + dimy Qo
= dimy Py + dim; Qo — (r + s),

dimy P, = dimy P, — dimy,(y Ker(xz) 4+ 2 Ker(xy)) + dimy, Q,
= dimy P, + dimy Q1 — (r + s),

where r = dimy,(Ker(xx) and s = dimy(Ker(xy). O

To show that if M indecomposable with Hilbert function Hy; = (hq, hy)
has the WLP we need the following lemma.

Lemma 3.2.8. Let M be a graded indecomposable R-module with a non-
decreasing h-vector, Hy = (ho, h1). Then every submodule of M has a non-
decreasing h-vector.

Proof. Let N be a submodule of M with Hy = (r,s), we can assume that
N has minimal generators only in degree zero. We prove the statement by
induction on hg — 7.

If r = hyg, the statement holds because all minimal generators of M are
in degree zero, then M = N. Assume that the statement is true for each
submodule minimally generated by r > ¢ elements, we claim that it true for
the case r =t.

If r > s, by the induction hypothesis the statement is true for the sub-
module N + (e), for each e € M\ Ny. This means that xe and ye are linearly
independent and the submodule generated by e does not intersect with NV,
ie. ()N N = (0). Hence s =r — 1.

We claim that M = N @ (My\Ny), which contradicts to the hypothesis
on M. In fact, if m € N N (My\Ny), then m € M;, so m is not a minimal
generator. Since m € N, there is e4 € Ny such that f4e4 = m. Similarly,
since m € (My\Np), there is eg € M\ Ny such that fgeg = m, for some
la,0p € S1.By using the same argument for the submodules N + (eg), we
get a contradiction. O

Now we are able to prove the main result of this section:

Theorem 3.2.9. Let M be a graded indecomposable R-module with h-vector
Hyr = (ho, hy). Then M has the WLP.



Proof. If hg < hy, it is followed from Lem 3.2.8 and Theorem 3.2.7.
Otherwise if hy > hy, the dual module Homy (M, k) of M is an indecom-

posable module with a non-decreasing Hilbert function, see [Kr]. Therefore,
Homy (M, k) has the WLP, hence M has WLP. O

Theorem 3.2.9 does not holds for indecomposable modules with a long
enough Hilbert function. In the following example we have an indecompos-
able module with Hilbert function of length 4 which fails the WLP.

Ezample 3.2.10. Let M = ((y,z*) +1)/I C S/I where the degree are shifted
by 1 and I = (33, 2%*) + (z,y)®. The Hilbert function of M is

Hy =(1,2,2,2,2).

Then M does not have the WLP. In fact, M has a minimal generator of degree
4, so the multiplication map by any linear form from Mj3 to My can not be
surjective because the minimal generator z*+1 is not an image of any element
in Mj. Since the Hilbert function Hy/(3) = Hp(4) = 2, this multiplication
map is not injective. Furthermore, we can prove that M is indecomposable.
In fact, suppose that M = N; & N,, then the indecomposable submodule
generated by y + I must be contained in one of these components, say (y) C
Ny .

It is clear that z* + I is not in Ny, but neither in Ny, otherwise zty + I €
N; N Ny. Therefore, x* + 1 = (n; + 1) + (ng + ) € N1 & Ny.

Since Hy, (3) = 1, we get that ny + I = azy + I, a € k, then ny + I =
2t — ax®y + I. This contradicts to the fact that yny + I = 2%y +1 € N;.

An interesting property arises studying the WLP for modules M with
h-vector Hyy = (n,n). By Theorem 3.2.9, if M is indecomposable then it
has the WLP, otherwise M has the WLP if and only if its indecomposable
submodules have such a h-vector.

3.2.5 Determinant condition to ensure the WLP

Let M = My & M be a graded R-module with h-vector Hy, = (n,n).

If Bp1(M) > 0 then M fails the WLP, so we can assume M is minimally
generated by elements of degree 0.

In [FT] we prove that if M has the WLP then every set of minimal
generators of M has a peculiar property.

Lemma 3.2.11 ([FT], Lemma 2.2). Let M be a graded R-module with a
minimal system of generators

{e1,...,en}



of degree 0 and the h-vector HF)y; = (n,n’), wheren < n'. If M has the WLP
then there exists a linearly independent set in My of the form {zie1, ..., zpen},
where z; € {x,y} for 1 <i<n.

Let M be a graded R-module and let {ei,...,e,} a minimal system of
generators of degree 0, such that

{zey,...,zer,yerin, ... yen}

is a basis of M;. Our aim is to give a procedure to verify if M has the WLP.
The multiplication maps by the variables,

xx . My — My, Xy1M0—>]\41

are morphisms between vector spaces with the same dimension. Let A and B
be the matrices associated to the morphisms xx and xy respectively. Then

we have A 5
. / B ! O
A= < 0 A7 ) and B = ( BT, . )

where I, and I,,_, are the identity matrices of the sizes r and n — r, respec-
tively, and 0 is the null matrix having the appropriate size.

It is clear that M has the WLP if and only if there exists a, 8 € k such
that

laA + BB| # 0.
Note that if |A| # 0 we can choose o = 1, 8 = 0, similarly if |B| # 0, in
these cases M has the WLP. Thereafter we can assume |A| = |B| = 0, so we

only need to check the existence of & # 0 and  # 0 such that |« A+ BB # 0.
We have:

B aIr—kﬁB" aA’
|OéA+ﬁB| - ’< BB// ‘OZA”‘FBLL_T )‘

s, +B| A
= B ‘ A+ ﬁ]n_r

Let v = §, then the determinant [« A + SB| is a polynomial of the form

an—’l’ﬁ’r.

