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Introduction

This thesis arises with the purpose of emphasizing some aspects of a powerful tool
widely employed in mathematical analysis: the a-priori estimates. Indeed, it is
well known that a-priori estimates play an important role in the theory of partial
differential equations and in the calculus of variations, since they are intimately
related with the existence of solutions for a given problem. We will present three of
the papers written during this PhD, which are connected by this topic.

Chapter 1 contains some results obtained jointly with Prof. S. Mosconi from
the University of Catania and published in the paper [92] on Journal of Differential
Equations. The existence of solutions to the equation

u′′′′ + qu′′ + F ′(u) = 0, (1)

where q ∈ R and F is a C2, coercive, and quasi-convex function, that is,

F ′(t)t ≥ 0, ∀ t ∈ R.

is investigated. Equation (1) can be classified according to the sign of q. More pre-
cisely, we say that (1) is the Extended Fisher-Kolmogorov (EFK) equation if q ≤ 0,
while (1) is the Swift-Hohenberg (S-H) equation if q > 0.
Equation (1) has important applications in the real world, since it describes complex
patterns in many systems that come from Physics and Mechanics. More precisely,
the EFK equation arises as a model equation for certain physical systems that are
bistable and in the study of phase transitions near singular points (see [41] and [117],
respectively). On the other hand, the S-H equation has been widely employed in
the description of cellular flows and in the context of lasers (see [130, 30] as well
as [81, 133]). But the greatest application of the S-H equation is in the description
of the suspension bridges. The idea was proposed by Lazer, McKenna and Walter
[77, 95, 96] in order to model a suspension bridge as a vibrating beam supported by
cables, with a nonlinear response to loading and a constant weight per unit length
due to gravity. All these topics represent the first part of Chapter 1.
The second part focuses instead on our results [92], which provide an answer to some
questions posed in [79]. We obtained some nonexistence results for the EFK equa-
tion, see Theorems 1.6.1 and 1.6.3, and some existence results for the S-H equation,
which also give the exact parameter range for which the equation has a nontrivial
bounded solution, see Theorems 1.6.4 and 1.6.5.
The last part of Chapter 1 deals with the asymptotic behavior of the periodic solu-
tions obtained in the aforementioned results. More precisely, we show that, under
suitable conditions on the function F , every solution of equation (1) is such that
‖u‖∞ → 0, as q → 0; see Corollary 1.6.1 and Theorem 1.6.7, respectively.
Here the importance of the a-priori estimates lies in the fact that they allow us to
obtain some qualitative and global properties of solutions.

vii



Chapter 2 is based on the results obtained in [93] written in collaboration with
Prof. P. Winkert from the University of Technology Berlin, Germany, and already
published on Nonlinear Analysis. In this work, we studied the global boundedness
of solutions to the following boundary value problem

− div A(x, u,∇u) = B(x, u,∇u) in Ω,

A(x, u,∇u) · ν = C(x, u) on ∂Ω,
(2)

where ν(x) denotes the outer unit normal of Ω at x ∈ ∂Ω, and A,B, and C satisfy
suitable p-structure conditions which can allow critical growth, in Ω as well as on
∂Ω.
Boundary value problems with critical exponent have always represented an im-
portant task to overcome. Indeed, since the embedding W 1,p(Ω) ↪→ Lp∗

(Ω) is not
compact, this in turn implies that the functional associated to a prescribed prob-
lem does not satisfy the Palais-Smale condition. Hence, there are serious difficulties
when trying to find its critical points by standard variational methods. Several au-
thors have developed different strategies in order to overcome these difficulties, and
a detailed description of them can be found in Section 2.2.
The main motivation for studying critical problems like (2) stems from the fact that
they arise from some variational problems in Geometry and Physics where lack of
compactness also occurs. In particular, (2) can be seen as a generalization of the
classical Yamabe problem

− ∆u = f(x)u+ h(x)u
N+2
N−2 , (3)

where f and h are smooth functions. It is well known that there is no stable
regularity theory for solutions of (3), which reflects the difficulty of the Yamabe
problem. Nevertheless, it was proven by Trudinger [137] that anyW 1,2(Ω) solution of
(3) is in fact smooth, but its regularity estimate depends on the solution itself. In this
spirit, the main result of Chapter 2, Theorem 2.6.1, can be seen as a generalization
of Trudinger’s work. Theorem 2.6.1, whose proof is performed in Subsection 2.6.2,
contains two important assertions. First of all, it states that every solution u ∈
W 1,p(Ω) of problem (2) is in Lr(Ω) for every r < +∞, and then that u is actually
in L∞(Ω), with a bound which depends on the given data and on the solution
itself. The main tool which allowed us to obtain these results is a modified version
of Moser’s iteration technique, which in turn is based on the books [44, 129], and
which is also briefly presented in Section 2.5.
Chapter 2 ends with some regularity results. We proved that, with some additional
assumptions on the functions A and C, every weak solution of (2) is actually in
C1,β(Ω), for some β ∈ (0, 1), see Theorem 2.6.2.
The importance of the a-priori estimates is emphasized not only in Theorem 2.6.1,
but rather in the fact that the a-priori bound of a given solution to problem (2)
directly entails regularity considerations ensuring that u ∈ C1,β(Ω).

Chapter 3 is based on the results obtained in [91], written in collaboration with
Prof. S.A. Marano and Prof. A. Moussaoui from the University of Mira Bejaia,
Algeria. It focuses on an existence result for the following singular system

−∆p1u = a1(x)f(u, v) in R
N ,

−∆p2v = a2(x)g(u, v) in R
N ,

u, v > 0, u, v → 0 as |x| → +∞.

(4)
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Here with the word singular we mean an equation which contains terms that could
go to +∞ as variables approach zero. And system (4) is effectively singular since,
according to our hypotheses, the functions f and g have a growth that involves also
negative exponents.
Singular semilinear systems in a bounded domain were introduced by Gierer and
Meinhardt [57] as a mathematical model in biochemical processes. The non singular
version has instead been widely employed in the study of interacting populations.
These interactions, whose description is contained in the first part of the chapter,
are of three types: the predator-prey model, which occurs if the growth rate of one
population is decreasing while the other is increasing with respect to the first; the
competition model, which occurs if the growth rate of each population is decreasing
with respect to the other; finally, the mutualism, which happens when each popu-
lation’s growth rate is enhancing. All these situations are described by systems of
ordinary differential equations or partial differential equations that also take into
account the tendency of each population to spatially diffuse.
The second part of the chapter treats singular systems, starting from the semilin-
ear case in a bounded domain, see Subsection 3.4.1, and then concentrating on the
quasilinear case, see Subsection 3.4.2. Since variational methods do not work, differ-
ent other techniques, mainly based on fixed point arguments in a sub-supersolution
setting, were developed. Of course these problems can be generalized considering
the case when Ω = R

N : the semilinear case was treated for example in [101], while
the quasilinear case, to the best of our knowledge, has never been studied in the
literature until our work [91], which is contained in Section 3.5.
Here we assume some structure conditions on the functions f and g which do not al-
low to reduce system (4) to the Gerier-Meinhardt’s type. The main idea for solving
(4) is to perturb the system with a parameter ε > 0, and then to apply Schauder’s
fixed point theorem in order to get a solution (uε, vε), for every ε > 0. Finally,
letting ε → 0+ yields a weak solution (u, v) of (4).
Here, the a-priori estimates play a crucial role, because it is only once we know that
a solution (u, v), as well as (uε, vε), is uniformly bounded that we can apply some
comparisons which directly lead to the existence results.

All the chapters are structured in a similar way. We first introduce the concrete
problems which inspired our works. Then, after a description of some known results
from the literature, we present the results obtained in our papers. Finally, some
open problems and further possible developments are listed.

ix



Chapter 1

Model equations in physical

pattern formation

1.1 Introduction

One of the most interesting aspects of the complex dynamics that governs natural
phenomena is the occurrence of instabilities and symmetry breakings that lead to
the formation of coherent spatio-temporal structures on macroscopic scales. When
a physico-chemical system is maintained far from its thermal equilibrium by the
application of external constraints, it may go through a succession of instabilities
that induce various types of spatio-temporal pattern formation. These phenomena
are studied using the methods of nonlinear dynamics and instability theory, because
such a organization seems to be related to technological problems that arise, among
others, in physics, chemistry and nonlinear optics. Since these systems are described
by nonlinear partial differential equations, it is very difficult to solve these problems
because of the impossibility to obtain analytical solutions. However, in the 1970s
general techniques, based on the analogies between phase transitions and critical
phenomena, were developed. In particular, the fact that similar phenomena appear
in very different systems (such as spiral waves in chemical systems, cardiac activity,
hydrodynamical instabilities in liquid crystals) shows that they are not induced by
the microscopic properties of the system but they are triggered by collective effects
including a large number of individuals (atoms, molecules, cells).

In order to achieve a better understanding of the dynamical behavior of systems
far from equilibrium, well-chosen model equations have been proposed. Even if they
are often simpler than the full equations describing those systems, they allow us to
underline the mechanisms that are responsible for the formation and evolution of
complex patterns. Classical model equations are typically second-order PDEs. One
of the most important is the widely studied Fisher-Kolmogorov equation, a nonlinear
second-order diffusion equation proposed in 1937 as a model for the interaction of
dispersal and fitness in biological populations.

Our interest is instead concentrated in a series of higher-order partial differential
equations that have been taken as model in the study of pattern formation in systems
from physics and mechanics. For special classes of solutions such as stationary
solutions or traveling waves, many of these equations reduce to a simpler one, of the
form

d4u

dx4
+ q

d2u

dx2
+ f(u) = 0. (1.1.1)
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Here q is a real-valued eigenvalue parameter which measures the tendency of the
equation to form complex patterns, and f is a given function. Equation (1.1.1), and
the properties of its bounded solutions for different values of q and functions f , are
the core of this chapter.

1.2 Model equations

Well-chosen model equations have always played an important role in applied math-
ematics, because of their presence in a great variety of physical, chemical and bio-
logical systems. Classical examples are the heat equation, the wave equation and
the Laplace equation, which describe processes like diffusion, dispersion and wave
propagation, and also give their mutual interactions and their quantitative descrip-
tion. They are typically linear second-order partial differential equations. However,
since many problems in the sciences and in engineering are intrinsecally nonlinear,
it became necessary to introduce nonlinear generalizations.

1.2.1 Second-order model equations

A very well-known example from the literature is the Fisher-Kolmogorov (FK) equa-

tion
∂u

∂t
=
∂2u

∂x2
+ u− u3. (1.2.1)

It was originally proposed to study the fronts that arise in population dynamics.
A front is a propagating interface between two different steady states and can be
viewed as a balance between diffusive forces coupling different points in the field, and
reactive forces which move the system from unstable to stable states. At first sight,
front propagation through unstable states might seem to be an esoteric subject. In
reality, however, there are many examples where this phenomenon is an essential
element of the dynamics. For example, fronts naturally arise in convectively unstable
systems, in which a state is unstable, but perturbations are convected away faster
than they grow out.

From a qualitative point of view, equation (1.2.1) exhibits an unstable uniform
state, u = 0, and two stable uniform states, u = ±1. Fronts that oscillate around
zero exist, but they are considered unphysical, since they represent negative popu-
lation densities. Consequently, interest is focused on strictly non-negative solutions.
Fronts in the FK equation connect the unstable to the stable state, and move in
such a way as to destabilize the unstable state.

The FK equation is often called the real Ginzburg-Landau (GL) equation, since it
is the real version of the complex GL equation, an envelope equation that describes
the dynamics of wave envelopes near transition in hydrodynamic systems.

Another second-order model equation of interest is the following, known as the
sine-Gordon (sG) equation

∂2u

∂t2
=
∂2u

∂x2
− sin u.

It is a nonlinear hyperbolic partial differential equation in 2 dimensions involving
the d’Alembert operator and the sine of the unknown function. It was originally
introduced by E. Bour [21] in the study of surfaces of constant negative curvature and
rediscovered by Frenkel and Kontorova [50] in their study of crystal dislocations. It
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attracted a lot of attention in the 1970s because of the presence of soliton solutions,
and was also widely used in studies of nonlinear wave propagation, see [45, 119].

1.2.2 Higher-order model equations

The equations introduced above are not able to describe complex patterns for which
equation (1.1.1) plays an important role. A typical example of such a pattern
is the phenomenon of localized buckling in mechanics, which happens when the
deflections are confined to a small portion of the otherwise unperturbed material.
To understand the formation of complex spatial and temporal patterns, higher-order
scalar model equations and systems of equations have been proposed. Below we list
some of these equations that are of interest for us, beginning with the one that can
be considered their prototype.

Elastic beam

The mechanics of solid bodies, regarded as continuous media, forms the content
of the theory of elasticity, whose basic equations were established in the 1820s by
Cauchy and Poisson. Under the action of applied forces, solid bodies exhibit defor-
mation to some extent, and so change in shape and volume. The three-dimensional
equations of a continuous solid elastic medium vibrations are of a great complexity
and in general cannot be solved analytically. However, elastic solids present geo-
metrical characteristics which simplify the mathematical analysis of their vibrations.
These simplifications have led to the theories of beams, plates and shells. In par-
ticular, the theory of beams consists of constructing one-dimensional models and in
this sense represents the simplest continuous media. This simplicity is extremely
useful since it leads to obtain analytical solutions of the problem equations and, con-
sequently, to study the vibratory phenomena in a comprehensive fashion. Research
of the basic vibratory phenomena results in the identification of three elementary
movements: longitudinal vibrations, vibrations of torsion and bending vibrations.
The study of coupled longitudinal movements, torsion and bending is possible, but
with an increased difficulty of resolution. Probably one of the simplest equation for
an elastic beam is the following

∂2u

∂t2
+ κ2∂

4u

∂x4
= 0,

where κ is characteristic of the given bar.

The Extended Fisher-Kolmogorov (EFK) equation

This equation, which can be regarded as a natural extension of the FK equation
(1.2.1), was proposed in 1988 by Dee and van Saarloos [41] during their studies on
wave propagation, and models physical systems that are bistable

∂u

∂t
= −γ ∂

4u

∂x4
+
∂2u

∂x2
+ u− u3, γ > 0. (1.2.2)

Indeed, as in the FK equation, the EFK equation has two uniform states u(x) = ±1
which are stable, separated by a third uniform state u(x) = 0 which is unstable. The
choice γ > 0 is dictated by the physical requirement that the model is stable at short
wavelengths, but otherwise the fourth-order spatial derivative does not dramatically
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alter the qualitative features of the homogeneous states. Indeed, the u = 0 state
remains unstable to long-wavelength perturbations, while the other states remain
absolutely stable.

The EFK equation also arises in the study of phase transitions near singular
points, the so-called Lifshitz points (LP for short). It can occur in a variety of
different systems, including magnetic compounds and alloys, liquid crystals and
charge-transfer salts. Finally, equation (1.2.2) arises as amplitude equation at the
onset of instability near certain degenerate states. In [117] it was shown, through
numerical simulations of the full reaction-diffusion system, that the behavior of
small perturbations near the degeneration is best described by the EFK equation,
as opposed to the classical Ginzburg-Landau model.

The Swift-Hohenberg (S-H) equation

It was first proposed by Swift and Hohenberg in order to study the effects of thermal
fluctuations on a fluid near the Rayleigh-Bénard instability [130]

∂u

∂t
= −(1 +

∂2

∂x2

)2
u+ κu− u3, κ ∈ R. (1.2.3)

Consider a horizontal layer of fluid in which an adverse temperature gradient is main-
tained by heating the underside. We say that the temperature gradient is adverse
because, on account of thermal expansion, the fluid at the bottom will be lighter
than the fluid at the top; and this top-heavy arrangement is potentially unstable.
Because of this instability there will be a tendency on part of the fluid to redistribute
itself and remedy the weakness in its arrangement. However, this natural tendency
will be inhibited by its own viscosity. In other words, we expect that the adverse
temperature gradient must exceed a certain value before the instability can manifest
itself. The earliest experiments to demonstrate in a definitive manner the onset of
thermal instability in fluids are those of Bénard in 1900, though the phenomenon
of thermal convection itself had been recognized earlier by Count Rumford (1797)
and James Thomson (1882). The principal facts they established are the following;
first, a certain critical adverse temperature gradient must be exceed before insta-
bility can set in; and second, the motions which ensue on surpassing the critical
temperature gradient have a stationary cellular character. In a fundamental paper
[116], Lord Rayleigh showed that what decides the stability or otherwise of a layer
of fluid heated from below is the numerical value of the non-dimensional parameter

R =
gαβ

κν
d4,

often called the Rayleigh number. Here g denotes the acceleration due to gravity, d
the depth of the layer, β the uniform adverse temperature gradient, and α, κ and ν
are the coefficients of volume expansion, thermometric conductivity and kinematic
viscosity, respectively. Rayleigh further showed that instability must set in when R
exceeds a certain critical value Rc; and, when it happens, a stationary pattern of
motions must come to prevail.

Equation (1.2.3) has also been used by Pomeau and Manneville [111] to study
the phenomenon of wavenumber selection in cellular flows, which follows from the
breaking of translational invariance in large but finite structures. Finally, several
authors adapted this equation in the context of lasers, see [81, 133].
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The Suspension Bridge equation

This equation was proposed by Lazer, McKenna and Walter [77, 95, 96] and models
a suspension bridge as a vibrating beam supported by cables, which has a non-
linear response to loading and a constant weight per unit length due to gravity.
The unknown u(x, t) measures deflection from the unloaded state and is therefore
applicable to vertical oscillations

∂2u

∂t2
+
∂4u

∂x4
+ (u+ 1)+ − 1 = 0. (1.2.4)

As written in [77], much of interest in this field started after the breakdown of
the Tacoma Narrows suspension bridge [5], which was first subject to large-scale
oscillations, followed by the collapse of the structure.1 The standard explanation
of this phenomenon was that the bridge behaves like a particle of mass one at the
end of the spring, with spring constant k, which is subject to a forcing term of
frequency µ/2π. If µ is very close to

√
k, then large oscillations result. If µ is not,

then it does not. Accordingly, the forcing term came from a train of alternating
vortices being shed by the bridge as the wind blew past it. The frequency just
happened to be at a value very close to the resonant frequency of the bridge. Thus,
even though the magnitude of forcing term was small, the phenomenon of linear
resonance was enough to explain the large oscillation and the eventual collapse of
the bridge. Anyway, this explanation was not persuasive.

As made clear in [5, 18], suspension bridges have a history of large-scale oscilla-
tion and catastrophic failure under high and even moderate winds. Earlier bridges,
such as the Bronx-Whitestone Bridge or the Golden Gate Bridge, had shown oscil-
latory behavior due to the action of wind. What distinguished the Tacoma Narrows
was the extreme flexibility of its roadbed. This resulted a pronounced tendency
to oscillate vertically, under widely differing wind conditions. The bridge was also
affected by another type of oscillation just prior to the collapse: a pronounced tor-
sional mode observed after the bridge went into large vertical motion. Furthermore,
a wind-tunnel study of a scale model of the Tacoma Narrows Bridge in a variety of
wind conditions showed that, when attempting to model large amplitude oscillation,
the behavior is almost perfectly linear, see [5, Appendix VIII].

Thus, several interesting questions from the mathematical point of view arise.
For example, to understand what in the nature of suspension bridges makes them
so prone to large-scale oscillation; to find an explanation of the fact that the bridge
would go into large oscillation under the impulse of a single gust, or would re-
main motionless in strong winds; to explain how the large vertical oscillations could
rapidly change to torsional; to study the existence of the traveling waves; to get a
formal description of why the motion is linear over small to medium range oscilla-
tion. It is important to observe that the current explanation of these phenomena
was highly incorrect until the work of Lazer and McKenna [77], who constructed
the right mathematical model, proving that what distinguishes suspension bridges
is their fundamental nonlinearity. The restoring force due to a cable is such that it
strongly resists expansion, but does not resist compression. Thus, the simplest func-
tion to model this force would be a constant times u, the expansion, if u is positive,
but zero if u is negative, corresponding to compression, see equation (1.2.3).