%p(*y) in k[, %], where p(y) € k[y]. If p(v) is the zero polynomial then
M does not have the WLP, otherwise there always exists 7 € k such that
p(7) # 0. In this case M has the WLP with a Lefschetz element ¢ = 7x + y.

Example 3.2.12. Let m; 1= 25 my := 2%y*, mg := 2%y> € R, and let M =
((my,mg,m3) + I)/I C R/I be a graded R-module, where I = (z,y)® +
(22y5, 2*y?) and the degrees are shifted by 6.



Observe that xm; and ym; are linearly independent and both do not
belong in the k-vector space

Spang{zms, xmg, yms, yms}.

Therefore, by Lemma 3.2.11 M fails the WLP. To show how the above pro-
cedure work, we change the basis of M. Let take

My = Span,{(2° + 2%y*) + I, (2° — 2%*) + I, (z*y®) + I},
M, = Span,{(z" + 23" + I, 25 + I, 23" + I}.

Setting ey = 2°+ 1, ey = 2%y + I, e3 = 23y3 + I, we get that {zey, yes, yes} is
a basis of M; which is of the form as in Lemma 3.2.11. Moreover, ye; = zes,
xreg = xep — 2yes and zeg = 0. So, the matrices given by the maps xz and
Xy are:

1 1
A= 0 O and B =
0 -2

o O O
S = O
o = O

0
0
1

By computing aA + B, and sctting 7 = £ we obtain the matrix:

N =

-
1
0 -2

N O O

which has determinant equal to zero for all 7.






Chapter 4

Linear Quotients of WL
Algebras

In this chapter, as made in [FRZ1], we study the Hilbert function and the
graded Betti numbers for “generic” linear quotients of Artinian standard
graded algebras, especially in the case of Weak Lefschetz algebras. Moreover,
we investigate a particular property of Weak Lefschetz algebras, the Betti
Weak Lefschetz Property, S-WLP for short.

As showed in the Chapter 3, we can study the WLP for an Artinian
algebra A just looking at the good behavior of its generic quotient with
respect to the Hilbert function, so A has the WLP if and only if Ha/ =
AH? (see Proposition 3.1.4). The aim of this chapter is to extend this good
behavior with respect to the graded Betti numbers. In this sense we generalize
the notion of WLP to the S-WLP. Studying the analogies between the two
property we will see that the f-WLP makes possible to completely determine
the graded Betti numbers of a generic linear quotient of such algebras.

An Artinian WL algebra A has, in some sense, a “generic” linear quo-
tient A/CA. So, it seems totally natural to study these algebras which arise
as generic linear quotient of WL Artinian graded algebras and try to under-
stand what they inherit from the starting algebra. Such an investigation is
similar to what one does in Algebraic Geometry when one studies the generic
hyperplane section of a projective variety. It is well known that if one starts
from an arithmetically Cohen-Macaulay variety of dimension > 0 then the
generic hyperplane section, done by a regular element, has the same graded
Betti numbers of the starting variety and consequently its Hilbert function
is just the first difference of the Hilbert function of the varicty. In the case of
the generic linear quotient of a WL Artinian graded algebra A the question
is not so simple, since the form ¢ is no more a regular element. So, while it
is easy to see that its Hilbert function is just the positive part of the first
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difference of the Hilbert function of A, the question is more tricky for the
graded Betti numbers.

4.1 Linear quotients of Artinian algebras

Let A = R/I be an Artinian standard graded R-algebra. Let ¢ € R; be a
linear form and denote by Ijg = I + (£) the ideal sum in R. Our aim is to
investigate the properties of the Artinian algebra Ay = R/Ijj when ¢ varies
in R,. Let us start with studying the Hilbert function Hyy of Ayy. To do that
we set
Hy = {H[g] | l e R1};
we will consider H 4 as a poset with the following natural order: if H, H' €
Ha, wesay H < H"iff H(:) < H'(i) for every i.
Since we have a natural surjection A — Ay we see that Hjy < Hy for

every ¢ € R;. Moreover, since A is Artinian, H 4 only have a finite number
of elements. Now we define

SA,H = {w] < Pk(Rl) | H[e] = H}

So we have that set-theoretically

Pu(Ry) = |J San.

HeH

Observe that {Sam}tm is a partition of Py(R;). Since H 4 is a finite set there
exists ¢ € Ry such that Sy H, contains a non empty open subset U C Py(R)
and there is only one element in H 4 with such a property.

Definition 4.1.1. With the above notation we say that Ay has the generic
Hilbert function with respect to A iff [¢] € Sp.. In this case Hy will be called
the Hilbert function of the generic linear section of A and will be denoted by
HY™.

Remark 4.1.2. Note that A has the WLP iff H™" = AH . Namely, when A
has the WLP, H,4 is unimodal and AH is a O-sequence. Moreover the set
of the Weak Lefschetz forms contains a non empty open subset of Py(R;).

More generally we have the following result.

Proposition 4.1.3. Let A = R/I be an Artinian standard graded R-algebra.
The poset Ha has only one minimal element, precisely HY™.



Proof. Let i be an integer, ¢ € Ry and let ¢;; : A; — A; ;1 be the multipli-
cation map by ¢ (as k-vector spaces). Let r; := max{rank ¢,; | ¢ € R;}. Of
course, the set T; := {[{] € Px(R;y) | rank¢y; = r;} contains a non empty
open subset of Px(Ry). Since A is Artinian only a finite number of T; is
different from IP;(R;) so the set (), 7; contains a non empty open subset of
Py(Ry). Let H7™ the function defined by H7" (i) := H (i) —7r;_1. According
to (3.1) for every [¢] € Py(Ry) Ha, > H}™. Moreover for every [{] € (), T},
Hyy, = H7"™ and HY™ = HY™. U

Because of previous discussions we set
59" ={[l] € Pr(Ra) | Hay = HY}
Now, analogously to what we did previously, if £ € R; we define 5y := (4,
Ba=A{B:|[(] € S9"}.

Note that By C Bygen.

Since every element in B4 is associated to the same Hilbert function H5™,
by a well known result by Bigatti, Hulett and Pardue (see [Bi], Theorem 4.1,
[Hu], Theorem 2, [Pa], Theorem 31) the set B4 is finite. Now we set

Zg =] € 5" | B = B}

Obviously {_Zﬁ}geg ., Is a finite partition of S9°". Consequently, as before,
there exists { € R; such that Zs, contains a nonempty open subset of 59"

Definition 4.1.4. With the above notation we say that Ay has the generic
Betti sequence with respect to A iff [(] € Zs,. In this case §; will be called
the Betti sequence of the generic linear section of A and will be denoted by

ﬁgen_

Proposition 4.1.5. Let A = R/I be an Artinian standard graded R-algebra.
The poset Ba has only one minimal element, precisely (9".

Proof. Let [(] € S9"; we want to show that £9" < f(,. Since [{] is in the
closure of Zgsen and both Betti sequences are associated to the same Hilbert
function H9", we can apply Lemma 1.2 in [RZ1] to get our assertion. [

Example 4.1.6. Let R = k[x,y, z] and
I= (2" +a%2(y +2), 2% — wyz(y + 2), 2%y* + y2%, 2%,y ay") C R.

Then
Hp/r = (1,3,6,10,12,9,2,1,0)



and
Brir = ((4%,5%),(6,7',9), (8%, 10)).

The linear forms ¢y =z +y + 2, {1 = y+ z and ¢y, = z are WL forms for
R/I; we have that

HR/IZO = I{R/Ig1 = HR/IZ2 = AHE/I = H9" = (1,2,3,4,270)

and

Ba. = (4%),(6);
52[131] = ((437 5)7 (57 62));
6Z[e2] = ((437 52)7 (527 62))

Consequently 39" = ((43), (6%)). Morcover one can see that B, contains only
these three Betti sequences.

4.2 Linear quotients of Artinian Weak Lef-
schetz algebras

In Section 4.1 we described as HY" and %" have a similar behavior. In
the same way as H%™" is the only minimal element in H,4, 85" is the only
minimal element in B4. The lowest value that can be reached by Hyy is AH +
and Remark 4.1.2 shows that when this happens A is a WL algebra.

In this section we will search which conditions should be required on 3%
to obtain an analogue situation. In order to do this we will study the Betti
sequences of the linear quotients of Artinian standard graded algebras which

have the Weak Lefschetz property.

4.2.1 Relationship between generators
We start with this general fact.

Lemma 4.2.1. Let A = R/I be a graded standard R-algebra. Let f € R,
such that the multiplication map X f : A; — A;y, 1S injective. Let p: Ry ®
Livr—1 — I;y, be the natural map and V a k-vector subspace of I; ., such that
VNImp=0.If J:=1+(f) and if p: Ry ® Jiyr_1 — Jisr 18 the natural
map, then V NImp = 0.

Proof. Let g € V. NImp. Since g € Imp, g = g1 + af where g; € Im p and
a € R;. Since X f is injective we get that a € I, so af € Im p, consequently
g € Im p and by hypothesis we deduce that g = 0. O



From now on, in this section, A = R/I will be a Weak Lefschetz Artinian
standard graded R-algebra and ¢ € Ry a WL form for A. We want to study
the graded Betti numbers, 3;;(A), of the algebra

A=ANA2R/T=R/(I+ (V)

as a R-algebra. Let H, be the Hilbert function of A; since A has the Weak
Lefschetz property, H, is unimodal and AH} is a O-sequence. We set

t :=max{j | AHA(j) > 0}.

Let J := I« be the ideal generated by the elements of I with degree less
than or equal to t. We consider the following commutative diagram:

p
(R/I)t 7 (R/‘])H-l
N\ ¥
(R/T) 4
where the maps ¢ and ¢ are both the multiplication by ¢ (hence ¢ = @y
and p is the natural map).
If G={g1,...,9,} is a minimal set of generators of I, we denote by G;

the subset of G consisting of the elements which have degree less than or
equal to j and by G the set {g € I|g € G}.

Remark 4.2.2. Since ¢y is injective for ¢ < ¢, using Lemma 4.2.1, we see that
{£} U G<; is a minimal set of generators for (Iy)<;. Hence G<; is a minimal
set of generators for ;. In particular this implies that £y;(A) = B(]j (A) for
J<t

The Hilbert function of A vanishes in degrees > t + 1, therefore every
minimal set of generators of I is contained in I<;,;. So, to determine B,(A),
it is enough to compute 8, ,.,(A). In Proposition 4.2.7 we will put into
relation 8, , 1 (A) with the map .