1Tacoma Narrows Bridge collapse, https://www.youtube.com/watch?v=nFzu6CNtqec.
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Water waves

The behavior of steady nonlinear water waves on the surface of an inviscid heavy
fluid layer has received much attention during the past century, both from the math-
ematical and from the physical side. Some interesting problems are, for example,
the existence of solitary and cnoidal (periodic) waves in the presence of surface ten-
sion or the description of the reaction of a fluid to a localized pressure distribution
moving over its surface with constant speed.

In its long history, the analysis of nonlinear surface waves has been promoted by
scientists of various backgrounds, and a vast literature is available for the unforced
case, which happens when the pressure at the surface is constant, see [126, 148,
152, 153]. On the other hand, the resonant case, which occurs when the pressure
speed coincides with the critical wave speed, became of particular importance and
difficulty.

In [73], nonlinearly resonant water waves are analyzed with the only assumption
of moderate wave amplitudes. They reduced to waves in two dimensions which, after
a suitable rescaling, lead to the following single fourth-order ordinary differential
equation

u′′′′ + Pu′′ + u− u2 = 0. (1.2.5)

Here the function u(x) is related to η(x) − 1, where η is the dimensionless depth of
the water, while the coefficient P is a negative constant.

Equation (1.2.5) has been the object of much recent study (see [6, 26, 66, 67]
and the references therein). In particular, in [6] the existence of homoclinic orbits
connecting the zero equilibrium of (1.2.5) is studied, and they can be interpreted as
indicating the presence of spatially localized buckling.

The nonlinear Schrödinger equation

It is well-known that the dynamics of optical fibers is governed by the nonlinear
Schrödinger equation (NLSE). By contrast to the usual theory of evolutionary PDEs,
in the NLSE the evolution variable is the ’space’ variable, namely the longitudinal
coordinate of the fiber. In [2] a generalized NLSE with a negative fourth-order
dispersion term is investigated. It can be obtained under the usual assumptions of
the absence of derivative nonlinearities which, after a suitable rescaling, lead to the
following equation

i
∂v

∂x
+
∂2v

∂t2
− ∂4v

∂t4
+ |v|2v = 0. (1.2.6)

Stationary pulse-like solutions of equation (1.2.6) have the form

v(x, t) = u(k, t)eikx, (1.2.7)

where k is the soliton propagation constant and u(s, t) is a real function of its
parameters. Substitution of the ansatz (1.2.7) into equation (1.2.6) gives

u′′′′ − u′′ + ku− u3 = 0, (1.2.8)

where k is now the only parameter of the problem. Equation (1.2.8) is a nonlinear
ordinary differential equation of fourth order, and its localized solutions give the
stationary soliton-like solutions of equation (1.2.6). From the mathematical point
of view, the treatment of the Schrödinger equation (even the linear one) may be
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delicate since such equation possesses a mixture of the properties of parabolic and
hyperbolic equation. In the NLSE for optical fibers, because of attenuation, there
is not conservation of energy.

1.3 The reduction to an ODE

When we look for special classes of solutions, such as stationary solutions or traveling
waves, all the aforementioned equations reduce to an ordinary differential equation
of the type (1.1.1), which can be written in the equivalent form

u′′′′ + qu′′ + F ′(u) = 0. (1.3.1)

Here with primes we mean the differentiation with respect to the variable x. The
function F is often called the potential although, according to the usual terminology
in classical mechanics, its opposite −F should be called the potential.

After a suitable rescaling, we can write the stationary version of all the equations
(1.2.2)-(1.2.5), (1.2.8) in the form (1.3.1). More precisely, for q = −1/

√
γ and

F (u) = 1
4(1 − u2)2, we obtain the Extended Fisher-Kolmogorov equation

u′′′′ + qu′′ + u3 − u = 0. (1.3.2)

When k > 1, for q = 2/
√
k − 1 and F (u) = 1

4(1−u2)2, we have the Swift-Hohenberg
equation. Traveling wave solutions u(x, t) = w(x − ct) of equation (1.2.4) lead to
equation (1.3.1) for q = c2. When q = P and F (u) = u2

2 − u3

3 , we have the water
waves equation (1.2.5), while for q = −1/

√
k and F (u) = −(u2

2 − k2) we have the
nonlinear Schrödinger equation (1.2.8).

Equation (1.3.1) can be classified according to the sign of the parameter q. When
q ≤ 0 we say that it is of the Extended Fisher-Kolmogorov-type, while it is of the
Swift-Hohenberg-type if q > 0. We can further classify equation (1.3.1) according
to the choice of the potential F . There are several possibilities.

1. F is a double-well coercive potential. In this case F exhibits two zeros, or
equilibria, u(x) = x1,2 at the same energy level. Potentials of this type appear, for
example, in the EFK equation or in the S-H equation when k > 1. When F is a
multi-well potential, equation (1.3.1) was proposed in [59] as a model for ternary
mixtures in order to overcome the defects of the classical Ginzburg-Landau models,
which rules out observed transitions between non consecutive equilibria.

2. F is a single-well coercive potential. It has only one zero and goes to +∞
both at +∞ and −∞. It appears in equation (1.2.4) or in (1.2.3) when k < 1 (see
[106]), and in general in model equations for suspension bridges (see [31]).

3. F is an anticoercive potential. It is such that its opposite −F is coercive. We
can observe it, for example, in the nonlinear Schrödinger equation (1.2.6).

4. F is one-sided coercive potential. It is such that F (t) → +∞ for t → +∞
and F (t) → −∞ for t → −∞, or vice-versa. Such a potential is typical of the water
waves equation (1.2.5).

Both of these classifications can be mixed, and thus one can obtain an EFK
equation with a single-well coercive potential, and so on.

There are two important functionals associated to (1.3.1). First, when we mul-
tiply the equation by u′ and integrate, we obtain the energy or Hamiltonian

E(u) := u′u′′′ − 1
2
u′′2 +

q

2
u′2 + F (u). (1.3.3)
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The energy is a conserved quantity along orbits of (1.3.1). This means that, if u is
a solution of (1.3.1), then

u′u′′′ − 1
2
u′′2 +

q

2
u′2 + F (u) := constant := E. (1.3.4)

Second, the Lagrangian action associated with this Hamiltonian

J (u) :=
ˆ (

1
2

|u′′(x)|2 − q

2
|u′(x)|2 + F (u(x))

)
dx.

The solutions of (1.3.1) correspond to critical points of the action J (u) and vice-
versa. The domain of integration depends on the type of solution under investiga-
tion. We will go into more details of this variational structure in Section 1.4.3.

In many physical problems one is primarily interested in the large-time behavior
of solutions of the evolution equation (1.3.1). Here the attractor of the dynamical
system defined by the equation plays an important role. In bounded domains the
attractor often consists of stationary solutions. In unbounded domains, if the equa-
tion is invariant with respect to spatial translations, the attractor may also contain
traveling wave solutions.

The class of bounded solutions of (1.3.1) is particularly relevant, since most of
patterns defined on infinitely extended domains correspond to its uniformly bounded
solutions. We will denote this class by B. Since the mid-1990s, it has become evident
that the structure of B can be very rich indeed, and includes a wealth of solutions
of different nature, depending both on the function F and on the value of q. For
example, consider the simplest linear equation

u′′ + λu = 0, λ ∈ R.

In this case, the set B is very restricted: if λ < 0, it consists of the trivial solution
only; if λ = 0, it consists of the constants; finally, if λ > 0, it consists of the linear
combination of sin(x

√
λ) and cos(x

√
λ).

When the nonlinearity is introduced, the set B becomes richer. Below we list
some of the most important type of solutions contained in B that are object of our
interest. For the remaining part of this section, we suppose that the nonlinearity F
has two distinct equilibria u(x) = x1,2, at the same energy level, as in the case of
equation (1.3.2).

1. Heteroclinic and homoclinic solutions. From a qualitative point of view, it is
interesting to study the connections between the equilibria by trajectories of solu-
tions of the equation. These are called homoclinic or heteroclinic solutions, some-
times pulses or kinks, according to whether they describe a loop based at one single
equilibrium or they ”start” and ”end” at two distinct equilibria. More specifically,
we say that u is a heteroclinic solution of (1.3.1) connecting x1 to x2 if

lim
x→−∞

(u, u′, u′′, u′′′)(x) = (x1, 0, 0, 0) and lim
x→+∞

(u, u′, u′′, u′′′)(x) = (x2, 0, 0, 0).

(1.3.5)
Of course, u is a heteroclinic solution connecting x2 to x1 if the previous relations
hold with the limes to +∞ and −∞ inverted. We say that u is a homoclinic solution

of (1.3.1) if

lim
x→±∞

(u, u′, u′′, u′′′)(x) = (x1, 0, 0, 0) (or (x2, 0, 0, 0)).
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2. Periodic solutions. The existence of this type of solution corresponds to the
formation of spatially periodic patterns in systems described by (1.3.1). Periodic
solutions can be classified according to the energy (1.3.4) or according to their
period, 2T .

3. Chaotic solutions. They present an infinite number of jumps between the
constant solutions and possesses between successive jumps a prescribed number of
small oscillations around x1 and x2. Most of them are multibump solutions, whose
graphs have more than one critical point in a half-period if they are periodic and
between tails if they converge to one or both the equilibria.

1.3.1 Linearization

The set B has been the object of much research in the last years. The reason is
that it is strongly affected by q, since the nature of the equilibria of F changes at
the critical values of q. Therefore, this parameter has a key role in the analysis of
the behavior of solutions of equation (1.3.1) (see [103, 104, 105, 106]). Suppose that
F ′(0) = 0 and F ′′(0) = k > 0. Linearizing near zero we obtain

u′′′′ + qu′′ + ku = 0, (1.3.6)

and so the associated characteristic equation λ4 + qλ2 + k = 0, with eigenvalues

λ = ±
√

−q ±
√
q2 − k

2
.

When q ≤ −
√
k, the four eigenvalues are real and so u = 0 is a saddle-node.

For q ∈ (−
√
k,

√
k), they are all complex with non-vanishing real parts. In this

case the equilibrium is called saddle-focus. When q =
√
k there is a reversible

Hopf bifurcation, and all four eigenvalues become purely imaginary. They remain
imaginary for all q >

√
k. In this case, u = 0 is a center.

Figure 1.1: Equilibria

The behavior of the solutions of (1.3.6) provides important informations con-
cerning the solutions of the nonlinear equation. For example, in the saddle-focus
case, it is well known that, under suitable smoothness assumptions, the nonlinear
flow and the flows defined by the linearization are conjugate in a neighborhood of
the equilibrium (see [63]). Consequently, in this case, as well as the saddle-node
one, the solutions of (1.3.1) inherit some properties of the solutions of (1.3.6) when
they are close to u = 0. For example, we easily obtain a qualitative description of
any heteroclinic at ±∞. Indeed, when 0 is a saddle-node, the solutions of (1.3.6)
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that vanish at +∞ or −∞ are monotone, while in the saddle-focus case, they do
oscillate around zero.

1.4 Methods

Different methods have been developed to study equation (1.3.1). Since it contains
only even order derivatives and is autonomous, this system is both reversible and
Hamiltonian. This perspective then allows one to apply general results about dy-
namical systems. Thus we can analyze in detail the bifurcation and structure of
different periodic solutions and homoclinic orbits near critical points (see [8, 139]).
Moreover, results of Devaney as well as Vanderbouwhede and Fiedler [43, 140] can be
used to find families of periodic solutions on the basis of the existence of homoclinic
orbits. An important restriction of these methods is that they are in some sense
local, valid either near an equilibrium point or near a homoclinic or a heteroclinic
orbit.

In order to derive global results, a variety of alternative approaches have been
developed. Below we briefly describe some of them.

1.4.1 Topological shooting

What has come to be called the shooting method has its origin in a more sophisti-
cated technique, due mainly to Ważewski [145]. It makes use of a topological lemma
that is related, in R

N , to Brouwer’s fixed point theorem. Shooting may be thought
of as including Ważewski’s method, but also simpler topological arguments involving
only connectedness (see [38, Section 2.5]). It is possible to use it more broadly, for
each argument in which a boundary value problem is shown to have a solution by
considering the topology of the space of initial condition. In other words, we solve a
boundary value problem by reducing it to an initial value problem. The main idea
of a classical shooting method is to look at the way solutions change with respect to
initial conditions (taken as parameters) at some fixed initial point. Roughly speak-
ing, we ’shoot’ out trajectories in different directions until we find a trajectory that
has the desired boundary value. Consider for example the following boundary value

problem (see [106] for further details)

u′′ − u = 0 on (0, 1),

u(0) = 0 and u(1) = 3,
(1.4.1)

and suppose that we wish to prove that there exists a solution of it. There are
many ways to do this. In the method based on topological shooting, one replaces all
the conditions at one of the boundary points by additional conditions at the other
boundary point, so that near this point the equation has a unique solution which
satisfies the combined old and new boundary conditions. For instance, here we can
replace the condition at x = 1 and impose a slope u′ at x = 0. We are then left
with the initial value problem

u′′ − u = 0 on (0, 1),

u(0) = 0 and u′(0) = α,
(1.4.2)

where α ∈ R is a parameter which we are free to choose. By standard ODE theory
[36], problem (1.4.2) has a unique local solution u(x, α), for every α ∈ R. The
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question is now whether there exists a value α∗ such that u( · , α∗) exists on [0, 1]
and u(1, α∗) = 3.

Since the differential equation is linear, for each α ∈ R, the solution u(x, α) can
be continued all the way to x = 1. Thus, u(1, α) is well defined on R, and we can
introduce the sets

S+ = {α ∈ R : u(1, α) > 3} and S− = {α ∈ R : u(1, α) < 3}.

Evidently, if α ∈ S+, the solution hits the line {x = 1} in the (x, u)-plane too high,
while if α ∈ S−, then the solution hits the line {x = 1} too low.

Suppose now that one has shown that α− ∈ S−, α+ ∈ S+ and that the function
Φ(α) := u(1, α) is continuous on the interval [α−, α+]. Then plainly the sets S+

and S−, restricted to [α−, α+], are open and the existence of an α∗ ∈ [α−, α+]
where Φ(α∗) = 3 follows. Of course, the continuity of Φ immediately implies the
existence of α∗. Notice that the previous argument says nothing about the number

of solutions of problem (1.4.1).
In [103, 104, 106], Peletier and Troy developed a topological shooting method

especially adapted to track monotone heteroclinics for the EFK equation (1.3.2). It
turns out that their approach works well for q ≤ −

√
8, the saddle-nodes case.

1.4.2 Hamiltonian method

The evolution of many conservative systems can be described by Hamilton’s equa-
tions:

ṙi =
∂H

∂pi
(r, p), 1 ≤ i ≤ N,

ṗi = −∂H

∂ri
(r, p), 1 ≤ i ≤ N.

(1.4.3)

Here, (r, p) belongs to R
N × R

N , the so-called phase space, and N is the number
of degrees of freedom. The first N components r = (r1, . . . , rN ) represent position
variables, and the last N ones p = (p1, . . . , pN ) momentum variables. The function
H : RN × R

N → R, the Hamiltonian, represents the energy of the system. It is
an immediate consequence of equation (1.4.3) that H is an integral of motion, i.e.,
H(r(t), p(t)) is constant along any solution of (1.4.3). In other words, it holds

d

dt
[H(r(t), p(t))] =

N∑

i=1

∂H

∂ri
ṙi +

N∑

i=1

∂H

∂pi
ṗi

=
N∑

i=1

∂H

∂ri

∂H

∂pi
+

N∑

i=1

∂H

∂pi

(−∂H

∂ri

)
= 0,

for every solution of (1.4.3), and so the energy is a conserved quantity.
In many problems that arise from nonlinear mechanics, as the modeling of non-

linear water waves, the Hamiltonian system has an energy functional which is given
by

H(r, p) =
1
2

(Sp, p) + V (r), (r, p) ∈ R
N × R

N . (1.4.4)

Here, the Hamiltonian has the classical ’kinetic plus potential’ form while ( , ) de-
notes the inner product of RN . Moreover, suppose that

S : RN → R
N is a symmetric linear operator with eigenvalues

λ1 < 0 < λ2 ≤ λ3 ≤ · · · ≤ λN .
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This means that the quadratic form (Sp, p) is indefinite but not degenerate. Thus,
the Hamiltonian system is given by

ṙ(t) = Sp(t),

−ṗ(t) = V ′(r(t)),
t ∈ R. (1.4.5)

Hofer and Toland [65] developed a theory for the existence of homoclinic, hetero-
clinic and periodic orbits of (1.4.5), mainly based on topological methods like the
antipodal mapping theory and the Brouwer degree theory. They considered only a
class of Hamiltonian systems, for which the p-dependance is explicitly required to be
indefinite. In [47, 113, 114, 146, 147] periodic solutions are established for a different
class, by chiefly applying the theory of critical points for indefinite functionals, the
study of geodesics and duality theory. Further refinements of the ideas of [65] have
been made in [25], yielding the existence of a family of homoclinic orbits of (1.4.5)
when the potential is of the form

V (u, u′′) =
1
2
u2 − 1

3
u3 − 1

2
u′′2.

It is worth noting that equation (1.3.1) can be seen as an Hamiltonian system (1.4.5),
where

r = (u, u′′), p = (u′′′ + qu′, u′), V (r) = F (u) − u′′2

2
, S =

(
0 1
1 q

)
,

and of course the Hamiltonian is given by (1.4.4). It is immediate to see that the
kinetic energy is indefinite, since

det

(
−λ 1
1 q − λ

)
= 0 ⇔ λ2 − λq − 1 = 0 ⇔ λ1,2 =

q ±
√
q2 + 4
2

,

which means that λ1 < 0 for every q ∈ R. The Lagrangian associated to this system
is

L(r) =
1
2

(S−1r, r) − V (r).

Since S is symmetric but indefinite for any q, the Hamiltonian approach seems
difficult to exploit. Moreover, even if (1.3.1) can be viewed in the framework of
the theory developed in [65] for such indefinite systems, the potential V is by far
too general for the method to directly succeed. Instead, we take advantage of the
particular structure of (1.4.5) and look at it as a higher order Lagrangian problem.
See the next section for further details.

1.4.3 Variational methods

In the study of bounded stationary solutions to equation (1.3.1) on R, variational
methods take up an important place. The reason is that (1.3.1) has a variational
structure and is the Euler-Lagrange equation of the functional

Jq(u) =
ˆ

I
Lq(u(x), u′(x), u′′(x))dx, (1.4.6)

where Lq is the second order Lagrangian

Lq(u, u′, u′′) :=
1
2

(
|u′′|2 − q|u′|2

)
+ F (u).
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Recall that we are used to refer to the last term of Lq as the potential. Variational
methods have been widely used to establish the existence of heteroclinic, homoclinic
and periodic solutions as critical points of Jq in appropriate sets of functions (see
[24, 27, 31, 68, 69]). When q ≤ 0, Jq is nonnegative, so we can look for solutions
of (1.3.1) as its minimizers. When q > 0, the functional is no more nonnegative,
so the method of searching the minimizers may be no longer at hand. In any case,
we can look for its critical points via other arguments, for instance by applying the
Mountain Pass Theorem.

Solutions of (1.3.1) are critical points of Jq in different functional spaces de-
pending on the type of solution considered. For example, for homoclinic orbits
satisfying

lim
x→±∞

(u, u′, u′′, u′′′)(x) = (0, 0, 0, 0),

the appropriate space would be the Sobolev space H2(R). Chen and McKenna
[31] have used this approach and employed the Mountain Pass Lemma and the
Concentration Compactness Principle to prove the existence of pulses if, respectively,
f(s) = s − s2, as in the water wave problem, and f(s) = (s + 1)+ − 1, as in the
suspension bridge problem. For both of these problems, they considered −2

√
f ′(0) <

q < 2
√
f ′(0), the range of values of q for which the origin is a saddle-focus.