Whenever an algebra A has a Weak Lefschetz form ¢, one can study its
homological properties just choosing a general change of variables such that
¢ = z.. In this case we will consider on R = k[zy,...,2.1,¢] the graded
reverse lexicographic monomial order, with z; > zo > -+ > (.

Using the above monomial order, many results holds.

Remark 4.2.3. If f € R and 1t(f), the leading term of f, is divisible by ¢,
then f is divisible by ¢ too.

Let LT(7) the ideal generated by the leading terms of the polynomials in
I, then, as showed in [Wi], we have



Proposition 4.2.4. R/LT(I) is a Weak Lefschetz algebra and ¢ is a Weak
Lefschetz form for it.

Proof. See [Wi], Proposition 2.8. O

Remark 4.2.5. If m € LT(I)<; is a monomial and m is divisible by ¢, then
% € LT(I). Namely, let f € I such that m = It(f). Since £ divides m, by
Remark 4.2.3, ¢ divides f; by the injectivity of ¢,; for ¢ < ¢ we have that
L eTIsomeLT(]).

Remark 4.2.6. k[z1,...,2c—1]i41 € LT(I). Indeed, if there is

m € k[.i?l, R 7':Cc—1]t+1 \ LT(I),

by the surjectivity of g, there exists u € R; such that m — fu € I, so
m = lt(m — fu) € LT(]) and this leads to a contradiction.

Proposition 4.2.7. With the above notation By ,,,(A) = dimy(Coker ¢)).

Proof. In order to prove our assertion we take a minimal sct of gencrators G
for I contained in a Grobner basis. Let {g1,...,g,} be the elements of G of
degree < t and {g,41,...,9s} the elements of G of degree t + 1. Since ¢ is
surjective, we can choose a k-basis of (R/I)i11, {fi+1,..., fa+ I}, in such a
way that ¢ divides each f;. On the other hand a k-basis of (R/.J )1 consists
of

{gr+1+J7-"ags+J}U{f1+J7"-7fd+J}'

Now we can assume (just by re-ordering) that g,.1,..., g are not divisible
by ¢ and g,/41,...,gs are divisible by ¢ (with 7" > r). To conclude the proof
it will be enough to show that the set g,.1,..., g~ is a k-basis of Coker
where g; = (g; + J) + Im1).

Since {Gri1y---5Gsy f1y- -, fd} generate Cokervy and g1+ J,..., 95 +
J fi+dJ,..., fa+J € Imu, it follows that g,.1,..., g is a set of generators
for Coker¢). Now let us suppose that A\, 1,41 + -+ + A\vg = 0, with each
A; € k. This implies that

Ma1(Gror + )4+ Mg + J) € Im

ie. \p1gri1+- -+ Avgp+Lh € Jfor some h € Ry, If A\ 19,014+ A\vgp #
07 then lt(/\r-i-lgr-i-l +oo+ )\r’gr/ + gh) = 1t<ge) € LT(J) = LT(gh s 7gr)7
for some e, r +1 < e < 7/. This is a contradiction since G is contained in a
Grobner basis. O

Theorem 4.2.8. With the above notation

Bo t+1(A) — BD t+1(Z) = dimy(Ker ¢) — dimy (Ker v)).



Proof. From the following exact sequence

0 — Kerv) — (R/1), %5 (R/J),,, — Coker¢p — 0.

t+1

we get

dimy,(Ker ¢) — dimy, (R/1), + dimy (R/J),, — dimy(Coker ¢) = 0.

t+1

By Proposition 4.2.7 we have
dimy,(Kerp) — Ha(t) + dimy, (R/J),, | = By e:1(A) = 0;
since J = I<; we get
Bo 141(A) = By 1 (A) = Ha(t) = Ha(t +1) — dimy (Ker ) =
= dimg (Ker ¢) — dimy (Ker ¢),

using the surjectivity of the map . O
Corollary 4.2.9. With the above notation

i) ¥ is surjective iff By 141(A) = 0;

i) 9 is injective iff By 111(A) = Bo 1+1(A) + AH(t +1).
Proof. Just using Proposition 4.2.7 and Theorem 4.2.8. O

The next target in this section will be to determine the graded Betti
numbers of A. It is important to note that, by a numerical point of view, this
computation was made by several authors. See for instance Lemma 8.3 in
[MN2], where, inter alia, authors determine the value of BH (A) fori+j <t.

Now we assume a qualitative point of view and we study a minimal free
resolution of A. We will find a strong connection with the minimal free res-
olution of A, as we will see in Theorem 4.2.12.

4.2.2 Relationship between resolutions
Let us consider a graded minimal free resolution of A as a R-module
Foi0o>F 1= —=F%F 5 5F—>R—>A—-0 (4.1)

and a graded minimal free resolution of A as a R-module

G, : 0—>GC_2—>---—>GZ-d4/'GZ»_1—>~-—>G0—>R—>Z—>O. (4.2)

Let 7, : Fy — G, a lifting of the natural map of R-modules 7 : A — A.
In order to show the results in Theorem 4.2.12 we need some preliminary
lemmas.



Lemma 4.2.10. Letd: F' — M be a map of graded R-modules, with F free
R-module. Let {y1,...,y-} be a minimal set of homogeneous generators for
Imd, degy; < degy;+1 for 1 <i <r — 1. Let us suppose that there is a free
basis {e1,...,e.} of F' such that de; =vy; for 1 <i <r. Let z1,...,2s € F be
homogeneous elements such that dz; = y; for 1 <1 < s.

Then {z1,...,2s} is a part of a free basis of F.

Proof. Let
'
Zj = Z [
h=1

Notice that a;, = 0 when dege;, > degz; and a; € k when dege, = deg z;.
Applying d we get
Yi = Z AnYn-
h=1

By the minimality of {y1,...,y,} we have that a; =1 and a, =0 for h # j
and when dege;, = deg z;. Therefore

Z; = E apep + €;.

deg e <deg z;
Now the set {z1,..., 25, €511,...,€-} is a free basis of F. Namely it can be
obtained by {ej,...,e,} with a transformation whose matrix is a triangular

matrix with 1’s in the diagonal.
O

Lemma 4.2.11. Let R and R = R/(¢) be as above and consider the following
commutative diagram

F -t M

G L5 N
where F and M are R-modules, ' R-free, G and N are R-modules, G R-free,
d, @, T are R-morphisms and d' is a R-morphism.

Let {ey,...,e.} be a free basis of F such that {d(ey),...,d(e.)} is a min-
imal set of generators for Imd and {rd(ey),...,7d(e.)} is part of a minimal
set of generators for Imd'.

If z € kerw then z = ly for some y € F.

Proof. First observe that, by the commutativity of the diagram
d'm(e;) = 7d(e;, )



so, by Lemma 4.2.10, {7 (e1), ..., 7(e,)} are R-linearly independent elements
of G. Nowsince z = )\, a;e; € kerm, with a; € R, wehave ). a;m(e;) =0,
hence Z:zl a;m(e;) = 0, where @; is the image of a; in the natural map R — R.
This implies @; = 0 for all 4, i.e. a; € (£), so z = Ly. O

We are now ready to analyze the minimal free resolution of A

Theorem 4.2.12. With the above notation, for every i > 0, let

{vir, - s}, degvin <o < degig,,

be a minimal set of generators for Imd;, and uw; == |{j | degyi; < t+i}|. If
w; > 0 then {mi_1(7i1), ..., mi—1(Viu,)} can be completed to a minimal set of
generators for Imd; with elements of degree > t + i.

Proof. For the case i = 0 see Remark 4.2.2.

Let i1, ...,7%u be as in the hypotheses and assume that there is v;;,
1 < j < w; such that m_y(vi;) = zh# mnmio1(Vin), n € R. Then v :=
Yij — Zh# pnyin € Kerm;_1. Now let (eq,...,es ) be a basis of F;_; such
that d;_1(en) = Yic1n, for 1 < h < ;1. Since v € F;_; it can be written
as vy = Zﬁ;{ apep. Note that since u; > 0 then u, > 0 for 0 < h < 1.
On the other hand v € Kerd;_; and deg~y < t + i, therefore a;, = 0 when
degen, >t +1i, s0 vy = >, apen, (notice that the number of e, of degree
S t+1—11s ui—1)~ By induction {’71'1‘_2(’%’_1 1), e ,Wi_g(’yi_lui_l)} can be
completed to a minimal set of generators for Im d;_, with elements of degree
>t+141—1. Now

d;_ymi—1(en) = mi—adi—1(en) = mi—a(yi—1n), for 1 < h < fBiq;

so we can apply Lemma 4.2.11 to get v = {7/, 7' € Kerd;_;. Hence v;; =
> hetj Bnvin + €95 this contradicts the minimality of the set {vi1, ..., g, }-

In order to conclude the proof it is enough to show that each element in
Imd, of degree < t+ i — 1 is in the submodule generated by

7Ti—1(%'1), < 77Ti—1(%'ui).

Now, let 6 € Im d; be an element of degree < t+4i—1. By Lemma 4.2.10, the
elements m;_1(e1),...,m_1(ey,_,) can be completed to a basis of G;_; with
elements of degree > t+i. Therefore 6 = >~ bym;_1(en), s0 6 = m_1(€), for
some &. Consequently d; (&) € Kerm;_»; using again Lemma 4.2.11 one finds
d;—1(&) = 0¢', with ¢ € Kerd;_5 and deg¢’ <t + i — 2, therefore d;_1(§) =
td;_1(n), for some 7, so & — ¢n € Imd,, hence & — ln =" | cpVin; applying
m;i—1 to both sides of the previous equality we get 6 = > ;" cpmi—1(vin). O



Thanks to Theorem 4.2.12 we can give a partial structure to the minimal
free resolution G, of A. To do that we decompose each F; and each G; in
(4.1) and (4.2) in this way

Fy=F ® F and G; = G; © G

where F} := (e1,...,e,,) (therefore F" is generated in degree >t +1i); G} :=
(mi(er), ..., miley;)) and GY is generated only in degree t + i and ¢t +i + 1
(this is due to the fact that the degree of the last syzygy is t + ¢ — 1 and G,
is a minimal graded free resolution of a Cohen-Macauly ring).

Corollary 4.2.13. Let us consider the commutative diagram
FloF —“—= FoF,
lm lﬂ'i—l
&
GieG — G_, &G,

With a suitable choice of the free bases, if

M N

0 Ny
is a matriz representing d;, where M = (mpy) is a matriz of size w;_1 X u;,
then

W(M) P1

0 P
is a matriz associated to d}, where m(M) = (m(mpk)).
Proof. This is a direct consequence of Theorem 4.2.12. O

Theorem 4.2.12 give a description of the graded Betti numbers of A.
Corollary 4.2.14.
Bin(A) = Bin(A), fori >0 and h <t +i—1.
Moreover B; ,;(A) > B 11:(A).
Proof. Tt follows immediately by Theorem 4.2.12. O

By Theorem 4.2.12 we can easily deduce also a property on the last graded
Betti numbers of the Weak Lefschetz algebras.