Moreover, the integral in (1.4.6) can be taken on various sets I according to
the domain of the solution and the functional space on which Jq is defined. For
heteroclinic solutions, since they are defined on R, we consider I = R, leading to

Jq(u) =
ˆ

R

1
2

(
|u′′|2 − q|u′|2

)
+ F (u)dx.

This functional is well defined for functions u having first and second square inte-
grable derivatives and being such that the potential F is integrable. Taking into
account conditions (1.3.5), we can then define Jq in the space

{u : R → R |u− x1 ∈ H2(R−), u− x2 ∈ H2(R+)}.

The existence of heteroclinic solutions of (1.3.1) via variational arguments was in-
vestigated for the first time by Peletier, Troy and van der Vorst [107] and Kalies and
van der Vorst [69]. For q ≤ 0 and F (u) = 1

4(1 − u2)2, Peletier et al. [107] proved
the existence of a minimizer of Jq in the subset of odd functions of the space

E = {u : R → R |u(0) = 0, u+ 1 ∈ H2(R−), u− 1 ∈ H2(R+)}.

To obtain an odd heteroclinic solution it is sufficient to look for critical points of
the functional

J+
q (u) :=

ˆ

R+

1
2

(
|u′′|2 − q|u′|2

)
+

1
4

(u2 − 1)2dx

in the space
E+ := {u |u− 1 ∈ H2(R+), u(0) = 0}.

Indeed, the condition u′′(0) = 0 is a natural boundary condition fulfilled by any crit-
ical point of J+

q in E+ so that their odd extensions solve the Euler-Lagrange equation
(1.3.2) on R. These methods have been considerably refined in [68, 69]. Of course,
the previous arguments extend easily to a functional defined from any second order
positive Lagrangian with a symmetric potential having two non-degenerate minima
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(with non-vanishing second derivative) at the same energy level and superquadratic
grows at ±∞. When we look for T -periodic solutions, the natural space we consider
is the real Hilbert space

HT := {u : u ∈ H2([0, T ]), u′ ∈ H1
0 ([0, T ])},

with scalar product

〈u, v〉HT
=
ˆ T

0
u′′v′′dx+

ˆ T

0
uvdx

and corresponding norm ‖u‖HT
. Of course the action functional is defined by

Jq,T (u) :=
ˆ T

0

1
2

(
|u′′|2 − q|u′|2

)
+ F (u)dx,

while the dependance on T is often omitted when there is no risk of confusion.

1.5 Some results from the literature

As already said, the nature of equation (1.3.1) depends both on the choice of the
potential F and on the sign of the parameter q and, of course, the existence results
reflect this influence. We begin with some results involving a double-well potential,
and after we will deal with a single-well coercive potential.

1.5.1 F is a double-well potential

In the model case F (u) = 1
4(1 − u2)2, equation (1.3.1), as already seen, becomes

u′′′′ + qu′′ + u3 − u = 0. (1.5.1)

Peletier and Troy [106] gave a complete catalogue of the set B of bounded solutions
of equation (1.5.1) for the parameter range q ∈ (−∞,−

√
8]. Taking into account

Section 1.3.1, this is the saddle-nodes case, when the spectrum at the stable uniform
states u = +1 and u = −1 is real valued. Their results can be summarized as follows.

Theorem 1.5.1 (Theorems 2.1.1-2.2.1 of [106]). Let q ∈ (−∞,−
√

8]. Then, the

following facts hold true:

1. For every E ∈ (0, 1
4) there exists a periodic solution uE to equation (1.5.1),

which is even with respect to its critical points, odd with respect to its zeros,

and has the bound

‖uE‖∞ <

√
1 − 2

√
E.

2. There exists an odd monotone heteroclinic solution of equation (1.5.1) that

satisfies

lim
x→±∞

(u, u′, u′′, u′′′)(x) = (±1, 0, 0, 0).

They obtained these results by using the method of topological shooting in-
troduced in Section 1.4.1. Moreover, they proved that the solutions obtained in
Theorem 1.5.1 are the only bounded non-constant solutions of equation (1.5.1) for
these values of q.

When q > −
√

8, the spectrum at the equilibria u = ±1 is complex valued. An im-
mediate consequence is that, in this parameter regime, homoclinic and heteroclinic
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solutions leading to either of these two constant solutions cannot be monotone. In
fact, as q passes through −

√
8, the set B instantly becomes much richer and the

solution graphs more complex (see [25, 27, 42] and the references therein). In this
range, the linearization around the equilibria displays oscillatory solutions so that
any heteroclinic of (1.5.1) oscillates around ±1 in its tails, i.e., when x → ±∞. This
oscillatory behavior close to the equilibria makes a shooting method much more
tedious, since one of the greatest difficulties is to control the convergence at infinity.
However, Peletier and Troy adapted their arguments in [104], and after a careful
analysis they managed to single out two families of odd heteroclinics in the range
q ∈ (−

√
8, 0], which differ by the amplitude of the oscillations. The first one con-

sists of the so-called multi-transition solutions, since all the successive local extrema
between the zeros rely outside the region [−1, 1]. It contains, for each n ∈ N, a
solution whose profile displays 2n+1 jumps from −1 to +1 and two oscillatory tails
around −1 and +1. The second family contains the single-transition heteroclinics,
whose solutions display oscillations with an amplitude smaller than 1. They may
also be classified according to their number of oscillations around 0. Both these
families have a similar structure, which can be divided into three different regions:
an inner region (−L,L), where the solution oscillates around u = 0, and two outer
regions, (−∞,−L) and (L,+∞), which contain the tails where the solution in the
inner region joins up with one of the stable uniform states ±1.

Moreover, Kalies and van der Vorst [69] constructed the so-called multi-bump

solutions, which are characterized by multiple oscillations separated by large dis-
tances. The usual methods to obtain such solutions are rather tricky and require a
careful study of the stable and unstable manifolds (see [27, 37, 120]). Kalies et al.
[68] introduced a direct method to find multi-transition solutions. Note that such
solutions are qualitatively different from multi-bump ones, as the distance between
two successive transitions is not necessarily large. The method in [68] consists in
minimizing the action functional Jq in specific subspaces of functions having a com-
mon homotopy type. Basically, the homotopy type describes the trajectory of any
function in the uu′-plane by recording the number of transitions from one equilib-
rium to the other and counting the number of turns it makes around −1 and +1 in
between the transitions. Their method perfectly handles oscillatory graphs and is
therefore efficient when −

√
8 ≤ q ≤ 0.

Existence results in the parameter range q ≤ 0 can be also obtained through
different methods. For example, Peletier et al. proved the existence of heteroclinic
solutions to equation (1.5.1) via variational argument, see [107].

The dynamics of equation (1.5.1) with q > 0 is much less understood than the
EFK case. Numerical experiments (see [15]) suggest that a large variety of those
solutions found for q ≤ 0 still exists for a certain range of positive values of q.
However, the limitations of the shooting method of Peletier and Troy was pointed
out by van den Berg [14].

As q becomes larger than −
√

8 (in particular positive), a multitude of periodic
solutions with different structures emerges, as described in [106]. We pay specific at-
tention to two families, that consist of odd and even periodic solutions, respectively,
each with zero energy. Observe that they are only a part of the set of periodic solu-
tions that exist in this parameter range. The first family consists in two branches of
single-bump periodic solutions (with a single oscillation), which emerge at the value
q = −

√
8. They are divided into Γ+, with amplitude larger than one, and Γ−, with
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amplitude smaller than 1. The second one consists in a countable pairs of family
of branches: they are divided into Γna and Γnb, whose solutions are convex and
concave at the origin, respectively. Both of these families extend over the intervals
(−

√
8, qn), where

qn =
√

2
(
n+

1
n

)
, n = 2, 3, . . .

The following is an existence result of single-bump periodic solutions.

Theorem 1.5.2 (Theorem 4.1.1. of [106]). For every q > −
√

8 there exist single-

bump periodic solutions u− and u+ of equation (1.5.1) such that E(u±) = 0 and

‖u−‖∞ < 1 and ‖u+‖∞ > 1.

Moreover, the functions u± are odd with respect to their zeros and even with respect

to their critical points.

There is also a family of odd multi-bump periodic solutions with the character-
istic property that the maxima all lie above u = 1 and the minima all lie below
u = −1, with the exception of the first point of symmetry, ζ in R

+, where the
situation is reversed (see [106, Theorem 4.1.3]).

We conclude this section with three qualitative results. The first one is a sharp
universal upper bound for bounded solutions of equation (1.5.1) when q ≤ 0, while
the other two describe the asymptotic behavior of bounded solutions when q ∈
(−

√
8,+∞).

Theorem 1.5.3 (Lemma 2.4.3 and Lemma 2.4.5 of [106]). If q ≤ 0, then any

bounded solution u of equation (1.5.1) satisfies

|u(x)| <
√

2, ∀x ∈ R.

When, in particular, q ≤ −
√

8, then

|u(x)| < 1, ∀x ∈ R.

For the next results, we denote by ϕ the odd increasing kink at q = −
√

8.

Theorem 1.5.4 (Theorem 4.2.2 of [106]). Let (qn) ⊆ (−
√

8,+∞) be a decreasing

sequence such that qn → −
√

8 as n → +∞, and let un(x) = u(x, qn) be a corre-

sponding sequence of odd solutions of equation (1.5.1) with zero energy and such that

u′
n(0) > 0. Then,

un → ϕ as n → +∞

uniformly on bounded intervals.

Theorem 1.5.5 (Lemma 4.2.4 of [106]). Let u(x, q) be an odd periodic solution of

equation (1.5.1) with zero energy, symmetric with respect to its critical points and

such that ‖u( · , q)‖∞ < 1. Then,

‖u(q)‖∞ <
1

q
√

2
for every q > 0.
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1.5.2 F is a single-well coercive potential

When F is a convex, coercive potential, the study of (1.3.1) became a major tool
to understand the modeling of suspension bridges, see [77, 95, 96]. When we search
for traveling waves that decay to zero exponentially as |x| → ∞, we are ultimately
concerned with finding homoclinic solutions of the nonlinear ordinary differential
equation

y′′′′ + c2y′′ + (1 + y)+ − 1 = 0. (1.5.2)

The idea in [96] was to write the analytic expressions for the solutions of y′′′′ +
c2y′′ + y = 0 for y ≥ −1 and y′′′′ + c2y′′ − 1 = 0 for y ≤ −1, and then ensure
the continuity of these solutions and their first three derivatives whenever y = −1.
However there were some problems with this approach. Indeed, the existence was
not proved rigorously since all calculations were approximate. Nonetheless, the
paper led to some obvious conjectures: it seemed that the number of solutions could
be quite large and, moreover, the L∞-norm of the solutions seemed to go to +∞,
as c → 0.

Furthermore, the method of finding traveling wave solutions was heavily depen-
dent on the analytic form of the nonlinearity in (1.5.2). Thus, the publication of
this paper left open several interesting questions. First, could one verify that, as
c → 0, the L∞-norm of the solutions goes to +∞, as was indicated by the computa-
tions? Second, could one prove existence (and multiplicity) for solutions of a more
general nonlinearity with the same basic shape as that of (1.5.2)? And third, which
are the stability, instability and interaction properties of these traveling waves? In
[79], Lazer and McKenna gave a result of non-existence about what happens for the
parameter value c = 0.

Theorem 1.5.6 (Theorem 1 of [79]). The solution u ≡ 0 is the only solution of the

equation

y′′′′ + (1 + y)+ − 1 = 0

such that ‖u‖∞ is bounded.

In order to give to the reader the idea of what it is known so far in the literature,
below we list some results about the argument. Note that the hypotheses on F have
been further specialized, leading to consider coercive and quasi-convex potentials,
i.e., those satisfying

F ′(t)t ≥ 0, ∀ t ∈ R. (1.5.3)

Existence results

Let us first remark that, for coercive potentials, condition (1.5.3) has proven to be
almost equivalent to the absence of (nontrivial) bounded solutions to (1.3.1). Here
there is a more precise statement.

Theorem 1.5.7 (Theorems 3.1 and 5.1 in [97]). Let q ≤ 0. If (1.5.3) holds, then the

only bounded solutions of (1.3.1) are constants. Moreover, in the class of coercive

potentials with {F ′(t) = 0} discrete, (1.5.3) is actually equivalent to the existence

of bounded nontrivial solutions.

Under assumption (1.5.3), one may still seek for global unbounded solutions.
An immediate ODE argument shows that, if F ′ is globally Lipschitz, all local solu-
tions of (1.3.1) are actually global (and thus, by the previous theorem, unbounded).
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However, the peculiar nature of (1.3.1) allows the following one-sided generalization
(notice that this holds for any q ∈ R).

Theorem 1.5.8 (Theorem 1 in [13]). Let q ∈ R be arbitrary and F ∈ C2 satisfy

F ′(t)t > 0, for all t 6= 0. If

either lim sup
t→+∞

F ′(t)
t

< +∞ or lim sup
t→−∞

F ′(t)
t

< +∞, (1.5.4)

then any solution to (1.3.1) is globally defined.

Regarding non-existence, Gazzola and Karageorgis proved the following. Recall
that with E we mean the Hamiltonian energy (1.3.3).

Theorem 1.5.9 (Theorem 3 in [53]). Let q ≤ 0. Suppose F is a convex potential

satisfying

F (0) = 0, F ′(t)t ≥ c|t|2+ε for ε > 0, F ′(t)t ≥ cF (t) ∀ |t| >> 1

for some c > 0 and

lim inf
|t|→+∞

F (λt)
F (t)α

> 0

for some λ ∈ ]0, 1[, α > 0. If u solves (1.3.1) in a neighborhood of 0 and

either u′(0)u′′(0) − u(0)u′′′(0) − qu(0)u′(0) 6= 0 or E 6= 0, (1.5.5)

then u blows up in finite time.

As we will see, the situation for q > 0 is more complex. Regarding non-existence
of nontrivial solutions, the seemingly most up-to date results are the following.

Theorem 1.5.10 (Theorem 1 in [115]). Let F ∈ C2 satisfy

a|t|p+1 ≤ F ′(t)t ≤ b|t|r+1 + c|t|p+1, for some a, b, c > 0 and 1 ≤ r < p . (1.5.6)

Then, for any q > 02, there exists E0 = E0(a, b, c, p, r, q) ≥ 0 such that any solution

to (1.3.1), satisfying E(u) > E0, blows up in finite time.

Theorem 1.5.11 (Theorem 1 in [49]). Let F ∈ C2 satisfy (1.5.6) and

F ′′(t) > F ′′(0), for all t 6= 0. (1.5.7)

If q > 0 satisfies q2 ≤ 4F ′′(0), then the only globally defined solution to (1.3.1) is

u ≡ 0.

Still in [49], the rôle of the condition q < 2
√
F ′′(0) is also discussed, through the

following partial converse of Theorem 1.5.11.

Theorem 1.5.12 (Theorem 2 in [49]). Suppose F ∈ C2 is even, satisfies (1.5.6),
(1.5.7) and the limit limt→+∞

F ′(t)
tp exists. Then, for every q > 0 such that q2 >

4F ′′(0), there exists a nontrivial periodic solution to (1.3.1).

Notice that, being p > 1, (1.5.6) forces

lim
t→+∞

F ′(t)
tp

= B > 0,

which implies the (much weaker) condition

lim inf
|t|→+∞

F (t)
t2

= +∞.

2In [115], this theorem is actually proved for 0 < q ≤ 2, but a simple scaling argument shows

its validity for any q > 0. Indeed, if u solves (1.3.1), then uλ(x) := u(x/
√

λ) solves u′′′′
λ + λqu′′

λ +

F ′
λ(uλ) = 0, where Fλ(t) := λ2F (t) satisfies (1.5.6) with the same exponents and with constants

a, b, c multiplied by λ2. If λ ≤ 2/q, one can then apply [115, Theorem 1].
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Asymptotic behavior

In light of the previous discussion, under assumption (1.5.3) it only makes sense to
consider the asymptotic behavior of the solutions to (1.3.1) for q ↓ 0. The starting
point is a result proved by Lazer and McKenna.

Theorem 1.5.13 (Theorem 2 in [79]). Let, for some qn ↓ 0, (un) be a sequence of

bounded nontrivial solutions to

u′′′′ + qnu
′′ + (1 + u)+ − 1 = 0.

Then, ‖un‖∞ → +∞.

We briefly say that the nontrivial solutions to (1.3.1) are unbounded as q ↓ 0 if
the thesis of the previous theorem holds for any qn ↓ 0 and corresponding nontrivial
solutions (un) to (1.3.1). The previous result has later been generalized as follows.

Theorem 1.5.14 (Theorem 3.2 in [97]). Let F ∈ C2 satisfy F ′′(0) > 0, int({F ′ =
0}) = ∅ and (1.5.3). Then, the nontrivial solutions to (1.3.1) are unbounded, as

q ↓ 0.

The condition int({F ′ = 0}) = ∅ is readily seen to be necessary for the thesis,
as the following remark shows.

Remark 1.5.1 (Remark 3.2 in [97]). Suppose that [a, b] ⊆ {F ′ = 0}, then uβ(x) :=
A sin(βx) + B with A = (b − a)/4, B = (a + b)/2 solves (1.3.1) for each β, being

uniformly bounded.

1.6 Our results

In [92] we gave some answers to the questions raised by Lazer and McKenna in
[79], considering equation (1.3.1) for coercive, quasi-convex potentials F . For the
reader’s convenience, below we recall that (1.3.1) reads as

u′′′′ + qu′′ + F ′(u) = 0. (1.6.1)

Notice that some of our statements will involve quantities like

lim sup
t→±∞

F (t)
t2

, lim inf
t→±∞

F (t)
t2

.

Similar, but weaker, statements will hold under similar conditions on f(t) = F ′(t),
namely involving the corresponding quantites

lim sup
t→±∞

f(t)
t
, lim inf

t→±∞
f(t)
t

(which are more frequent in the literature), simply due to the inequalities

lim sup
t→±∞

F (t)
t2

≤ lim sup
t→±∞

f(t)
t
, lim inf

t→±∞
F (t)
t2

≥ lim inf
t→±∞

f(t)
t
,

which may be strict in some cases.

19



Since we are looking for periodic solutions, (1.6.1) could be seen as the Euler-
Lagrange equation of the functional

Jq(u) :=
ˆ T

0

1
2

(
|u′′|2 − q|u′|2

)
+ F (u)dx,

defined on the Hilbert space

HT := {u : u ∈ H2([0, T ]), u′ ∈ H1
0 ([0, T ])}.

(see Section 1.4.3 for further details). Observe that we can freely add to F and Jq

a constant so that Jq(0) = F (0) = 0. Since we are mainly interested in potentials
satisfying (1.5.3), this implies F (0) = mint∈R F (t). Thus, we can reduce to the case

0 = F (0) = min
t∈R

F (t), (1.6.2)

a weaker hypothesis we will sometimes assume. The link between solutions of (1.6.1)
and the functional Jq is given in the following proposition.

Proposition 1.6.1 (Lemma 4.1 in [97]). Let u : [0, T ] → R be a critical point for

Jq in HT . Then, its even extension ũ : [−T, T ] → R defines a 2T -periodic C4(R)
solution to (1.6.1).

Proof. Integrating by parts and using a local uniqueness for the ODE, we see that
any critical point u ∈ HT of Jq satisfies (1.6.1) and belongs to C4([0, T ]). Since
u ∈ HT forces u′(0) = u′(T ) = 0, it suffices to show that u′′′(0) = u′′′(T ) = 0.
Integrating by parts (DJq(u), φ) = 0 for φ ∈ HT (and thus φ′(0) = φ′(T ) = 0), we
get

0 =
ˆ T

0
u′′φ′′ − qu′φ′ + F ′(u)φdx

= −
ˆ T

0
u′′′φ′ − qu′′φ− F ′(u)φdx = −u′′′φ|T0 ,

being u ∈ HT a solution of (1.6.1). Clearly we can choose arbitrarily the values 0
and T for φ ∈ HT , obtaining u′′′(0) = u′′′(T ) = 0. Thus the even extension of u
belongs to C4(R) and by local uniqueness, it is a 2T -periodic solution of (1.6.1).