Corollary 4.2.15. 5. j(A) =0 forall j <t+c—1.



Proof. Just apply Corollary 4.2.14, to the case i = ¢ — 1. O
The result in Corollary 4.2.14 can be clarified in the case ¢ = 1.

Corollary 4.2.16. $3; ;11(A) + dimg(Kerv) = 3, ., (4).

Proof. Since AH4(i) = H4(i), for i <t we have

AH(t+1) — A Hg(t +1) = AHa(t + 1).

Then
> (=18 s1(A) =D (=1)'B; 131 (A) — AH(t+1).
i=0 i=0

By Corollary 4.2.14 we know that 3; 11(A) = B; ;.1 (A) for every i > 2; now
applying Proposition 4.2.8 and using the fact that ¢ is surjective, we get our
conclusion. OJ

In Corollary 4.2.14 we gave an inequality for the i-th graded Betti num-
bers of A and A in degree t + 7. Now we will give a characterization when
the equality happens.

Proposition 4.2.17. 8; 11:(A) = B, 1,.(A) for every i > 0 iff ¢ is injective.

Proof. If B; 1+i(A) = B; 1.:(A) for every i then By 141(A) = B; 1,1 (A), hence
by Corollary 4.2.16 we get the injectivity of .

Now let us suppose that ¢ is injective. For ¢ = 0 see Remark 4.2.2. For
t = 1 see Corollary 4.2.16. Let ¢ > 1; it is enough to show that for every
o € Kerd]_,, with dego < t+1, there exists p € Kerd,;_; such that m;_(p) =
0. Since o € Kerd,_,, it belongs to the submodule of G;_; generated by the
elements of degree < t+4i—1. So, by the inductive hypothesis and by Lemma
4.2.10, calling D = {j|dege; < t+ i}, we can write

o= Zajm_l(ej).
jeD
Applying d;_, we have
0=d (Y ajmii(e;) = miadii (D> aje;) = mio(D>_ agyic))
jeD jeD jeD

consequently

Z a;vi—1; € kermi_o Nkerd,; _»
jeD



so by Lemma 4.2.11

Z a;Yi-1; = n,

jeD
In € kerd; o5 = Imd;_;. Since ¢n € kerd; o we have n € kerd; o = Imd;_4
ie. n =d;—1(7), for some v. Now we set p := >, aje; — {y € Fj_; hence
Wi—l(p) =0 and dz—l(p) =0. O

4.3 The Betti Weak Lefschetz Property

Collecting some results of the previous section we can give a description of
the graded Betti numbers of A.

Bij(A) ifj<t+i-—1
- Bij(A) + m; ifj=t+i
Biy(A) =1 Spsipa (DB, 5(A) + (—1) AT AHL () + mia (4.3)
ifj=t+i+1
0 ifj>t+i+1

where m; > 0 and in particular my = 0 and m; = dimy, ker v.
Indeed, this follows by Corollary 4.2.14 and by the following computation.

—ATHy(t+i+1) = Z(_l)hgh ti+1(A)
h>0
then
AT Hg(t+i+ 1) =

= (1B tyira(A) + (D)™ Biyy i (A) + Z "B, i1 (A) =

h>i+2

= (=1)'Bi rrin1(A) + (1) (Bisr i1 (A) +mipa) + Z (=1)"By i1 (A),

h>i+2
so by multiplying by (—1)" we get §; 1,1 (A) =

= mip1 + (1) AT Hg(t i 4 1) + Z DB i1 (A).
h>i+1

Note that the first and the last parts of the description (4.3), can be
deduced by Proposition 3.13 in [HMNW] which is in some sense dual to the
formula (4.3).

Remark 4.3.1. If ¢ = 3 the graded Betti numbers of A are determined by
dimy, Ker 1.



The Weak Lefschetz property for an Artinian standard graded algebra A
induces a natural relationship between its Hilbert function and the Hilbert
function of the generic linear quotient of A. The previous results suggest to
study a property which preserves a good behavior also for the graded Betti
numbers.

In the sequel, if I is an ideal of R and ¢ € R; is a Weak Lefschetz form
for R/1, we will denote by ¢ the map ¢ : (R/I), = (R/(I<)),,, defined
by multiplication by ¢ (¢ as defined at the beginning of Section 3).
Definition 4.3.2. We say that A = R/ has the Betti Weak Lefschetz Prop-
erty, briefly S-WLP, if there exists £ € R; such that

1. ¢ is a Weak Lefschetz form for A;

2. 1y is injective.

A linear form ¢ satisfying the conditions as above will be said a S-WL
form. In the example 4.1.6 the linear form ¢, is a S-WL form (hence R/I is
a f-WL algebra) and the linear forms ¢; and ¢, are WL forms but they are
not S-WL forms.

An equivalent version of this definition can be given looking at the graded
Betti numbers of the algebra

Proposition 4.3.3. Let A be a standard graded R-algebra. The following
are equivalent

i) A has the 5-WLP and ¢ is a B-WL form;

i1) The graded Betti numbers of A/lA are determined by (4.3) with m; = 0
for every 1.

Proof. 1t follow using Proposition 4.2.17 and equations (4.3). O

Note that there are algebras with the WLP having trivially S-WLP. For
instance, if A = R/I has the WLP and I is generated in degree > ¢+ 1, then
A has the S-WLP. (It is enough to observe that I, = (0)).

Next results put into relation the S-WLP with some particular WL alge-
bras.

We recall that a sequence H is said to be a Weak Lefschetz sequence if
it occurs as the Hilbert function of some standard graded Artinian algebra
with the Weak Lefschetz property.

It is known from [HMNW], Theorem 3.20, that if H is a Weak Lefschetz
sequence then the set

By" = {84 | Hy = H and A has the WLP}

admits exactly one maximal element, say, 3.



Proposition 4.3.4. Let H be a Weak Lefschetz sequence and let A = R/ be
an Artinian algebra with Hy = H such that A has the WLP. If By 111(A) =
Bet,., then A has the B-WLP.

Proof. Let € be a WL form for A, from Theorem 3.20 in [HMNW] it follows
that

Bo'isr = Boter — AHA(t+ 1),
where 3 is the Betti sequence of the lex-segment ideal L ¢ R = R/({) such
that Hz,;, = AH". By Theorem 4.2.8 we have

Bo t41(A) = By 111 (A) — AHA(t + 1) — dimy, Ker .

So
Bo t+1(Z) — dimy, Ker ¢y = Boi41,

and, using the maximality of 3, we get Ker v, = 0. O

Corollary 4.3.5. Let A = R/I be an Artinian algebra with the WLP such
that B4 = B4 then A has the 3-WLP.

It is known that if H is the Hilbert function of an Artinian Gorenstein
standard graded R-algebra of codimension 3 and 1 — 3 is its socle degree then
the set of the Gorenstein Betti sequences compatible with H

Gy ={Ba | Hx = H and A is a Gorenstein Algebra}

has only one maximal element 5% and only one minimal element 3™
(see [RZA4] Proposition 3.7 and Remark 3.8). According to the paper [RZ2]
there exists a Corenstein Betti sequence v € Gy, such that every Artinian
Gorenstein standard graded R-algebra with Betti sequence > ~ has the
WLP (see Corollary 2.7 in [RZ2]). We recall that

H_{ max for j =++4+ 1,9 -t —1
Yoi = min .

5" otherwise
Actually in the next proposition we can improve that result.

Proposition 4.3.6. Let H be the Hilbert function of an Artinian Gorenstein
standard graded R-algebra of codimension 3. Then every R-algebra A with
Betti sequence By € Gy and B4 > v has the 5-WLP.

Proof. Let A = R/I be an Artinian Gorenstein standard graded R-algebra
of codimension 3 such that 84 > . Repeating the same arguments in
Theorem 2.5 in citeRZ2 I<, = fI' where I’ is a perfect ideal of height < 2,
and f some form in R. So if we take ¢ to be a linear regular form in R/I’,
such that ¢ does not divide f, then ¢ is a f-WL form. O



4.4 Failing the 5-WLP

In this section we make a tour of some algebras which fail the g-WLP.

Let A = R/I be a complete intersection Artinian standard k-algebra
which have the Weak Lefschetz property. Let I = (g1,...,9.), and degg; <
deg g;11 for 1 < i < ¢—1. For such an algebra it is easy to study the behavior
with respect to the S-WLP defined in the previous section.

Proposition 4.4.1. Let A be as above then
1) If degg. >t then A has the 5-WLP.

2) If degg. <t and AH4(t +1) =0 then A has the -WLP.

3) If degg. <t and AH4(t + 1) # 0 then A has not the - WLP.

Proof. If degg. > t then I is generated by a regular sequence of length
< ¢, hence depth R/(I<;) > 0, so there is a linear form ¢ which is regular for
R/(1<¢), therefore 1)y is injective.

If degg. <t then I, = I, therefore 9y = ¢y, for every £ € Ry, so the
conclusions of items 2 and 3 follow by the Weak Lefschetz property of A. [

The item 3 of the previous proposition in particular says that 1, is not
injective but still it has maximal rank. This suggests to give a weaker form
of the Definition 4.3.2.

4.41 The B-WLP

Definition 4.4.2. We say that A = R/I has the generators Weak Lefschetz
Property, briefly So-WLP, if there exists ¢ € R; such that

1. £ is a Weak Lefschetz form for A;

2. 1y has maximal rank.

Note that for complete intersection algebras the WLP and the 5,-WLP
arc equivalent.

Of course, not every 5o-WL Artinian algebras are S-WL algebras. Just
take a WL complete intersection algebra whose generators have degree <t
and AH(t + 1) # 0 (as in the item 3 in Proposition 4.4.1).

Remark 4.4.3. Note that the graded Betti numbers of a S-WL algebra A
determine the graded Betti numbers of A/({), for a generic ¢ € R;. Analo-
gously when A is a -WL algebra, 3y(A) determines 8,(A/(£)), for a generic
{ € Ry. Precisely By;(A/l) = Bo;(A) for j <t and By;(A/l) = 0, otherwise
(see Corollary 4.2.9).



4.4.2 Examples

Next two examples show that there are Weak Lefschetz Artinian algebras
which fail the S,-WLP.