We will furthermore use the following elementary observation.

Lemma 1.6.1. For any T > 0, Jq : HT → R is C1 and weakly sequentially lower

semi-continuous.

Proof. The functional Jq being C1 immediately follows from the Sobolev embedding

‖u‖∞ ≤ CT ‖u‖HT
,

which ensures that there is no need of a growth condition for F . To prove lower
semi-continuity, let (vn) ⊆ HT be a sequence such that vn ⇀ v, weakly in HT .
In particular, (vn) is bounded in HT , which implies boundedness in C1,α([0, T ]),
by Sobolev embedding. Therefore, (vn) is compact in C1([0, T ]) by Ascoli-Arzelà,
which ensures, by Lebesgue dominated convergence, that

−q
ˆ T

0
|v′

n|2 dx+
ˆ T

0
F (vn) dx → −q

ˆ T

0
|v′|2 dx+

ˆ T

0
F (v) dx.

Since the remaining term 1
2‖v′′

n‖2
2 is weakly sequentially lower semi-continuous by

convexity, the thesis follows.
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We conclude with a general result on convex envelopes, which is of some interest
in itself. More precisely, given G : RN → R, we let

G∗(x) := sup
{
g(x) : g is convex and g(y) ≤ G(y), for all y ∈ R

N
}

be the convex envelope of G.

Lemma 1.6.2. Suppose G : RN → R is a lower semi-continuous function such that

lim inf
|x|→+∞

G(x)
|x| ≥ α, for some α ∈ ]0,+∞[. (1.6.3)

Then,

Argmin(G∗) = co
(
Argmin(G)

)
. (1.6.4)

Proof. Clearly, Argmin(G), and thus co
(
Argmin(G)

)
, is compact and non empty,

and we can suppose, without loss of generality, that minRN G = 0. From (1.6.3) we
can find M > 0 such that G(x) ≥ α

2 |x|, for any |x| ≥ M , hence the function

h(x) =
α

2
(|x| −M)

satisfies h ≤ G in R
N . Since G∗ ≥ h by construction, this implies that Argmin(G∗)

is compact as well.
Since g ≡ 0 satisfies g ≤ G and is convex, it holds 0 ≤ G∗ ≤ G, which implies that

co
(
Argmin(G)

) ⊆ Argmin(G∗). We prove the opposite inequality by contradiction,
and thus suppose that there exists x0 such that

G∗(x0) = 0 and x0 /∈ co
(
Argmin(G)

)
=: C. (1.6.5)

By the Hanh-Banach Theorem, there exists v ∈ R
N , |v| = 1, such that

sup
x∈C

〈v, x〉 = 〈v, x1〉 < 〈v, x0〉, for some x1 ∈ C, (1.6.6)

where, by 〈v, x〉, we mean the standard duality coupling. Let, for ε > 0

gε(x) = ε
〈
v, x− x0 + x1

2
〉
,

and notice that for any x ∈ C it holds, by (1.6.6),

gε(x) ≤ ε

(
sup
y∈C

〈v, y〉 − 〈
v,
x0 + x1

2
〉
)

= ε

(
〈v, x1〉 − 〈

v,
x0 + x1

2
〉)

= ε
〈
v,
x1 − x0

2
〉
< 0.

Therefore, for any ε > 0,
sup
x∈C

gε(x) < 0. (1.6.7)

The set {gα/4 ≥ h} is compact, since

lim sup
|x|→+∞

gα/4(x)

h(x)
= lim sup

|x|→+∞

1
2

〈
v, x− x0+x1

2

〉

|x| −M
=

1
2
.

Thus, K := {gα/4 ≥ 0} ∩ {gα/4 ≥ h} is compact and, for any x ∈ K, it holds
G(x) > 0 since, otherwise, x ∈ C and (1.6.7) implies gα/4(x) < 0, contradicting
x ∈ K. Therefore, we can set

inf
x∈K

G(x) = β > 0.
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Now, for sufficiently small ε ∈ ]0, α/4[, it holds

sup
x∈K

gε(x) ≤ β,

and we claim that for such ε it holds gε ≤ G in the whole R
N . This is clearly true

on {gε ≤ 0} = {gα/4 ≤ 0}, since G ≥ 0. From the definition of ε it holds

gε(x) ≤ β ≤ G(x), for all x ∈ K.

Finally, on {gα/4 ≥ 0} ∩ {gα/4 < h} one has

gε(x) ≤ gα/4(x) < h(x) ≤ G(x),

and the claim is proved. Therefore, being gε convex, we deduce G∗ ≥ gε. By (1.6.6),

G(x0) ≥ gε(x0) = ε
〈
v,
x0 − x1

2
〉
> 0,

which gives the desired contradiction to (1.6.5).

Remark 1.6.1. Condition (1.6.3) is optimal in order to obtain (1.6.4). Consider

the C2(R,R) coercive function

G(x) =





log(1 + x2) if x < 0,

x2 if x ≥ 0.

A straightforward computation shows that

G∗(x) =





0 if x < 0,

x2 if x ≥ 0,

and (1.6.4) fails, since Argmin(G∗) = ] − ∞, 0] 6= {0} = co
(
Argmin(G)

)
.

We obtained several existence results both for the EFK equation ((1.6.1) when
q ≤ 0) and for the S-H equation ((1.6.1) when q > 0) and we list them below,
separately. At the end of the section, we will also describe some results regarding
the asymptotic behavior of solutions.

1.6.1 The EFK case

We begin with a result which can be seen as an immediate consequence of Theorem
1.5.9.

Theorem 1.6.1. Let q ≤ 0. Suppose F satisfies the assumptions of Theorem 1.5.9.

Then, the only globally defined solution to (1.6.1) is u ≡ 0.

Proof. By translation invariance, u(x + x0) is a global solution to (1.6.1), for any
x0 ∈ R. Therefore, the first condition in (1.5.5) must fail at any x0 ∈ R, which
implies that

u′u′′ − uu′′′ − quu′ ≡ 0.

Deriving this relation, we obtain

|u′′|2 − u(u′′′′ + qu′′) − q|u′|2 = |u′′|2 − q|u′|2 + F ′(u)u ≡ 0

and, being F ′(t)t ≥ c|t|2+ε and q ≤ 0, we immediately deduce u ≡ 0.
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The next result is a useful tool for our further calculations. First, we recall some
elementary interpolation inequalities, which provide bounds for higher derivatives
of any solution u to (1.6.1) in terms of ‖u‖∞. For any unbounded interval I, integers
0 ≤ j ≤ k, i ≥ 0 and u ∈ Ck+i(I), it holds

‖u(k)‖L∞(I) ≤ ck,i,j‖u(k+i)‖
j

i+j

L∞(I)‖u(k−j)‖
i

i+j

L∞(I), (1.6.8)

for a constant ck,i,j independent of I.

Theorem 1.6.2 (Theorem 3.1 of [97]). Let F ∈ C1(R) be a coercive potential with

a unique local (and thus global) minimum. Then, every bounded solution to (1.6.1)
is constant.

Proof. Let minR F = F (t0) and u be a bounded solution of (1.6.1). Eventually
considering G(t) = F (t − t0) − F (t0) and v = u + t0, we can suppose that 0 is the
unique global minimum of F and F (0) = 0. In particular it holds tF ′(t) ≥ 0 for all
t ∈ R. Using (1.6.1), the interpolation inequalities (1.6.8) for I = R and Young’s
inequality 2ab ≤ a2 + b2, we get

‖u′′′′‖∞ ≤ q‖u′′‖∞ + sup
[−‖u‖∞,‖u‖∞]

|F ′(u)| ≤ qc‖u‖1/2
∞ ‖u′′′′‖1/2

∞ + sup
[−‖u‖∞,‖u‖∞]

|F ′(u)|

≤ 1
2

‖u′′′′‖∞ +
q2c2

2
‖u‖∞ + sup

[−‖u‖∞,‖u‖∞]
|F ′(u)|,

and thus u′′′′ is uniformly bounded. Now (1.6.8) for I = R implies that all the lower
order derivatives are bounded. Consider the auxiliary function

h = u′′u+
q

2
u2 − u′2.

By the previous discussion we have that h is a bounded function, and a straightfor-
ward calculation shows that

h′′ = (u′′′′ + qu′′)u− u′′2 + qu′2 = −F ′(u)u− u′′2 + qu′2,

where we used (1.6.1) in the last equality. Since F ′(t)t ≥ 0 for every t ∈ R and
q ≤ 0, we get that h is a bounded concave function, thus h ≡ k ∈ R. This in turn
implies

0 = h′′ = −F ′(u)u− u′′2 + qu′2 ≤ −u′′2 ⇒ u′′2 ≤ 0,

and therefore u is affine. Since it is bounded, it must be constant.

Using a classical technique essentially due to Bernis [16], we remove most of the
assumptions of Theorem 1.6.1, proving the following result.

Theorem 1.6.3. Let F ∈ C2 satisfy (1.5.3) and

lim inf
|t|→∞

F ′(t)
t|t|ε > 0, ε > 0. (1.6.9)

Then, the only globally defined solutions of (1.6.1) for q ≤ 0 are constants.

Proof. We let, for simplicity, p = −q ≥ 0 and F ′(t) = f(t). The weak formulation
of (1.6.1) is

ˆ

u′′ϕ′′ + pu′ϕ′ + f(u)ϕdx = 0, for all ϕ ∈ C2
c (R).
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Letting ϕ = uη, we have
ˆ

|u′′|2η + 2u′′u′η′ + u′′uη′′ + p|u′|2η + quu′η′ + f(u)uη dx = 0

and, by Young’s inequality,
ˆ

|u′′|2η+p|u′|2η+f(u)uη dx ≤
ˆ

1
2
η|u′′|2+

1
2

|η′′|2
η

u2+
p

2
η|u′|2+

p

2
|η′|2
η
u2 dx−2

ˆ

u′′u′η′ dx.

It follows that
ˆ

|u′′|2η + p|u′|2η + 2f(u)uη dx ≤
ˆ

u2

(
|η′′|2
η

+ p
|η′|2
η

)
dx− 4

ˆ

u′′u′η′ dx.

(1.6.10)
We estimate the last term integrating by parts as

ˆ

u′′u′η′ dx =
ˆ

(
|u′|2

2

)′
η′ dx = −

ˆ |u′|2
2
η′′ dx = −1

2

ˆ

u′(u′η′′) dx =
1
2

ˆ

uu′′η′′+uu′η′′′ dx.

Moreover,
ˆ

uu′η′′′dx =
ˆ

(
u2

2

)′
η′′′dx = −

ˆ

u2

2
η′′′′dx

and, again by Young’s inequality,
ˆ

uu′′η′′dx ≤
ˆ

1
2
η|u′′|2 +

1
2

|η′′|2
η

u2dx.

Inserting into (1.6.10), and using f(t)t ≥ 0 for all t ∈ R, we obtain
ˆ

|u′′|2η + p|u′|2η + f(u)uη dx ≤ C

ˆ

u2
( |η′′|2 + p|η′|2

η
+ |η′′′′|

)
dx. (1.6.11)

Fix m ∈ N large, R > 1, and let η = ϕm
R , where ϕR(x) = ϕ

(
x
R

)
and ϕ ∈ C∞

c (R, [0, 1])
is a nonnegative cut-off function such that

ϕ(x) =





1 if |x| ≤ 1,

0 if |x| ≥ 2.

Using 0 ≤ ϕR ≤ 1 and |ϕ(i)
R | ≤ C/Ri, an explicit calculation shows that

|η′|2
η

≤ C

R2
ϕm−2

R ≤ C

R2
ϕm−4

R ,
|η′′|2
η

≤ C

R4
ϕm−4

R , |η′′′′| ≤ C

R4
ϕm−4

R .

With this choice, (1.6.11) implies, through Hölder’s inequality, R > 1 and for any
m > 4 r

r−2 , r > 2, that

ˆ

f(u)uϕm
R dx ≤ C

R2

ˆ

u2ϕm−4
R dx

≤ C

R2

ˆ

u2ϕ
2m
r

R ϕ
(1− 2

r
)m−4

R dx

≤ C

R2

(ˆ
|u|rϕm

R dx

) 2
r
(ˆ

ϕ
m−4 r

r−2

R dx

)1− 2
r

≤ C

R2

(ˆ
|u|rϕm

R dx

) 2
r

R1− 2
r ,
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where we used that supp(ϕR) ⊆ [−2R, 2R]. Observe that (1.6.9) implies that there
exist K > 0, δ > 0 such that f(t)t > δ|t|2+ε, when |t| > K. Letting r = 2 + ε and
choosing m > 42+ε

ε , it follows, by Young’s inequality, that

δ

ˆ

{|u|>K}
|u|rϕm

R dx ≤
ˆ

{|u|>K}
f(u)uϕm

R dx ≤ C

R1+ r
2

(ˆ
|u|rϕm

R dx

) 2
r

≤ C

R1+ 2
r

[(ˆ

{|u|>K}
|u|rϕm

R dx

) 2
r

+
(ˆ

{|u|≤K}
|u|rϕm

R dx

) 2
r
]

≤ δ

2

ˆ

{|u|>K}
|u|rϕm

R dx+
Cδ,r

(R1+ 2
r )

r
r−2

+
CK2

R
.

Absorbing to the left the first term on the right, we obtain
ˆ

{|u|>K}
|u|rϕm

R dx ≤ Cδ,r

R
r+2
r−2

+
CK2

R
→ 0, for R → +∞,

which implies that ‖u‖∞ ≤ K. Therefore, by Theorem 1.6.2, u is constant.

1.6.2 The S-H case

In order to investigate the optimality of the hypotheses in Theorem 1.5.11, we prove
the following existence result. Notice that the main assumption is one-sided (much
in the spirit of (1.5.4)) and can be required to hold at +∞ instead.

Theorem 1.6.4. Let F ∈ C2 satisfy (1.6.2). For almost every q > 0 such that

24 lim sup
t→−∞

F (t)
t2

< q2 < 4F ′′(0), (1.6.12)

there exists a nontrivial periodic solution to (1.6.1).

We will divide the proof in some lemmas, letting in the following

α := lim sup
t→−∞

F (t)
t2

.

Lemma 1.6.3. Let F satisfy (1.6.2). For any 0 ≤ b < 2
√
F ′′(0) and any T > 0,

there exist ε > 0 and θ > 0 such that

Jq(u) ≥ θ‖u‖2
HT
, for all q ≤ b and ‖u‖HT

≤ ε.

Proof. We will suppose that F ′′(0) > 0, otherwise there is nothing to prove. We
choose η ∈ ]0, 1[ such that b < 2

√
ηF ′′(0). For a sufficiently small M it holds, by

Taylor’s formula,

F (t) ≥ ηF ′′(0)
t2

2
, for all |t| ≤ M.

Since
‖u‖∞ ≤ CT ‖u‖HT

,

we have that, for ε := M/CT , it holds

ˆ T

0
F (u) dx ≥ ηF ′′(0)

ˆ T

0

u2

2
dx, for all ‖u‖HT

≤ ε. (1.6.13)
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Integrating by parts, using u ∈ HT and applying Hölder’s inequality, we get

ˆ T

0
|u′|2dx =

[
uu′]T

0
−
ˆ T

0
uu′′dx ≤

(ˆ T

0
u2dx

)1/2(ˆ T

0
|u′′|2dx

)1/2

. (1.6.14)

By Young’s inequality in the form 2ab ≤ λa2 + b2/(4λ), we obtain
ˆ T

0
|u′|2 ≤ λ

ˆ T

0
|u′′|2 dx+

1
4λ

ˆ T

0
u2 dx,

which we rewrite as

b

ˆ T

0

|u′|2
2

≤ λb

ˆ T

0

|u′′|2
2

dx+
(
b

4λ
− ηF ′′(0)

)ˆ T

0
u2 dx+ ηF ′′(0)

ˆ T

0

u2

2
dx.

Using (1.6.13) we thus have, for all ‖u‖HT
≤ ε,

b

ˆ T

0

|u′|2
2

≤ λb

ˆ T

0

|u′′|2
2

dx+
ˆ T

0
F (u) dx+

(
b

4λ
− ηF ′′(0)

) ˆ T

0
u2 dx.

Rearranging and using Jq(u) ≥ Jb(u), we obtain

Jq(u) ≥ (1 − λb)
ˆ T

0
|u′′|2 dx+

(
ηF ′′(0) − b

4λ

)ˆ T

0
u2 dx,

if ‖u‖HT
≤ ε. Since b2 < 4ηF ′′(0) by assumption, we can choose

λ̄ ∈
]

b

4ηF ′′(0)
,
1
b

[
,

obtaining the claim with

θ = min
{

1 − λ̄b, ηF ′′(0) − 1
4λ̄

}
> 0.

Lemma 1.6.4. For any a > 0 such that a2 > 24α and all T > 0 such that

a−
√
a2 − 24α
2

<
π2

T 2
<
a+

√
a2 − 24α
2

, (1.6.15)

there exists a function ũ ∈ HT such that Jq(ũ) < 0, for all q ≥ a.

Proof. Fix θ > 1 and let, for µ ≥ 2, uµ(x) := µ
(

cos
(

π
T x
)−θ) ≤ (1−θ)µ. An explicit

calculation shows that
ˆ T

0
|u′′|2dx =

π4

2T 3
,

ˆ T

0
|u′|2dx =

π2

2T
, (1.6.16)

so that

Jq(uµ) = µ2T

4

(
π

T

)2[(π
T

)2

− q

]
+
ˆ T

0
F (uµ)dx.

Furthermore, for any ε > 0 there exists K > 0 such that

F (t) ≤ (α+ ε)t2, for all t ≤ −K.

Letting now µ ≥ K/(θ − 1), we deduce that uµ ≤ (1 − θ)µ ≤ −K and thus
ˆ T

0
F (uµ) dx ≤ (α+ ε)µ2

ˆ T

0

(
cos(

π

T
x) − θ

)2

dx ≤ (α+ ε)µ2
(
T

2
+ θ2T

)
.
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Since q ≥ a, we infer

Jq(uµ) ≤ µ2T

4

[(
π

T

)4

− a

(
π

T

)2

+ 2(α+ ε)(1 + 2θ2)
]

and, letting z = π2/T 2, Jq(uµ) < 0 amounts to the existence of positive solutions to
z2 − az + 2(α+ ε)(1 + 2θ2) < 0, i.e.

a2 < 8(α+ ε)(1 + 2θ2).

Letting ε → 0 and θ → 1, we obtain the claim.

Thanks to Lemmas 1.6.3 and 1.6.4, we obtain that Jq has the so-called mountain

pass geometry, uniformly on compact subintervals [a, b] ⊆ ]
√

24α, 2
√
F ′′(0)[. Indeed,

it suffices to observe that T =
√

2π/
√
a satisfies (1.6.15) and consider Jq on HT .

Moreover, q 7→ Jq(u) is monotone non-increasing in q, for any u ∈ HT , and thus
Struwe’s monotonicity trick provides, for a.e. q ∈ [a, b], a bounded Palais-Smale
sequence (un) ⊆ HT for Jq, at the mountain-pass level cq,T > 0. Reasoning as in
[123], this in turn provides a mountain-pass critical point uq ∈ HT , that is, through
Proposition 1.6.1, a 2T -periodic solution of (1.6.1). The proof of Theorem 1.6.4 is
thus complete.

Remark 1.6.2. Inspecting the proof, one can rephrase the previous theorem putting

more emphasis on the possible periods for which existence occurs. Namely, since we

are assuming 6α < F ′′(0) (otherwise there is nothing to prove), elementary calculus

shows that then

inf
z>0

z +
6α
z
< 2

√
F ′′(0).

Therefore, we can fix T > 0 such that

π2

T 2
+

6αT 2

π2
< 2

√
F ′′(0).

Then the previous proof shows that, for almost any q such that

π2

T 2
+

6αT 2

π2
< q < 2

√
F ′′(0),

there exists a 2T -periodic solution to (1.6.1).