Ezample 4.4.4. Let R = k[x,y, 2|, and
I = (:L.47 x2y27 ajy37 xz3? y57 25)'
Then
Hpyr = (1,3,6,10,11,8,4,2,1,0).
In this case t = 4 and
J =Ty = (2%, 2%)2 2y, 202°).

One can check that ¢ = 4+ y + z is a WL form for R/I. On the other hand
the Hilbert function of R/J is

Hp/y = (1,3,6,10,11,10,8,8,9, .. .)

and Hg/;(n) =n+1forn > 7.1, : (R/J)s — (R/J)s were surjective then
the multiplication by ¢ should be surjective also in the successive degrees.
This is clearly impossible in degrees > 7.

FEzample 4.4.5. Let R = k[x,y, 2|, and
So we have

Hyyr = (1,3,6,10,15,18,17,14,8,3,0,.. ).
In this case t = 5 and J := I<5 = (2° 2%y? 2%2). One can check that ¢ =
x+y+zis a WL form for R/I. On the other hand

HR/J(5) =18 <20 = HR/J(G)

For every linear form ¢ we have (z'y € J and x'y ¢ J. So 1, cannot be
injective.

In the next example we have a Sy-WL algebra A without the 5-WLP for
which not all WL forms are So-WL forms.

Example 4.4.6. Let R = k[x,y, 2], and

I = (2* 2y, 2%y* — 22°, 2y + y2®,9° + 2°).



So the Hilbert function of A = R/I is
H,=(1,3,6,10,11,9,5,2,0,...)
and the graded Betti numbers are
Ba = ((4*,5),(5,6,7°,8,9%),(8,9,10%)).

The linear forms ¢y = z and ¢; = 4y + 2z are both WL forms since one can
check that

Hy, = Hz, = (1,2,3,4,1,0,..).

(£

Computing the Betti sequences, we have
BZ[ZO] = ((447 5)7 (537 6))7

and

BZ[ZI] = ((44)7 (527 6))

Thus ¢ is not a Sy-WL form since Bos(Aj,)) # 0. €1 is a S-WL form for A
and A is not S-WL algebra since dimg(R/J), = 11 > dimy(R/J)5 = 10.

Next example shows that the Sy-WLP does not determine the graded
Betti numbers of the its generic linear quotient.

Ezxample 4.4.7. R = klz,y, z, w]
I=(z,9)°+ (z,2)° + (y,2)° + (2*y*2 + w®),
Hp/r = (1,4,10,20, 35,40, 38,32,22,7,1,0,...)
lo=w and ¢ = x +y + z + w are both Fy-WL forms, in fact
HZ[ZO] = Hz[m =(1,3,6,10,15,5,0,...).
Computing the Betti sequences, we have that
B, = ((59), (6%, 7). (7',8%))

whereas
B, = (1), (62,7, (7°,8%).

Next examples show as we can have a §-WL algebra R/I even if R/I-,
is already Artinian.



Ezample 4.4.8. Let R = k[x,y, z|, and
I=(2%4°,2°, 2%, y*2%).
Then
Hpyr = (1,3,6,10,15,18,17,12,7,3,1,0).

Sot=5,Ic5=J:=(2°9°2°) and dimy(R/J)5 = 18, dimy(R/J)s = 19.
Now x + y + 2z is a WL-form for J so 9,4, is injective.

Example 4.4.9. Let R = k[x,y, z,w], and
I = (2% 9% 24w, 2?22, oy?w?, 2 22w?).
Then
Hp/r = (1,4,9,16,22,21,13,6,3,1,0)

Sot=4eJ=(2?y* 2" w) and dimg(R/J)s = 24. Yyiyistw 1S injective
because z+y+ z+w is a Lefschetz Element for J, R/J is an Artinian algebra
since J is complete intersection algebra.

Next example shows that although for a 5-WL algebra A the graded Betti
numbers of its generic linear quotient A are determined, we can find in such
a sequence ghost terms which were not in 4.

FEzample 4.4.10. Let R = k[x,y, z, w|, and
I = (2 2%y, 2°2,w (x +y+z+w) (v —y+z+w) (z+y—2+w)
(x—y—z+w) (x+y+22+w)? (z+ 2+ 2+ w)h);
Then the Hilbert function of A = R/I is
Ha=(1,4,10,16,16,3,0,...).

Observe that t = 3. If we take the weak Lefschetz form ¢ = z + 3y + 2 + 2w,
we have
Hy = (1,3,6,6,0,...).

Looking at the Betti sequences of both algebras
BR/I = ((347 46)) (437 630)7 (5a 7307 82)) (867 93))

ﬁﬁ/f = ((347 46)7 (437 513)7 (57 66))

we find a ghost term for A which is not so for A. From B4(A) = B1,(4), it
follows that ¢ is a S-WL form for A.



In next example we have a 5,-WL algebra A without the 8-WLP, and
not all WL forms are £y-WL forms.

Ezxample 4.4.11. Let R = k|x,y, z|, and
I = (2%, 2%y, 2%y* — 2%, oy® + y22, " + 2°).

Then
Hpr = (1,3,6,10,11,9,5,2,0,...),

and
Ba=((4*,5),(5,6,7°,8,9%),(8,9,10%)).

ly =z and ¢, = v 4+ y + z are both WL forms, in fact

Hy, =Hz, = (1,2,3,4,1,0,...).

(41

Computing the Betti sequences, we have that
Y 3
644[40] - ((4 ’5)7 (5 ’6))
and /£ is a Bp-WL form for A

Ba, | = (44). (5.6)).
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