The numbers that appear in (1.6.12) are probably not optimal, however they
allow the construction of an example showing that condition (1.5.7) is essential for
non-existence.

Example 1.6.1. We claim that there exists F ∈ C2 such that F ′′(0) > 0 and (1.5.6)
holds, with (1.6.1) having a nontrivial periodic (thus bounded) solution, for almost

every q > 0 such that q2 < 4F ′′(0).
Indeed, one can easily construct F ∈ C2 such that

1. F ′′(0) > 0 = F (0),

2. F ′(t)t > 0, for all t 6= 0,

3. it holds

lim sup
t→−∞

F (t)
t2

= 0.
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Then, Theorem 1.6.4 provides a periodic solution u for almost every q ∈ [0, 2
√
F ′′(0)].

Using Taylor’s formula, (1.5.6) holds with 1 = r < p = 2 and some a, b > 0, for t

in a bounded open neighborhood U of u(R). Moreover, we can modify F outside of

u(R) so that (1.5.6) holds anywhere.

The direct method of Calculus of Variations immediately provides the following
existence result, Theorem 1.6.5, which allows us to generalize Theorem 1.5.12. First,
we put two lemmas that are useful tools for the proof of the theorem. For a precise
range of the values of T for which the thesis holds, we refer to the remark below.

Lemma 1.6.5. Let F ∈ C2 with F (0) = F ′(0) = 0. For any q > 2
√
F ′′(0), there

exists T > 0 such that infHT
Jq < 0.

Proof. Choosing u(x) = cos
(

π
T x
)
, we have

´ T
0 u2 dx = T

2 . For any ε > 0 there exists
M > 0 such that F (t) ≤ (F ′′(0) + ε)t2/2, for all |t| ≤ M . For all 0 < λ < M , let
now uλ(x) := λu(x). A direct calculation using (1.6.16) shows that

Jq(uλ) ≤ λ2 π
2

4T

(
π2

T 2
− q

)
+
ˆ T

0
F (uλ)dx

≤ λ2 π
2

4T

(
π2

T 2
− q

)
+
F ′′(0) + ε

2
λ2

ˆ T

0
u(x)2dx

≤ λ2

4

[
π2

T

(
π2

T 2
− q

)
+ (F ′′(0) + ε)T

]
=: λ2A.

Now, A < 0 amounts to z2 − qz + (F ′′(0) + ε) < 0 having a positive solution
z = π2/T 2, which holds as long as q2 − 4(F ′′(0) + ε) > 0. Letting ε → 0 completes
the proof.

Remark 1.6.3. Clearly, the previous lemma also provides with a precise interval

of possible periods T for which infHT
Jq < 0. Indeed, the thesis holds for all T such

that
q −

√
q2 − 4F ′′(0)

2
<
π2

T 2
<
q +

√
q2 − 4F ′′(0)

2
.

Thus, in the degenerate case F ′′(0) = 0, we see that, for all sufficiently large T

(precisely, for qT 2 > π2), the thesis of the previous lemma holds. This will be

essential in the study of the asymptotic behavior, as q ↓ 0, of solutions to the S-H

equation.

Lemma 1.6.6. Suppose that F ∈ C2 satisfies F ≥ 0 and

lim inf
|t|→+∞

F (t)
t2

≥ α, for some α ∈ ]0,+∞[.

Then, Jq is bounded from below on HT , for any q <
√

2α.

Proof. Clearly, we can suppose that q > 0, otherwise Jq ≥ 0 trivially. Since Jq(u) ≥
− q

2‖u′‖2
2, it suffices to bound from above ‖u′‖2, for any u ∈ HT such that Jq(u) ≤ 0.

Therefore, we can suppose that ‖u′‖2 6= 0 and
ˆ T

0
|u′′|2 dx+ 2

ˆ T

0
F (u) dx ≤ q

ˆ T

0
|u′|2 dx. (1.6.17)

In particular, it holds ‖u′′‖2
2 ≤ q‖u′‖2

2 which, inserted into (1.6.14), gives
ˆ T

0
|u′|2 dx ≤

(ˆ T

0
u2dx

)1/2(
q

ˆ T

0
|u′|2dx

)1/2

,
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i.e., being ‖u′‖2 6= 0,
ˆ T

0
|u′|2dx ≤ q

ˆ T

0
u2dx.

For any θ ∈ ]0, 1[, let M > 0 be such that F (t) ≥ θαt2, for all |t| > M . From the
previous displayed inequality and (1.6.17), we obtain

ˆ T

0
|u′|2dx ≤ q

(ˆ

{|u|>M}
u2dx+

ˆ

{|u|≤M}
u2 dx

)

≤ q

(ˆ

{|u|>M}

F (u)
θα

dx+M2|{|u(x)| ≤ M}|
)

≤ q

(ˆ T

0

F (u)
θα

dx+M2T

)

≤ q

(
q

2θα

ˆ T

0
|u′|2dx+M2T

)
,

which implies (
1 − q2

2θα

)ˆ T

0
|u′|2dx ≤ qM2T.

If q2 ≤ 2θα, then 1 − q2

2θα > 0, and ‖u′‖2 is universally bounded. Being θ ∈ ]0, 1[
arbitrary, we obtain the claim.

Theorem 1.6.5. Let F satisfy (1.6.2). For any q > 0 such that

4F ′′(0) < q2 < 2 lim inf
|t|→+∞

F (t)
t2

,

there exists a nontrivial periodic solution to (1.6.1).

Proof. By the previous two lemmas, −∞ < infHT
Jq < 0, for some T > 0. Moreover,

the proof of Lemma 1.6.6 shows that there exists a constant C = C(q, T, F ) such
that

Jq(u) ≤ 0 ⇒ ‖u′‖2
2 ≤ C,

which implies, for any u ∈ {u ∈ HT : Jq(u) ≤ 0}, that

‖u′′‖2
2 ≤ 2Jq(u) + q‖u′‖2

2 ≤ qC.

Finally, we can assume that

lim inf
|t|→+∞

F (t)
t2

> 0

(otherwise there is nothing to prove), and thus there exists M > 0 such that F (t) ≥
αt2/2, for |t| ≥ M . Still for u such that Jq(u) ≤ 0, it holds

‖u‖2
2 ≤

ˆ

{|u|≤M}
u2 dx+

2
α

ˆ

{|u|≥M}
F (u) dx

≤ M2T +
2
α

ˆ T

0
F (u) dx

≤ M2T +
2
α

(
Jq(u) + q‖u′‖2

2

)

≤ M2T +
2qC
α

.

Hence, {u ∈ HT : Jq(u) ≤ 0} is bounded, and thus weakly sequentially relatively
compact. Now, Lemma 1.6.1 provides the existence of a minimum ū, which is
nontrivial, due to Jq(ū) < 0. Finally, Proposition 1.6.1 implies that the 2T -periodic
even extension of ū is a solution to (1.6.1).
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1.6.3 Asymptotic behavior

In this section we discuss the asymptotic behavior, as q ↓ 0, of the periodic solutions
of (1.6.1) obtained in Theorem 1.6.5. Clearly, in order to allow q ↓ 0, we will assume
in the following that F ′′(0) = 0. Upon vertical and horizontal translations of the
potential F , we can suppose that 0 = F (0) = minR F . We define

F̃ (t) := min{F (t), F (−t)}, H(t) =
(
F̃ (
√

|t|)
)∗
. (1.6.18)

Lemma 1.6.7. Suppose that F ∈ C2 satisfies

Argmin(F ) = {0}, (1.6.19)

lim inf
|t|→+∞

F (t)
t2

> 0, (1.6.20)

F ′′(0) = 0. (1.6.21)

Then H, defined in (1.6.18), is an even convex function such that

ϕ(t) :=





H(t)
t if t 6= 0,

0 if t = 0

is continuous and strictly increasing.

Proof. Since G(t) := F̃ (
√

|t|) is even, it follows immediately that H is even. From
(1.6.20) we can find λ > 0 such that F (x) ≥ λ|x|2, for any sufficiently large |x|, which
implies that F̃ (

√
t) ≥ λ|t|, for sufficiently large |t|. Therefore, G satisfies (1.6.3) and

thus Lemma 1.6.2 provides Argmin(H) = Argmin(G) = Argmin(F ) = {0}, by
assumption. Moreover, by construction

H(t) ≤ F̃
(√|t|) ≤ F

(√|t|),

so that (1.6.21) implies

lim
t→0

H(t)
t

= 0. (1.6.22)

In particular, ϕ is continuous. We then observe that, for t 6= 0,

ϕ(t) =
H(t) −H(0)

t− 0
,

and the convexity of H implies that ϕ is non-decreasing. To prove strict mono-
tonicity, suppose, by contradiction, that ϕ(t1) = ϕ(t2) for some t1 < t2. Since
ϕ(t)t > 0 for t 6= 0, we can assume, without loss of generality, that t1 > 0. Since ϕ
is non-decreasing, we infer ϕ(t) = ϕ(t1) =: λ > 0, for all t ∈ [t1, t2], i.e., H(t) = λt,
for t ∈ [t1, t2]. Therefore, λt is a support line for H and, by convexity, we obtain
H(t) ≥ λt, for all t > 0. This in turn implies that H(t) ≥ λ|t|, being H even, and
we reach a contradiction through (1.6.22).

Theorem 1.6.6. Suppose that (1.6.19), (1.6.20), (1.6.21) hold and qT 2 > π2. Then,

the minimum uq,T of Jq on HT exists, is nontrivial and satisfies

Osc(uq,T )2 ≤ qT 2ϕ−1
(
q2

2

)
, (1.6.23)

where ϕ is the function given in Lemma 1.6.7.
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Proof. Clearly, (1.6.19) implies, eventually adding a constant, that (1.6.2) holds.
Thus, Theorem 1.6.5 and Remark 1.6.3 show the existence part of the statement.
We let, for simplicity, u := uq,T . From infHT

Jq ≤ 0 we deduce

ˆ T

0
|u′′|2 dx+ 2

ˆ T

0
F (u) dx ≤ q

ˆ T

0
|u′|2 dx. (1.6.24)

Let H be given by (1.6.18). By the previous lemma, we infer in particular that
limt→+∞H(t) = +∞, so that H is invertible on [0,+∞[. By Jensen’s inequality we
have

H

( T

0
u2dx

)
≤
 T

0
H(u2)dx ≤

 T

0
F (u)dx,

hence
ˆ T

0
u2dx ≤ TH−1

( T

0
F (u)dx

)
.

Therefore, from (1.6.14) and (1.6.24) we have

ˆ T

0
|u′|2dx ≤ T 1/2

[
H−1

( T

0
F (u)dx

)]1/2(
q

ˆ T

0
|u′|2dx

)1/2

,

and simplifying we get

ˆ T

0
|u′|2dx ≤ qTH−1

( T

0
F (u)dx

)
.

Since H−1 is increasing on [0,+∞[, using again (1.6.24) we have

1
qT

ˆ T

0
|u′|2dx ≤ H−1

(
q

2

 T

0
|u′|2dx

)
.

Letting z = z(q, T ) := 1
qT

´ T
0 |u′|2dx, and ϕ(z) = H(z)/z, the last inequality reads

ϕ(z) ≤ q2

2
.

By Lemma 1.6.7, ϕ is invertible on {|ϕ| ≤ q2/2}, for sufficiently small q, so that

ˆ T

0
|u′|2dx ≤ qTϕ−1

(
q2

2

)
(1.6.25)

and, using the standard inequality

Osc(u)2 ≤ T

ˆ T

0
|u′|2 dx,

we obtain (1.6.23).

Corollary 1.6.1. Suppose F satisfies (1.6.19), (1.6.20) and (1.6.21). Then, for any

q > 0, there exists T (q) > 0 such that the minimum uq,T (q) of Jq on HT exists, is

nontrivial and satisfies

lim
q→0

‖uq,T (q)‖∞ = 0.
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Proof. For any q > 0 we choose T (q) such that

T (q) >
π√
q
, lim

q→0+
qT 2(q)ϕ−1

(
q2

2

)
= 0

(e.g., π2 < qT 2(q) ≤ K, for some K > π2, suffices). The previous theorem provides
the nontrivial solution uq,T (q) satisfying Osc(uq,T (q)) → 0 and, to complete the proof,
it suffices to show that uq,T (q)(0) → 0. Suppose by contradiction that uqn,T (qn)(0) ≥
ε > 0, for some qn → 0+, and let un = uqn,T (qn), Tn = T (qn). By (1.6.24) and
(1.6.25) it holds

ˆ Tn

0
F (un) dx ≤ qn

2

ˆ Tn

0
|u′

n|2 dx ≤ 1
2
q2

nT
2
nϕ

−1
(
q2

n

2

)
→ 0.

Since Osc(un) → 0, for sufficiently large n it holds un(x) ≥ un(0) − Osc(un) > ε/2
for any x, which implies

ˆ Tn

0
F (un) dx ≥ ε

2
Tn >

πε

2
√
qn

→ +∞,

which contradicts the previous displayed estimate.

The case of homogeneous potentials

Suppose now that F is homogeneous, e.g., F (u) = |u|r
r . We thus focus on the model

equation
u′′′′ + qu′′ + |u|r−1u = 0. (1.6.26)

Theorem 1.6.7. Let r > 2. If (un) is a sequence of bounded solutions to (1.6.26),
for some qn ↓ 0, then

lim
n

‖un‖∞ = 0.

Proof. Suppose u is any bounded nontrivial solution to (1.6.26) and let vλ(x) :=
u(λx), for all λ > 0. Observe that Osc(vλ) = Osc(u) and that vλ solves

v′′′′
λ + qλ2v′′

λ + λ4|vλ|r−2vλ = 0.

Furthermore, if

wλ(x) :=
vλ(x)

Osc(vλ)
=

vλ(x)
Osc(u)

,

wλ solves
w′′′′

λ + qλ2w′′
λ + λ4Osc(u)r−2|wλ|r−2wλ = 0

for all λ > 0. Choosing λ4 = Osc(u)2−r, we obtain

w′′′′ +
q

Osc(u)γ
w′′ + |w|r−2w = 0.

Applying this scaling argument to u = un, q = qn and letting On = Osc(un),
wn = un/On, γ = r

2 − 1 > 0, we get

w′′′′
n +

qn

Oγ
n
w′′

n + |wn|r−2wn = 0. (1.6.27)

We claim that
lim inf

n

qn

Oγ
n

≥ β > 0. (1.6.28)
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Arguing by contradiction, suppose that, up to a not relabeled subsequence,

lim
n

qn

Oγ
n

= 0. (1.6.29)

In particular, we can suppose, without loss of generality, that qn/Oγ
n ≤ 1. From

(1.6.27) we have
|w′′′′

n | ≤ |w′′
n| + |wn|r−1

which, using the L∞-interpolation inequality ‖u′′‖∞ ≤ C
√

‖u‖∞‖u′′′′‖∞ and Young’s
inequality, implies

‖wn‖C4(R) ≤ C‖wn‖∞. (1.6.30)

We now want to prove that ‖wn‖∞ ≤ 1. On the contrary, suppose that ‖wn‖∞ >

1. Then, without loss of generality, we can suppose that supwn > 1 and, since
Osc(wn) = 1, we have wn(x) > 0 for all x ∈ R. This implies, through (1.6.27), that

(
w′′

n +
qn

Oγ
n
wn

)′′
= −|wn|r−2wn < 0 anywhere in R, (1.6.31)

hence the function w′′
n + qn

Oγ
n
wn is concave. Since it is also bounded, it must be

constant, contradicting the strict inequality in (1.6.31).
Let In be the interval wn(R). From

|In| = 1, In ⊆ [−1, 1],

a standard compactness argument shows that (up to a not relabeled subsequence)
there exists an interval J of length 1/2 such that J ⊆ int(In), for all n. Let λ ∈
J \ {0}. Being λ ∈ wn(R), let xn be such that wn(xn) = λ, and let vn(x) :=
wn(x+xn). Clearly, vn solves (1.6.27) and satisfies Osc(vn) ≡ 1. Moreover, (1.6.30)
and ‖vn‖∞ = ‖wn‖∞ ≤ 1 show, by Ascoli-Arzelà’s Theorem, that (vn) is a compact
sequence in C3

loc(R), which we can suppose converges to some v0 ∈ C3
loc(R). Passing

to the limit in the weak formulation of (1.6.27) and using (1.6.29) we obtain

v′′′′
0 + |v0|r−2v0 = 0

weakly, and thus strongly. Now, Theorem 1.6.2 implies v0 ≡ 0, contradicting

v0(0) = lim
n
vn(0) = lim

n
wn(xn) = λ 6= 0.

Thus (1.6.28) is proved, implying that, for any sufficiently large n, it holds

Osc(un)γ ≤ 2
β
qn,

which proves that
Osc(un) → 0. (1.6.32)

It remains to prove that un(0) → 0. The argument is the same as before and we
only sketch it. If un(0) ≥ ε > 0, then, by (1.6.32), for sufficiently large n it holds
un(x) ≥ ε

2 > 0, for all x ∈ R, which implies

(
u′′

n + qnun
)′′ = −|u|r−2u < 0 everywhere.

Being u′′
n + qnun bounded, it must be constant, contradicting the previous strict

inequality.
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1.7 Further developments

1. We studied equation (1.3.1) in the case q ∈ R. It would be interesting to know
if such results can be still obtained if we consider a function g = g(u) instead
of q, with suitable properties, thus leading to the equation

u′′′′ − g(u)u′′ − 1
2
g′(u)u′2 + F ′(u) = 0. (1.7.1)

This was already made in [19, 20, 61] for the existence of heteroclinic solutions
of (1.7.1) in the case when g ∈ C1(R) is a nonnegative function.

2. It is worth noting that, while (1.5.4) and (1.6.9) are roughly complementary
conditions to establish (or rule out) existence of global nontrivial solutions
to (1.3.1), a truly necessary and sufficient condition is still missing. It is
worth comparing with the well known Keller-Osserman necessary and sufficient
condition

ˆ ±∞

∗
|F (t)|− 1

2 dt < +∞

for the blow-up of solutions to the second order ODE u′′ − F ′(u) = 0. Even
for q = 0, no such integral optimal condition is known for (1.3.1).

3. Equation (1.3.1) has a natural extension in R
N to the following biharmonic

equation
∆2u+ q∆u+ F ′(u) = 0, q ∈ R, (1.7.2)

where ∆2 is the bi-Laplace operator. It would be interesting to see if our hy-
potheses on the functional F allow us to obtain existence of bounded solutions
to equation (1.7.2).
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Chapter 2

Elliptic problems involving the

critical exponent

2.1 Introduction

One of the most useful tools in the theory of partial differential equation and in
particular in the calculus of variations is represented by the Sobolev embedding
theorems, also called Sobolev inequalities, which have received great attention from
a large number of authors. Let p be a number such that 1 ≤ p < ∞. We denote
by Lp(RN ), Lp(RN ;RN ) and W 1,p(RN ) the usual Lebesgue and Sobolev spaces
equipped with the norms ‖ · ‖p and ‖ · ‖1,p given by

‖u‖p =
(ˆ

RN

|u|pdx
) 1

p

, ‖∇u‖p =
(ˆ

RN

|∇u|pdx
) 1

p

,

‖u‖1,p =
(ˆ

RN

|∇u|pdx+
ˆ

RN

|u|pdx
) 1

p

.

Similar definitions hold if RN is replaced by an arbitrary domain Ω. In particular,
on the boundary ∂Ω, we use the (N − 1)-dimensional Hausdorff (surface) measure
denoted by σ. Then, in a natural way we can define the Lebesgue spaces Ls(∂Ω)
with 1 ≤ s ≤ ∞ and the norms ‖ · ‖s,∂Ω which are given by

‖u‖s,∂Ω =
(ˆ

∂Ω
|u|sdσ

) 1
s

(1 ≤ s < ∞), ‖u‖∞,∂Ω = ess sup
∂Ω

|u|.

Probably the simplest starting point for a Sobolev inequality is to find an exponent
q > 0 such that

‖u‖Lq(RN ) ≤ C‖∇u‖Lp(RN ) (2.1.1)

for all u in an appropriate subfamily of W 1,p(RN ). Assume for simplicity that
u ∈ C1

c (RN ) and for r > 0 define the rescaled function

ur(x) := u(rx), x ∈ R
N .

If (2.1.1) holds for ur, we get
(ˆ

RN

|u(rx)|qdx
)1/q

=
(ˆ

RN

|ur(x)|qdx
)1/q

≤ C

(ˆ

RN

|∇ur(x)|pdx
)1/p

= C

(
rp

ˆ

RN

|∇u(rx)|pdx
)1/p

,
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or, equivalently, after the change of variables y := rx,
(

1
rN

ˆ

RN

|u(y)|qdy
)1/q

≤ C

(
rp

rN

ˆ

RN

|∇u(y)|pdy
)1/p

,

that is (ˆ

RN

|u(y)|qdy
)1/q

≤ Cr
1− N

p
+ N

q

(ˆ

RN

|∇u(y)|pdy
)1/p

.

If 1 − N
p + N

q > 0, let r → 0+ to conclude that u ≡ 0, while if 1 − N
p + N

q < 0, let
r → +∞ to conclude again that u ≡ 0. Hence, the only possible case is when

N

q
=
N

p
− 1.

So in order for q to be positive, we need p < N , in which case

q = p∗ :=
Np

N − p
.

The number p∗ is called the Sobolev critical exponent. Inequality (2.1.1) is justified
by the following seminal theorem.

Theorem 2.1.1 (Sobolev-Gagliardo-Nirenberg’s embedding theorem). Let 1 ≤ p <

N . Then, there exists a constant C = C(N, p) > 0 such that for every function

u ∈ Lp(RN ) vanishing at infinity it holds

(ˆ

RN

|u(x)|p∗
dx

)1/p∗

≤ C

(ˆ

RN

|∇u(x)|pdx
)1/p

.

In particular, W 1,p(RN ) is continuously embedded in Lq(RN ) for all p ≤ q ≤ p∗.

A quite subtle issue concerning inequality (2.1.1) is that of the optimal constant
C. When p = 1, this question was settled independently by Federer and Fleming
[48] and Maz’ya [94] at the beginning of 1960. The problem for p ∈ (1, N) was
solved only about fifteen years later, again independently in two papers by Aubin
[10] and Talenti [131]. Talenti, in particular, evaluated the following expression

C = sup
‖u‖q

‖∇u‖p
, (2.1.2)

where the supremum is taken in the class of all not identically zero smooth functions
u which decay rapidly at infinity. Incidentally, the supremum in question does not
change if the involved functions are restricted to have their support in some fixed
open set. If 1 < p < N and q = p∗, then (2.1.1) can be proved for functions u in
C1

0 (RN ) by using the straightforward representation formula

u(x) = −Γ(N/2)
2πN/2

ˆ

RN

|x− y|1−N
N∑

k=1

xk − yk

|x− y|
∂u

∂xk
(y)dy

and by applying to the right-hand side an N -dimensional version of a theorem of
Hardy-Littlewood concerning fractional integrals. This is the method of Sobolev
[124, 125], but unfortunately it neither gives the exact value of the best constant C
nor explicit estimates for C. On the contrary, Talenti in [131] gave the best value
of C, proving that

C = π−1/2N−1/p
(
p− 1
N − p

)1−1/p { Γ(1 +N/2)Γ(N)
Γ(N/p)Γ(1 +N −N/p)

}1/N

.
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Moreover, the ratio in (2.1.2) attains its maximum value C on functions u of the
form

u(x) = [a+ b|x|p/(p−1)]1−N/p,

where |x| = (x2
1+· · ·+x2

N )1/2 and a, b are positive constants. One can also ask on the
validity of Theorem 2.1.1 if one replaces R

N with a domain Ω. It is easily seen (cf.
[82, Exercise 11.7]) that Theorem 2.1.1 fails for an arbitrary Ω, since its validity is
intimately related to the regularity of the boundary. But, if Ω is a bounded domain
with a Lipschitz ∂Ω, then Theorem 2.1.1 is still true, provided that u|∂Ω = 0 (cf.
[82, Corollary 11.9]).

Another important question related to the Sobolev inequalities on bounded do-
mains is the compactness of the embedding W 1,p(Ω) ↪→ Lq(Ω), as the next result
states.

Theorem 2.1.2 (Rellich-Kondrachov’s theorem). Let 1 ≤ p < N and let Ω ⊂ R
N

be a bounded domain with Lipschitz boundary. Let (un) ⊆ W 1,p(Ω) be a bounded

sequence. Then, there exist a subsequence (unk
) of (un) and a function u ∈ Lp∗

(Ω)
such that unk

→ u in Lq(Ω) for all 1 ≤ q < p∗.

The most important consequence of this theorem is that the embedding

W 1,p(Ω) ↪→ Lp∗
(Ω) (2.1.3)

is actually non compact. The lack of compactness for the embedding (2.1.3) has
important consequences in the theory of partial differential equations. Indeed, the
main difficulty is that the functional associated to a prescribed problem does not

satisfy the Palais-Smale condition. Hence there are serious difficulties when trying
to find its critical points by standard variational methods. A brief description of
this phenomenon is provided below.

2.2 Boundary value problems with critical exponent

The aim of this section is to present some boundary value problems which involve
the critical exponents both in the domain and on the boundary. This would not
be an exhaustive list of such problems, instead it is only an attempt to give to the
reader an idea of which are the difficulties when dealing with problems where the
critical exponent is involved. In what follows, by S we mean the best constant for
the Sobolev embedding W 1,p

0 (Ω) ↪→ Lp∗
(Ω), for every 1 < p < N .

2.2.1 Dirichlet condition

Let Ω be a bounded domain in R
N with N ≥ 3. We are concerned with the following

nonlinear elliptic problem

−∆u = ur + λu in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(2.2.1)

where r = 2∗ − 1. Solutions of (2.2.1) correspond to critical points of the functional

Φλ(u) =
1
2

ˆ

Ω
|∇u|2dx− λ

2

ˆ

Ω
|u|2dx− 1

2∗

ˆ

Ω
|u|2∗

dx.
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Owing to Theorem 2.1.2, we already know that the functional Φλ does not satisfy
the (PS) condition (that is, if (uj) ⊆ H1(Ω) is a sequence such that Φλ(uj) → c ∈ I
and Φ′

λ(uj) → 0 in H−1(Ω) as j → +∞, then there exists a subsequence of (uj)
which converges weakly to u0 6= 0, and u0 is a critical point of Φλ(u)). Therefore, the
problem of finding critical points of Φλ by standard variational methods arises. In
fact, there is a sharp contrast between the case r < 2∗ − 1 and the case r = 2∗ − 1.
Many existence results for problem (2.2.1) are known when r < 2∗ − 1 (see the
review article by P.L. Lions [85] and its references). On the other hand, a well-
known nonexistence result of Pohozaev [110] asserts that if Ω is starshaped there is
no solution of problem (2.2.1) when λ ≡ 0.

In [23] the authors used a different viewpoint, namely looking for critical points
of the functional u 7→

´

Ω |∇u|2dx − λ
´

Ω u
2dx on the sphere ‖u‖2∗ = 1, which are

seen to satisfy the equation

−∆u− λu = µu2∗−1,

where µ is a Lagrange multiplier. After ’stretching’ the Lagrange multiplier they
obtained a solution of (2.2.1) by proving that for suitable λ’s

inf
u∈H1

0
‖u‖2∗ =1

{ˆ

Ω
|∇u|2dx− λ

ˆ

Ω
u2dx

}
is achieved. (2.2.2)

The major difficulty in proving (2.2.2) stems from the fact that the function u 7→
‖u‖2∗ is not continuous under weak convergence in H1

0 (Ω). The decisive device in
order to overcome this lack of compactness is to establish that for suitable λ’s we
have

inf
u∈H1

0
‖u‖2∗ =1

{ˆ

Ω
|∇u|2dx− λ

ˆ

Ω
u2dx

}
< inf

u∈H1
0

‖u‖2∗ =1

{ˆ

Ω
|∇u|2dx

}
≡ S.

Their arguments are mainly inspired by Aubin [9], and have led to the conclusion
that, if λ1 is the first eigenvalue of −∆ on H1

0 (Ω), there exists a constant λ∗ ∈ [0, λ1)
such that (2.2.1) has a positive solution for λ ∈ (λ∗, λ1). Moreover, if N ≥ 4, then
λ∗ = 0.

When p 6= 2, problem (2.2.1) was studied in [60]. Suppose that λ1 is the best
Poincaré constant in W 1,p

0 (Ω), that is

λ1 = max
{
ρ > 0 :

ˆ

Ω
|∇u|pdx ≥ ρ

ˆ

Ω
|u|pdx, ∀u ∈ W 1,p

0 (Ω)
}
.

They proved that there exists a solution u ∈ W 1,p
0 (Ω)∩C1,α(Ω), for some α ∈ (0, 1),

if 1 < p2 ≤ N and 0 < λ < λ1. The ideas for proving this result are essentially
the same as those of [23, 9, 137]: they first define Sλ as in (2.2.2), and proved that
Sλ < S for every λ > 0. If 0 < Sλ < S, then the infimum is achieved by some u
which gives (after some stretching) a solution of the equation. The most delicate
point is to obtain a-priori C1,α(Ω) estimates on approximating solutions and for
which they used Tolksdorf’s method [134].

Let now Ω ⊆ R
N be a smooth bounded domain, let 1 < q < p < N, λ > 0 and

consider the following problem

∆pu = |u|p∗−2u+ λ|u|q−2u in Ω,

u = 0 on ∂Ω.
(2.2.3)
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Evidently, solutions of (2.2.3) are critical points of the functional

I(u) =
1
p

ˆ

Ω
|∇u|pdx− 1

p∗

ˆ

Ω
|u|p∗

dx− λ

q

ˆ

Ω
|u|qdx.

In [51] the authors proved the existence of at least two solutions for problem (2.2.3)
by essentially using three main tools: the local (PS) condition, the Mountain Pass
lemma and energy estimates.

2.2.2 Homogeneous Robin condition

Let Ω be a bounded domain in R
N , N ≥ 3, with C1 boundary and consider the

following problem
−∆u = u2∗−1 + f(x, u) in Ω,

u > 0 in Ω,

∂u

∂n
+ α(x)u = 0 on ∂Ω.

(2.2.4)

Here n is the unit outward normal to ∂Ω, α is a nonnegative function and f(x, u) is a
lower order perturbation of u2∗−1 at infinity such that f(x, 0) = 0. It was proven by
Wang [144] that the weak solutions of (2.2.4) are equivalent to the nonzero critical
points of the functional

J(u) =
ˆ

Ω

(
1
2

|∇u|2 − 1
2∗ (u+)2∗ − F (x, u)

)
dx+

1
2

ˆ

∂Ω
α(x)u2dσ,

where F (x, u) =
´ u

0 f(x, t)dt. Although the standard variational methods are not
working in this case, Wang applied a general existence theorem based on a variant of
the Mountain Pass lemma. Indeed, he proved that J(u) satisfies the (PS)c condition
in a weak sense for c ∈ (0, (1/(2N)SN/2) =: I.

Consider now the following boundary value problem

−∆u = |u|2∗−2u in Ω,

∂u

∂n
+ u+ |u|2∗−2u = 0 on ∂Ω,

(2.2.5)

where Ω ⊆ R
N , N ≥ 4, is a bounded domain with a smooth C2 boundary and

2∗ := 2(N − 1)/(N − 2) is the limiting exponent for the embedding of H1(Ω) into
Lq(∂Ω). The main interest in studying this kind of problem rests in the presence
of critical exponents both in the equation and in the nonlinear boundary condition.
Reasoning as in the previous cases, weak solutions of (2.2.5) are the critical points
of the following C1 functional

F (u) =
1
2

ˆ

Ω
|∇u|2dx− 1

2∗

ˆ

Ω
|u|2∗

dx+
1
2

ˆ

∂Ω
|u|2dσ +

1
2∗

ˆ

∂Ω
|u|2∗dσ.

In [109], Pierotti and Terracini made careful analysis of the features of a (PS) se-
quence for F , in order to overcome its lack of compactness. Following the same point
of view adopted by Struwe in [128] for the Dirichlet problem, they determined ’safe’
sublevels where standard critical point theorems apply obtaining, as a consequence,
the existence of critical points for F .
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2.3 Physical and geometrical background

Our motivation for investigating the aforementioned problems comes from the fact
that they resemble some variational problems in geometry and physics where lack
of compactness also occurs. The most notorious example, for historical motivations,
is the Yamabe’s problem.

2.3.1 Yamabe’s problem

Riemannian differential geometry originated in attempts to generalize the successful
theory of compact surfaces. From the earliest days, conformal changes of metric (i.e.,
multiplication of the metric by a positive function) have played an important role
in surface theory. A well-known open question is to determine whether a given
compact Riemannian manifold is conformally equivalent to one of constant scalar
curvature. This problem is known as the Yamabe’s problem because it was stated in
1960 by Yamabe [151], and can be formulated as follows. Given a smooth, compact
manifold M of dimension N ≥ 3 with a Riemannian metric g, does there exist a
metric g′ conformal to g for which the scalar curvature of g′ is constant?

While Yamabe’s paper claimed to solve the problem in the affirmative, Trudinger
[137] found that this paper was seriously incorrect, and improved it in the case of
nonpositive scalar curvature. Progress was made in the case of positive scalar curva-
ture by Aubin [11], who solved the problem for a manifold M such that dimM ≥ 6.
Up until this time, Aubin’s method has given no information on the Yamabe’s
problem in dimensions 3, 4 and 5. Moreover, his method exploited only the local
geometry of M in a small neighborhood of a point, and hence could not be used on
a conformally flat manifold where the Yamabe’s problem is clearly global.

In [118] Schoen introduced a new global idea for this problem. More specifically,
he asserted the existence of a positive solution u of M of the equation

∆u− N − 2
4(N − 1)

Ru+ u2∗−1 = 0, (2.3.1)

where R > 0 is the scalar curvature of M . By its intrinsic geometric meaning
equation (2.3.1) is conformally invariant (see [12, Proposition, p. 126] or [129,
page 194]). For this reason, the Yamabe’s problem can be seen as a noncompact
variational problem, for which the loss of compactness caused by the invariant action
of its conformal group leads to possible spikes formation. To overcome this difficulty,
the a-priori knowledge of the energy range where the Palais-Smale condition holds is
helpful, and sometimes suffices to construct critical points. From this point of view,
the problem was solved in complementing cases by Aubin [9] and Schoen [118].

2.3.2 Existence of extremal functions in functional inequalities

One of the main difficulties in the study of variational problems set in unbounded
domains (the so-called limit-cases problems) is the possible loss of compactness
caused by the invariance of RN by the non-compact group of dilations and the non-

compact group of translations.
The dilations invariance of RN is a typical difficulty in the study of the existence

of extremal functions in functional inequalities. Indeed, if A is a linear bounded
operator between two Banach spaces E and F , one may consider the smallest positive
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constant C0 such that the following inequality holds

‖Au‖F ≤ C0‖u‖E ∀u ∈ E. (2.3.2)

If E,F are functional spaces, it is often the case that (2.3.2) is preserved if we
perform a scale change, namely replacing u(·) by u(·/σ) for σ > 0. Moreover, one
may ask whether the best constant C0 is obtained for some u. This is equivalent to
solving one of the following minimization problems

(a) min{‖u‖E : u ∈ E, ‖Au‖F = 1},
or (b) min{−‖Au‖F : u ∈ E, ‖u‖E = 1},

(2.3.3)

and the invariance of (2.3.2) by scale changes is often reflected by the invariance
of ‖ · ‖E or ‖ · ‖F by the changes u(·) 7→ σ−αu(·/σ), where α = α(A,E, F ). This
invariance implies compactness defects on minimizing sequences of problems (2.3.3).
Below we list some examples where such situations apply.

1. Let 1 ≤ p < N . Then inequality (2.3.2) is the Sobolev embedding theorem
where E = W 1,p(RN ), F = Lp∗

(RN ) and A is the injection E ↪→ F . The associated
minimization problem is

min
{ˆ

RN

|∇u|pdx : u ∈ E,

ˆ

RN

|u|p∗
dx = 1

}
.

If we replace u by σ−N/p∗
u(·/σ) for any σ > 0, then the two functionals occurring

in the above variational problem are preserved (note that this invariance is nothing
else than the invariance of Sobolev inequalities with respect to scale changes).

2. Let now 0 < µ < N, 1 < p < (N/(N−µ)) and let q satisfy 1/p+µ/N = 1+1/q.
Then we may take (2.3.2) as the Hardy-Littlewood-Sobolev inequality

‖K ∗ u‖q ≤ C0‖u‖p, ∀u ∈ Lp(RN ),

where K = 1/|x|µ. The determination of the best constant C0 is then equivalent
to solve (2.3.3.b), where E = Lp(RN ), F = Lq(RN ) and Au = K ∗ u. Moreover,
the two functionals are invariant by the transformation u 7→ σ−N/qu(·/σ), for any
σ > 0.

3. Finally, let 1 ≤ p < N,N ≥ 2 and let q given by q = p∗ := p(N−1)
N−p . Then

(2.3.2) is the trace inequality when E = {u ∈ Lp∗
(RN−1 × R

+),∇u ∈ Lp(RN−1 ×
R

+)} equipped with the norm ‖∇u‖p, F = Lp∗(RN−1) and A is the linear operator
such that, if u ∈ D(RN ), then Au is the usual trace of u on R

N−1 ×{0}. For obvious
reasons we still denote Au by u. Problem (2.3.3.a) then becomes

min

{
ˆ

RN−1×R+

|∇u|pdx : u ∈ E,

ˆ

RN−1

|u(x′, 0)|p∗dx′ = 1

}
,

and both functionals are preserved if we replace u by σ−N/p∗u(·/σ).
By loss of compactness induced by the dilations group we mean that, even if we

know that there exists a minimum, the set of minima is not relatively compact in
E. Indeed, if u is such a minimum then uσ := σ−αu(·/σ) would still be a minimum
for all σ > 0. Now if σ → +∞, uσ converges weakly to 0 (which is not a minimum)
and the probability |uσ|q (or |uσ|p) either converges weakly as σ → 0 to a Dirac
mass or spreads out as σ → +∞. Moreover, the sets of minima are also translation
invariant, and this still induce loss of compactness as well.
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A general method to solve variational problems (with constraints) where such
difficulties are encountered was presented in [86]. Roughly speaking, this method
enables one to prove that any minimizing sequence is relatively compact in E up to
a translation and a scale change. In particular there exists a minimum.

2.3.3 The Schrödinger equation

Consider the following equation

− ε2∆u+ a(x)u = u2∗−1 in R
N (2.3.4)

for ε > 0 small. Problem (2.3.4) arises in the search of standing waves for the non-
linear Schrödinger equation. Such a wave has the form ψ(t, x) = exp(−iλ~−1t)u(x)
and represents the quantum mechanical probability amplitude for a given particle
of unit mass to have position x at time t.

Schrödinger equations with critical growth terms arise in the context of magnetic
fields [29, 7] and have also been established in fluid mechanics [74, 75], in the theory
of Heidelberg ferromagnetism and magnus [76], in dissipative quantum mechanics
[64] and in condensed matter theory [90]. Most of these papers are concerned with
the concept of soliton solution. Following [64], we define one-soliton as a normaliz-
able solution of nonlinear Schrödinger equation which vanishes at x = ±∞ and such
that all its points are moving with the same constant velocity, thus preserving the
shape of the wave in the course of time.

2.4 Regularity theory and existence theory

In this section we will focus on the solvability of certain classes of boundary value
problems and related general properties of the corresponding solutions. The fol-
lowing fixed point result is the most often applied in the approach to the Dirichlet
problem for quasilinear equations (see [58] for further informations).

Theorem 2.4.1. Let T be a compact mapping of a Banach space B into itself, and

suppose that there exists a constant M such that

‖x‖B < M (2.4.1)

for all x ∈ B and σ ∈ [0, 1] satisfying x = σTx. Then, T has a fixed point.

The previous theorem implies that if T is any compact mapping of a Banach
space into itself (whether or not (2.4.1) holds), then for some σ ∈ (0, 1] the mapping
σT has a fixed point. Furthermore, if the estimate (2.4.1) holds then σT has a fixed
point for all σ ∈ [0, 1].

In order to apply Theorem 2.4.1 to the Dirichlet problem for quasilinear equa-
tions, we fix a number β ∈ (0, 1) and take the Banach space B to be the Hölder
space C1,β(Ω), where Ω is a bounded domain in R

N . Let Q be the operator given
by

Q = aij(x, u,Du)Diju+ b(x, u,Du)

and assume that Q is elliptic in Ω, that is, the coefficient matrix [aij(x, z, ρ)] is
positive for all (x, z, ρ) ∈ Ω ×R×R

N . We also assume, for some α ∈ (0, 1), that the
coefficients aij , b ∈ Cα(Ω × R × R

N ), that the boundary ∂Ω ∈ C2,α and that ϕ is a
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given function in C2,α(Ω). For all v ∈ C1,β(Ω), the operator T is defined by letting
u = Tv be the unique solution in C2,αβ(Ω) of the linear Dirichlet problem

aij(x, v,Dv)Diju+ b(x, v,Dv) = 0 in Ω, u = ϕ on ∂Ω.

The solvability of the Dirichlet problem

Qu = 0 in Ω,

u = ϕ on ∂Ω,
(2.4.2)

in the space C2,α(Ω) is thus equivalent to the solvability of the equation u = Tu in
the Banach space B = C1,β(Ω). Moreover, the equation u = σTu in B is equivalent
to the Dirichlet problem

Qσu = aij(x, u,Du)Diju+ σb(x, u,Du) = 0 in Ω, u = σϕ on ∂Ω.

By applying Theorem 2.4.1, we have the following criterion for existence.

Theorem 2.4.2. Let Ω be a bounded domain in R
N and suppose that Q is elliptic

in Ω with coefficients aij , b ∈ Cα(Ω × R × R
N ), 0 < α < 1. Let ∂Ω ∈ C2,α and

ϕ ∈ C2,α(Ω). If for some β > 0 there exists a constant M , independent of u and σ,

such that every C2,α(Ω) solution of the Dirichlet problems

Qσu = 0 in Ω,

u = σϕ on ∂Ω,
0 ≤ σ ≤ 1,

satisfies

‖u‖C1,β(Ω) < M,

then the Dirichlet problem (2.4.2) is solvable in C2,α(Ω).

Theorem 2.4.2 reduces the solvability of the Dirichlet problem (2.4.2) to the a-
priori estimation in the space C1,β(Ω), for some β > 0, of the solutions of a related
family of problems. In practice it is desirable to break the derivation of the a-priori
estimates into four steps:

1. Estimation of sup
Ω

|u|;

2. Estimation of sup
∂Ω

|Du| in terms of sup
Ω

|u|;

3. Estimation of sup
Ω

|Du| in terms of sup
∂Ω

|Du| and sup
Ω

|u|;

4. Estimation of [Du]β,Ω, for some β > 0, in terms of sup
Ω

|Du| and sup
Ω

|u|.

It is important to observe that the previous results perfectly work when the
operator Q has the special divergence form

Qu = div A(Du),

as was illustrated in [58, Section 11.3]. Moreover, the geometric conditions on the
boundary ∂Ω play an important role in the solvability of the Dirichlet problem for
quasilinear equations, see [58, Chapter 14] for further details.
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2.5 Moser iteration technique

The regularity theory is intimately connected with the concept of boundedness of
solutions. In this section we describe the main idea of the Moser iteration tech-
nique, a performant tool we widely used throughout our work [93]. For a detailed
application to eigenvalue problems we refer to [44, 80]. Let Ω be a bounded domain
in R

N , N > 1, let p ∈ ]1,+∞[ and a ∈ Lq(Ω), with q > N/p. Consider the following
model problem

−∆pu = a in Ω,

u = 0 on ∂Ω.
(2.5.1)

We say that a function u ∈ W 1,p
0 (Ω) is a weak solution of (2.5.1) if the following

holds ˆ

Ω
|∇u|p−2∇u · ∇ϕdx =

ˆ

Ω
aϕdx, ∀ ϕ ∈ W 1,p

0 (Ω).

Claim: u ∈ L∞(Ω). Since u = u+ − u−, we can suppose without loss of generality
that u ≥ 0. For every h > 0 we set uh := min{u, h} and choose ϕ = uκp+1

h as test
function in the equation above, for every κ > 0. Then we have

(κp+ 1)
ˆ

{x∈Ω: u(x)≤h}
|∇u|p−2∇u · ∇uuκp

h dx =
ˆ

Ω
auκp+1

h dx,

which simply implies, thanks to Hölder’s inequality with exponents q and q′, that

κp+ 1
(κ+ 1)p

ˆ

Ω
|∇uκ+1

h |pdx ≤ ‖a‖q‖uκp+1
h ‖q′ .

The Sobolev embedding theorem implies that

1
cp

Ω

κp+ 1
(κ+ 1)p

‖uκ+1
h ‖p

p∗ ≤ ‖a‖q‖uκp+1
h ‖q′ ,

with the embedding constant cΩ. Note that, as h → +∞, uh(x) → u(x) a.e. in Ω.
Therefore, applying Fatou’s lemma gives

1
cp

Ω

κp+ 1
(κ+ 1)p

‖uκ+1‖p
p∗ ≤ ‖a‖q‖uκp+1‖q′ ,

that is

‖u‖(κ+1)p∗ ≤ c
1

κ+1

Ω

(
κ+ 1

(κp+ 1)1/p

) 1
(κ+1)p ‖a‖

1
(κ+1)p
q ‖u‖

κp+1
(κ+1)p

(κp+1)q′ . (2.5.2)

In order to start the Moser iteration technique we need that the norm of u on the
left-hand side is greater than the norm of u on the right-hand side. This obviously is
satisfied if (κ+1)p∗ > (κp+1)q′ and, in particular, if (κ+1)p∗ > (κp+1) N

N−p , taking
into account the hypothesis on q and therefore on q′. Exploiting the calculations,
the latter inequality reduces to p > 1, which is of course true. We are then ready
to start the iteration. Choosing κ1 > 0 such that (κ1p + 1)q′ = p∗, we inductively
construct a sequence (κn)n∈N such that (κnp+1)q′ = (κn−1 +1)p∗. Inserting κ = κn

in (2.5.2) gives

‖u‖(κn+1)p∗ ≤ c
1

κn+1

Ω

(
κn + 1

(κnp+ 1)1/p

) 1
(κn+1)p ‖a‖

1
(κn+1)p
q ‖u‖

κnp+1
(κn+1)p

(κn−1+1)p∗ , ∀ n ∈ N,
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which, taking into account that κn ' ( p∗

pq′
)n, implies

‖u‖(κn+1)p∗ ≤ c

n∑
i=1

( pq′
p∗ )i

Ω

n∏

i=1



(

κi + 1
(κip+ 1)1/p

)( pq′
p∗ )i




1/p

‖a‖
1/p

n∑
i=1

( pq′
p∗ )i

q ‖u‖p∗ .

Since it easily follows that κn → +∞ as n → +∞ and that pq′

p∗ < 1, then there
exists a positive constant C such that

‖u‖∞ ≤ C‖u‖p∗ ,

which in turn entails that u ∈ L∞(Ω).

2.6 Our results

Let Ω ⊂ R
N with N > 1 be a bounded domain with a Lipschitz boundary ∂Ω. We

study the boundedness of weak solutions of the problem

− div A(x, u,∇u) = B(x, u,∇u) in Ω,

A(x, u,∇u) · ν = C(x, u) on ∂Ω,
(2.6.1)

where ν(x) denotes the outer unit normal of Ω at x ∈ ∂Ω, and A,B and C satisfy
suitable p-structure conditions, see hypotheses (H) in Section 2.6.2.

The main goal is to present a-priori bounds for weak solutions of equation (2.6.1),
where we allow critical growth to the functions involved both in the domain and on
the boundary. The main idea in the proof is based on a modified version of Moser’s
iteration which in turn is based on the books of Drábek-Kufner-Nicolosi [44] and
Struwe [129].

The main novelty of our paper consists in the generality of the assumptions
needed to establish the boundedness of weak solutions to (2.6.1). In particular, the
assumptions on the nonlinearity C are rather general allowing critical growth on the
boundary. To the best of our knowledge, such a treatment with critical growth even
on the boundary has not been studied before.

Recently, Papageorgiou-Rădulescu [102, Proposition 2.8] studied a-priori bounds
for problems of the form

− div a(∇u) = f0(x, u) in Ω,

a(∇u) · ν = −β(x)|u|p−2u on ∂Ω,

where 1 < p < ∞, the function a : RN → R
N is continuous, strictly monotone satis-

fying certain regularity and growth conditions, the Carathéodory function f0 : Ω ×
R → R has critical growth with respect to the second variable and β ∈ C1,α(∂Ω,R+

0 ),
with α ∈ (0, 1). Note that our setting is more general than those in [102] since we
have weaker conditions on a and f0 and our boundary term is able to have critical
growth. The proof of their result is mainly based on a treatment of [51]. Both works
use a different technique than the Moser iteration applied in our paper. Moreover,
the assumptions on the functions are stronger than ours and no critical growth on
the boundary is allowed.

45



2.6.1 Preliminaries

In this section we present the main preliminaries including a multiplicative inequality
estimating the boundary integrals and a result how L∞(Ω)-boundedness implies
L∞(∂Ω)-boundedness.

Although we have already met the critical exponents on the boundary and in
the domain, we recall them here, for the reader’s convenience (see [1] for further
references):

p∗ =





(N−1)p
N−p if p < N,

any q ∈ (1,∞) if p ≥ N
and p∗ =





Np
N−p if p < N,

any q ∈ (1,∞) if p ≥ N.

The norm of RN is denoted by | · | and · stands for the inner product in R
N . By | · |

we also denote the Lebesgue measure on R
N .

The following proposition will be useful in our treatment and is based on ap-
propriate embeddings and interpolation results of Besov and Sobolev Slobodeckij
spaces (for further details we refer to [135, 136]).

Proposition 2.6.1 (Proposition 2.1 of [150]). Let Ω ⊂ R
N , N > 1, be a bounded

domain with Lipschitz boundary ∂Ω, let 1 < p < ∞, and let q̂ be such that p ≤ q̂ <

p∗. Then, for every ε > 0, there exist constants c̃1 > 0 and c̃2 > 0 such that

‖u‖p
q̂,∂Ω ≤ ε‖u‖p

1,p + c̃1ε
−c̃2‖u‖p

p for all u ∈ W 1,p(Ω).

Proof. Since q̂ < p∗, we may fix a number θ ∈ (0, 1) small enough such that

q̂





≤ (N−1)p
N−p+θp if p ≤ N

< p−N
θ if p > N

and 1 − θ >
1
p
. (2.6.2)

Consider now the continuous embedding

B1−θ
p,p (Ω) = W 1−θ,p(Ω) → B

1−θ− 1
p

p,p (∂Ω) = W
1−θ− 1

p
,p(∂Ω), (2.6.3)

where Bs
p,p, s ∈ (0, 1), denotes the Besov space which coincides with the Sobolev

Slobodeckij space W s,p. Note that the embedding (2.6.3) requires only a Lipschitz
boundary as 1 − θ < 1.

From the choice of θ ∈ (0, 1) and since p ≤ q̂ (see also (2.6.2)) we get

(
1 − θ − 1

p

)
p




< N − 1 if p ≤ N

> N − 1 if p > N.

Taking into account the Sobolev embedding theorem for fractional order Sobolev
spaces gives

W
1−θ− 1

p
,p(∂Ω) → Lq̂(∂Ω) (2.6.4)

for

q̂





≤ (N−1)p

N−1−(1−θ− 1
p

)p
= (N−1)p

N−p+θp if (1 − θ − 1
p)p < N − 1

< ∞ if (1 − θ − 1
p)p > N − 1.

Actually, in case (1−θ−1
p)p > N−1 we have the stronger embeddingW 1−θ− 1

p
,p(∂Ω) →

C(∂Ω).
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Since W 1,p(Ω) ⊆ W 1−θ,p(Ω) ⊆ Lp(Ω) are continuous embedding we may apply
real interpolation

(Lp(Ω),W 1,p(Ω))1−θ,p = W 1−θ,p(Ω),

which implies the estimate

‖u‖1−θ,p ≤ C̃1‖u‖1−θ
1,p ‖u‖1−(1−θ)

p for all u ∈ W 1,p(Ω) (2.6.5)

with a positive constant C̃1. Combining (2.6.3)-(2.6.5) and using Young’s inequality
with δ̃ > 0 results in

‖u‖p
q̂,∂Ω ≤ C̃2δ̃

1−θ‖u‖(1−θ)p
1,p δ̃−1+θ‖u‖θp

p

≤ C̃2

(
δ̃‖u‖p

1,p + δ̃
−1+θ

θ ‖u‖p
p

)
.

Setting δ̃ := ε
C̃2

with arbitrary ε > 0 provides the desired estimate.

The next proposition is a standard argument in the application of the Moser
iteration, see for example [44].

Proposition 2.6.2. Let Ω ⊂ R
N , N > 1, be a bounded domain with Lipschitz

boundary ∂Ω. Let u ∈ Lp(Ω) with u ≥ 0 and 1 < p < ∞ such that

‖u‖αn ≤ C (2.6.6)

with a constant C > 0 and a sequence (αn) ⊆ R+ with αn → ∞ as n → ∞. Then,

u ∈ L∞(Ω).

Proof. Let us suppose that u 6∈ L∞(Ω). Then there exist a number η > 0 and a set
A of positive measure in Ω such that u(x) ≥ C + η for x ∈ A. Then it follows

‖u‖αn ≥
(ˆ

A
uαndx

) 1
αn ≥ (C + η) |A|

1
αn .

Passing to the limit inferior in the inequality above gives

lim inf
n→∞ ‖u‖αn ≥ C + η,

which is a contradiction to (2.6.6). Hence, u ∈ L∞(Ω).

Remark 2.6.1. It is clear that the statement in Proposition 2.6.2 remains true if

we replace the domain Ω by its boundary ∂Ω.

Finally, we state a result that the boundedness of a Sobolev function in W 1,p(Ω)
implies the boundedness on the boundary.

Proposition 2.6.3. Let Ω ⊂ R
N , N > 1, be a bounded domain with Lipschitz

boundary ∂Ω and let 1 < p < ∞. If u ∈ W 1,p(Ω) ∩ L∞(Ω), then u ∈ L∞(∂Ω).

Proof. By the Sobolev embedding we have

‖v‖p∗,∂Ω ≤ c∂Ω‖u‖1,p for all v ∈ W 1,p(Ω).
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Let κ > 1 and take v = uκ in the inequality above. Note that v ∈ W 1,p(Ω) since
u ∈ W 1,p(Ω) ∩ L∞(Ω). This gives

‖u‖κp∗,∂Ω ≤ c
1
κ

∂Ω

[(ˆ

Ω
|∇uκ|pdx

) 1
κp

+
(ˆ

Ω
|uk|pdx

) 1
κp

]

≤ c
1
κ

∂Ω

[
κ

1
κ ‖u‖1− 1

κ∞ ‖∇u‖
1
κ
p + ‖u‖∞|Ω|

1
κp

]
.

Letting κ → ∞, by applying Proposition 2.6.2 and Remark 2.6.1, we derive

‖u‖∞,∂Ω ≤ 2‖u‖∞.

2.6.2 A-priori bounds via Moser iteration

In this section we state and prove the main result. First, we give the structure
conditions on the functions involved in problem (2.6.1).

(H) The functions A : Ω×R×R
N → R

N , B : Ω×R×R
N → R, and C : ∂Ω×R → R

are Carathéodory functions satisfying the following structure conditions:

(H1) |A(x, s, ξ)| ≤ a1|ξ|p−1 + a2|s|q1
p−1

p + a3, for a.a.x ∈ Ω,

(H2) A(x, s, ξ) · ξ ≥ a4|ξ|p − a5|s|q1 − a6, for a.a.x ∈ Ω,

(H3) |B(x, s, ξ)| ≤ b1|ξ|p
q1−1

q1 + b2|s|q1−1 + b3, for a.a.x ∈ Ω,

(H4) |C(x, s)| ≤ c1|s|q2−1 + c2, for a.a.x ∈ ∂Ω,

for all s ∈ R, for all ξ ∈ R
N , with positive constants ai, bj , ck (i ∈ {1, . . . , 6},

j ∈ {1, 2, 3}, k ∈ {1, 2}) and fixed numbers p, q1, q2 such that

1 < p < ∞, p ≤ q1 ≤ p∗, p ≤ q2 ≤ p∗

A function u ∈ W 1,p(Ω) is said to be a weak solution of (2.6.1) if
ˆ

Ω
A(x, u,∇u) · ∇ϕdx =

ˆ

Ω
B(x, u,∇u)ϕdx+

ˆ

∂Ω
C(x, u)ϕdσ (2.6.7)

holds for all test functions ϕ ∈ W 1,p(Ω). By means of the embeddings i : W 1,p(Ω) →
Lp∗

(Ω) and γ : W 1,p(Ω) → Lp∗(∂Ω) we see that the definition of a weak solution is
well-defined and all integrals in (2.6.7) are finite for u, ϕ ∈ W 1,p(Ω).

Now we can formulate our main result. Note that we will prove the theorem
only for the case q1 = p∗ and q2 = p∗, since the other cases were already obtained
in [149, Theorem 4.1] and [150, Theorem 3.1].

Theorem 2.6.1. Let Ω ⊂ R
N , N > 1, be a bounded domain with Lipschitz boundary

∂Ω and let the hypotheses (H) be satisfied. Then, every weak solution u ∈ W 1,p(Ω)
of problem (2.6.1) belongs to Lr(Ω) for every r < ∞. Moreover, u ∈ L∞(Ω), that

is, ‖u‖∞ ≤ M , where M is a constant which depends on the given data and on u.

Proof. Let u ∈ W 1,p(Ω) be a weak solution of problem (2.6.1). Reasoning as in
Section 2.5 we can suppose that u ≥ 0. Furthermore, we will denote positive con-
stants with Mi and if the constant depends on the parameter κ we write Mi(κ) for
i = 1, 2, . . ..
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Let h > 0 and set uh := min{u, h}. Then we choose ϕ = uuκp
h with κ > 0 as test

function in (2.6.7). This gives

ˆ

Ω
A(x, u,∇u) · ∇uuκp

h + κp

ˆ

{x∈Ω: u(x)≤h}
A(x, u,∇u) · ∇uuκp

h dx

=
ˆ

Ω
B(x, u,∇u)uuκp

h dx+
ˆ

∂Ω
C(x, u)uuκp

h dσ.

(2.6.8)

Applying (H2) to the first term of the left-hand side of (2.6.8) yields
ˆ

Ω
A(x, u,∇u) · ∇uuκp

h

≥
ˆ

Ω

[
a4|∇u|p − a5u

p∗ − a6

]
uκp

h dx

≥ a4

ˆ

Ω
|∇u|puκp

h dx− (a5 + a6)
ˆ

Ω
up∗

uκp
h dx− a6|Ω|,

respectively to the second term on the left-hand side

κp

ˆ

{x∈Ω: u(x)≤h}
A(x, u,∇u) · ∇uuκp

h dx

≥ κp

ˆ

{x∈Ω: u(x)≤h}

[
a4|∇u|p − a5u

p∗ − a6

]
uκp

h dx

≥ a4κp

ˆ

{x∈Ω: u(x)≤h}
|∇u|puκp

h dx− κp(a5 + a6)
ˆ

Ω
up∗

uκp
h dx− a6κp|Ω|.

By means of (H3) combined with Young’s inequality with ε1 > 0, the first term on
the right-hand side of (2.6.8) can be estimated through

ˆ

Ω
B(x, u,∇u)uuκp

h dx

≤ b1

ˆ

Ω
ε

p∗−1
p∗

1 |∇u|p
p∗−1

p∗ u
κp p∗−1

p∗
h ε

− p∗−1
p∗

1 u
κp(1− p∗−1

p∗ )

h udx

+ (b2 + b3)
ˆ

Ω
up∗

uκp
h dx+ b3|Ω|

≤ ε1b1

ˆ

Ω
|∇u|puκp

h dx+
(
b1ε

−(p∗−1)
1 + b2 + b3

) ˆ

Ω
up∗

uκp
h dx+ b3|Ω|.

(2.6.9)

Finally, the boundary term can be estimated via (H4). This leads to
ˆ

∂Ω
C(x, u)uuκp

h dσ ≤
ˆ

∂Ω

(
c1u

p∗−1 + c2

)
uuκp

h dσ

≤ (c1 + c2)
ˆ

∂Ω
up∗uκp

h dσ + c2|∂Ω|.
(2.6.10)

Taking into account all these inequalities, equation (2.6.8) can be written as

a4

(ˆ

Ω
|∇u|puκp

h dx+ κp

ˆ

{x∈Ω: u(x)≤h}
|∇u|puκp

h dx

)
≤ ε1b1

ˆ

Ω
|∇u|puκp

h dx

+
[
(κp+ 1)(a5 + a6) + b1ε

−(p∗−1)
1 + b2 + b3

] ˆ

Ω
up∗

uκp
h dx

+ (c1 + c2)
ˆ

∂Ω
up∗uκp

h dσ + ((κp+ 1)a6 + b3)|Ω| + c2|∂Ω|.
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Choosing ε1 = a4
2b1

then it easily follows that

a4

2
κp+ 1

(κ+ 1)p

ˆ

Ω
|∇(uuκ

h)|pdx

≤ [(κp+ 1)(a5 + a6) + ε
−(p∗−1)
1 b1 + b2 + b3]

ˆ

Ω
up∗

uκp
h dx

+ (c1 + c2)
ˆ

∂Ω
up∗uκp

h dσ + ((κp+ 1)a6 + b3)|Ω| + c2|∂Ω|.

(2.6.11)

Dividing by a4, summarizing the constants and adding on both sides of (2.6.11) the
nonnegative term κp+1

(κ+1)p ‖uuκ
h‖p

p gives

κp+ 1
(κ+ 1)p

‖uuκ
h‖p

1,p

≤ κp+ 1
(κ+ 1)p

‖uuκ
h‖p

p +M1(κp+ 1)
ˆ

Ω
up∗

uκp
h dx+M2

ˆ

∂Ω
up∗uκp

h dσ +M3.

(2.6.12)

Part I: u ∈ Lr(Ω) for any finite r.

Let us now estimate the terms on the right-hand side involving the critical ex-
ponents. We set a := up∗−p and b := up∗−p. Moreover, let L > 0 and G > 0. Then,
by using Hölder’s inequality and the Sobolev embeddings for p∗ and p∗ we get

ˆ

Ω
up∗

uκp
h dx =

ˆ

Ω
up∗−p(uuκ

h)pdx

=
ˆ

{x∈Ω: a(x)≤L}
a(uuκ

h)pdx+
ˆ

{x∈Ω: a(x)>L}
a(uuκ

h)pdx

≤ L

ˆ

{x∈Ω: a(x)≤L}
(uuκ

h)pdx

+

(
ˆ

{x∈Ω: a(x)>L}
a

p∗
p∗−pdx

) p∗−p

p∗ (ˆ

Ω
(uuκ

h)p∗
dx

) p

p∗

≤ L‖uuκ
h‖p

p +

(
ˆ

{x∈Ω: a(x)>L}
a

p∗
p∗−pdx

) p∗−p

p∗

cp
Ω‖uuκ

h‖p
1,p

(2.6.13)

and
ˆ

∂Ω
up∗uκp

h dσ =
ˆ

∂Ω
up∗−p(uuκ

h)pdσ

=
ˆ

{x∈∂Ω: b(x)≤G}
b(uuκ

h)pdσ +
ˆ

{x∈∂Ω: b(x)>G}
b(uuκ

h)pdσ

≤ G

ˆ

{x∈∂Ω: b(x)≤G}
(uuκ

h)pdσ

+

(
ˆ

{x∈∂Ω: b(x)>G}
b

p∗
p∗−pdσ

) p∗−p

p∗ (ˆ

∂Ω
(uuκ

h)p∗dσ

) p

p∗

≤ G‖uuκ
h‖p

p,∂Ω +

(
ˆ

{x∈∂Ω: b(x)>G}
b

p∗
p∗−pdσ

) p∗−p

p∗
cp

∂Ω‖uuκ
h‖p

1,p

(2.6.14)

with the embedding constants cΩ and c∂Ω. Note that

H(L) :=

(
ˆ

{x∈Ω: a(x)>L}
a

p∗
p∗−pdx

) p∗−p

p∗

→ 0 as L → ∞,

K(G) :=

(
ˆ

{x∈∂Ω: b(x)>G}
b

p∗
p∗−pdσ

) p∗−p

p∗
→ 0 as G → ∞.

(2.6.15)

50



Combining (2.6.12)-(2.6.15) finally yields

κp+ 1
(κ+ 1)p

‖uuκ
h‖p

1,p

≤
[
κp+ 1

(κ+ 1)p
+M1(κp+ 1)L

]
‖uuκ

h‖p
p +M1(κp+ 1)H(L)cp

Ω‖uuκ
h‖p

1,p

+M2G‖uuκ
h‖p

p,∂Ω +M2K(G)cp
∂Ω‖uuκ

h‖p
1,p +M3.

(2.6.16)

Now we choose L = L(κ, u) > 0 and G = G(κ, u) > 0 such that

M1(κp+ 1)H(L)cp
Ω =

κp+ 1
4(κ+ 1)p

, M2K(G)cp
∂Ω =

κp+ 1
4(κ+ 1)p

.

Then, (2.6.16) becomes

κp+ 1
2(κ+ 1)p

‖uuκ
h‖p

1,p

≤
[
κp+ 1

(κ+ 1)p
+M1(κp+ 1)L(κ, u)

]
‖uuκ

h‖p
p +M2G(κ, u)‖uuκ

h‖p
p,∂Ω +M3,

(2.6.17)

where L(κ, u) and G(κ, u) depend on κ and on the solution itself.
We can use Proposition 2.6.1 to estimate the remaining boundary term in the

form of

‖uuκ
h‖p

p,∂Ω ≤ ε2‖uuκ
h‖p

1,p + c̃1ε
−c̃2
2 ‖uuκ

h‖p
p. (2.6.18)

Choosing ε2 = 1
M2G(κ)

κp+1
4(κ+1)p and applying (2.6.18) to (2.6.17) give

κp+ 1
4(κ+ 1)p

‖uuκ
h‖p

1,p

≤
[
κp+ 1

(κ+ 1)p
+M1(κp+ 1)L(κ, u) +M2G(κ, u)c̃1ε

−c̃2
2

]
‖uuκ

h‖p
p +M3.

(2.6.19)

Inequality (2.6.19) can be rewritten as

‖uuκ
h‖p

1,p ≤ M4(κ, u)
[
‖uuκ

h‖p
p + 1

]
(2.6.20)

with a constant M4(κ, u) depending on κ and u. We may apply the Sobolev embed-
ding on the left-hand side of (2.6.20) which leads to

‖uuκ
h‖p

p∗ ≤ cp
Ω‖uuκ

h‖p
1,p ≤ M5(κ, u)

[
‖uuκ

h‖p
p + 1

]
.

Since, as h → +∞, uh(x) → u(x) a.e., then applying Fatou’s lemma gives

‖u‖(κ+1)p∗ = ‖uκ+1‖
1

κ+1

p∗ ≤ M5(κ, u)
[
‖uκ+1‖p

p + 1
] 1

(κ+1)p .

Now we can start with the typical bootstrap argument. Choosing κ such that

κ1 : (κ1 + 1)p = p∗,

κ2 : (κ2 + 1)p = (κ1 + 1)p∗,

κ3 : (κ3 + 1)p = (κ2 + 1)p∗,

...
... ,
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we see that

‖u‖(κ+1)p∗ ≤ M6(κ, u) (2.6.21)

for any finite number κ, where M6(κ, u) is a positive constant depending on κ and
on the solution u. Thus, u ∈ Lr(Ω) for any r ∈ (1,∞).

We now want to prove that u ∈ Lr(∂Ω) for any finite r. Let us repeat inequality
(2.6.17) which says

κp+ 1
2(κ+ 1)p

‖uuκ
h‖p

1,p

≤
[
κp+ 1

(κ+ 1)p
+M7(κp+ 1)L(κ, u)

]
‖uuκ

h‖p
p +M8G(κ, u)‖uuκ

h‖p
p,∂Ω +M9.

(2.6.22)

Taking into account (2.6.21) we can write (2.6.22) in the form

‖uuκ
h‖p

1,p ≤ M10(κ, u)
[
‖uuκ

h‖p
p,∂Ω + 1

]
. (2.6.23)

We may apply the Sobolev embedding for the boundary on the left-hand side of
(2.6.23), which gives

‖uuκ
h‖p∗,∂Ω ≤ c∂Ω‖uuκ

h‖1,p ≤ M11(κ, u)
[
‖uuκ

h‖p
p,∂Ω + 1

]
.

Since uh(x) → u(x) a. e. as h → +∞, applying again Fatou’s lemma we then have

‖u‖(κ+1)p∗,∂Ω = ‖uκ+1‖
1

κ+1

p∗,∂Ω ≤ M12(κ, u)
[
‖uκ+1‖p

p,∂Ω + 1
] 1

(κ+1)p .

As before we proceed with a bootstrap argument and choose a sequence (κn) in the
following way

κ1 : (κ1 + 1)p = p∗,

κ2 : (κ2 + 1)p = (κ1 + 1)p∗,

κ3 : (κ3 + 1)p = (κ2 + 1)p∗,

...
... .

We obtain

‖u‖(κ+1)p∗,∂Ω ≤ M13(κ, u) (2.6.24)

for any finite number κ, where M13(κ, u) is a positive constant depending on κ and
on the solution itself. Thus, u ∈ Lr(∂Ω) for any r ∈ (1,∞), and therefore u ∈ Lr(Ω)
for any finite r ∈ (1,∞).

Part II: u ∈ L∞(Ω).
Let us recall inequality (2.6.12) which says

κp+ 1
(κ+ 1)p

‖uuκ
h‖p

1,p

≤ κp+ 1
(κ+ 1)p

‖uuκ
h‖p

p +M14(κp+ 1)
ˆ

Ω
up∗

uκp
h dx

+M15

ˆ

∂Ω
up∗uκp

h dσ +M16.

(2.6.25)

52



Let us fix numbers q̃1 ∈ (p, p∗) and q̃2 ∈ (p, p∗). Then, by applying Hölder’s inequal-
ity, (2.6.21) and (2.6.24), we derive for the several terms on the right-hand side of
(2.6.25) the following estimates

‖uuκ
h‖p

p ≤ |Ω|
q̃1−p

q̃1

(ˆ

Ω
(uuκ

h)q̃1dx

) p

q̃1 ≤ M17‖uuκ
h‖p

q̃1
,

ˆ

Ω
up∗

uκp
h dx =

ˆ

Ω
up∗−p(uuκ

h)pdx

≤
(ˆ

Ω
u

p∗−p

q̃1−p
q̃1dx

) q̃1−p

q̃1
(ˆ

Ω
(uuκ

h)q̃1

) p

q̃1

≤ M18‖uuκ
h‖p

q̃1
,

ˆ

∂Ω
up∗uκp

h dσ =
ˆ

∂Ω
up∗−p(uuκ

h)p

≤
(ˆ

∂Ω
u

p∗−p

q̃2−p
q̃2dσ

) q̃2−p

q̃2

(ˆ

∂Ω
(uuκ

h)q̃2dσ

) p

q̃2

≤ M19‖uuκ
h‖p

q̃2,∂Ω.

(2.6.26)

Note that M18,M19 are finite taking into account Part I. Moreover we see from the
calculations above that

M18 = M18

(
‖u‖ p∗−p

q̃1−p
q̃1

)
and M19 = M19

(
‖u‖ p∗−p

q̃2−p
q̃2

)
. (2.6.27)

Using (2.6.26) to (2.6.25) leads to

κp+ 1
(κ+ 1)p

‖uuκ
h‖p

1,p ≤ M20(κp+ 1)‖uuκ
h‖p

q̃1
+M21‖uuκ

h‖p
q̃2,∂Ω +M22. (2.6.28)

As before, we can estimate the boundary term via Proposition 2.6.1 and then use
Hölder’s inequality as made in the first line of (2.6.26). This gives

‖uuκ
h‖p

q̃2,∂Ω ≤ ε3‖uuκ
h‖p

1,p + c̃1ε
−c̃2
3 ‖uuκ

h‖p
p

≤ ε3‖uuκ
h‖p

1,p + c̃1ε
−c̃2
3 M23‖uuκ

h‖p
q̃1
.

(2.6.29)

Now we choose ε3 = κp+1
2M21(κ+1)p and apply (2.6.29) in (2.6.28) to obtain

κp+ 1
2(κ+ 1)p

‖uuκ
h‖p

1,p ≤
(
M20(κp+ 1) + c̃1ε

−c̃2
3 M21M23

)
‖uuκ

h‖p
q̃1

+M22. (2.6.30)

Inequality (2.6.30) can be rewritten in the form

‖uuκ
h‖p

1,p ≤ M24 ((κ+ 1)p)M25
[
‖uuκ

h‖p
q̃1

+ 1
]
. (2.6.31)

In order so see this, note that

2(κ+ 1)p

κp+ 1

(
M20(κp+ 1) + c̃1ε

−c̃2
3 M21M23

)

= 2(κ+ 1)p

(
M20 + c̃1

(
2M21(κ+ 1)p

κp+ 1

)c̃2 1
κp+ 1

M21M23

)

≤ M24 ((κ+ 1)p)M25 .
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Now we may apply the Sobolev embedding and the Fatou’s lemma on the left-hand
side of (2.6.31) to get

‖u‖(κ+1)p∗ = ‖uκ+1‖
1

κ+1

p∗ ≤ c
1

κ+1

Ω ‖uκ+1‖
1

κ+1

1,p

≤ M
1

κ+1

26

(
(κ+ 1)M25

) 1
κ+1

[
‖uκ+1‖p

q̃1
+ 1

] 1
(κ+1)p .

(2.6.32)

Observe that
(
(κ+ 1)M25

) 1√
κ+1 ≥ 1 and lim

κ→∞

(
(κ+ 1)M25

) 1√
κ+1 = 1.

Hence, we find a constant M27 > 1 such that

(
(κ+ 1)M25

) 1
κ+1 ≤ M

1√
κ+1

27 . (2.6.33)

From (2.6.32) and (2.6.33) we derive

‖u‖(κ+1)p∗ ≤ M
1

κ+1

26 M
1√

κ+1

27

[
‖uκ+1‖p

q̃1
+ 1

] 1
(κ+1)p . (2.6.34)

Now we are ready to prove the uniform boundedness with respect to κ. To this end,
suppose there is a sequence κn → ∞ such that

‖uκn+1‖p
q̃1

≤ 1,

which is equivalent to

‖u‖(κn+1)q̃1
≤ 1,

then Proposition 2.6.2 implies that ‖u‖∞ < ∞.
In the opposite case there exists a number κ0 > 0 such that

‖uκ+1‖p
q̃1
> 1 for any κ ≥ κ0. (2.6.35)

Combining (2.6.34) and (2.6.35) yields

‖u‖(κ+1)p∗ ≤ M
1

κ+1

26 M
1√

κ+1

27

[
2‖uκ+1‖p

q̃1

] 1
(κ+1)p ≤ M

1
κ+1

28 M
1√

κ+1

27 ‖u‖(κ+1)q̃1
. (2.6.36)

Applying again the bootstrap argument we define a sequence (κn) such that

κ1 : (κ1 + 1)q̃1 = (κ0 + 1)p∗,

κ2 : (κ2 + 1)q̃1 = (κ1 + 1)p∗,

κ3 : (κ3 + 1)q̃1 = (κ2 + 1)p∗,

...
... .

(2.6.37)

By induction, from (2.6.36) and (2.6.37) we obtain

‖u‖(κn+1)p∗ ≤ M
1

κn+1

28 M
1√

κn+1

27 ‖u‖(κn+1)q̃1
= M

1
κn+1

28 M
1√

κn+1

27 ‖u‖(κn−1+1)p∗

for any n ∈ N, where the sequence (κn) is chosen in such a way that (κn + 1) =
(κ0 + 1)

(
p∗

q̃1

)n
. Following this we see that

‖u‖(κn+1)p∗ ≤ M

n∑
i=1

1
κi+1

28 M

n∑
i=1

1√
κi+1

27 ‖u‖(κ0+1)p∗
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with (κn + 1)p∗ → ∞ as n → ∞. Since 1
κi+1 = 1

κ0+1

(
q̃1

p∗

)i
and q̃1

p∗ < 1, there is a
constant M29 > 0 such that

‖u‖(κn+1)p∗ ≤ M29‖u‖(k0+1)p∗ < ∞,

where the finiteness of the right-hand side follows from Part I. Now we may apply
Proposition 2.6.2 to conclude that u ∈ L∞(Ω), that is, there exists M > 0, which
depends on the given data and on u, such that ‖u‖∞ ≤ M .

Moreover, taking into account Proposition 2.6.3, we have that u ∈ L∞(∂Ω), and
so u ∈ L∞(Ω). The proof is thus complete.

Remark 2.6.2. It is clear that hypothesis (H1) is not needed in the proof of Theorem

2.6.1, but it is necessary to have a well-defined definition of a weak solution.

Remark 2.6.3. Since problem (2.6.1) involves functions that can exhibit a critical

growth, one cannot expect to find a constant M which depends in an explicit way on

natural norms such as ‖u‖p∗ or ‖u‖p∗,∂Ω. But, if one searches for a dependence on

norms that are greater than the critical ones, then a possible dependence is given on

the norms ‖u‖ p∗−p

q̃1−p
q̃1

as well as ‖u‖ p∗−p

q̃2−p
q̃2,∂Ω, where q̃1 ∈ (p, p∗) and q̃2 ∈ (p, p∗), as

seen in the proof of Theorem 2.6.1, cf. (2.6.27).

2.6.3 Some regularity results

Based on the results of Theorem 2.6.1, we obtain regularity results for solutions of
problem (2.6.1). For simplification we drop the s-dependence of the operator. To
this end, let ϑ ∈ C1(0,∞) be a function such that

0 < a1 ≤ tϑ′(t)
ϑ(t)

≤ a2 and a3t
p−1 ≤ ϑ(t) ≤ a4

(
1 + tp−1

)
(2.6.38)

for all t > 0, with some constants ai > 0, i ∈ {1, 2, 3, 4} and for 1 < p < ∞. The
hypotheses on A : Ω × R

N → R
N read as follows.

H(A): A(x, ξ) = A0 (x, |ξ|) ξ with A0 ∈ C(Ω × R
+
0 ) for all ξ ∈ R

N and with
A0(x, t) > 0 for all x ∈ Ω and for all t > 0. Moreover,

(i) A0 ∈ C1(Ω × (0,∞)), t → tA0(x, t) is strictly increasing in (0,∞),
lim

t→0+
tA0(x, t) = 0 for all x ∈ Ω and

lim
t→0+

tA′
0(x, t)

A0(x, t)
= c > −1 for all x ∈ Ω;

(ii) |∇ξA(x, ξ)| ≤ a5
ϑ (|ξ|)

|ξ| for all x ∈ Ω, for all ξ ∈ R
N \ {0} and for some

a5 > 0;

(iii) ∇ξA(x, ξ)y · y ≥ ϑ (|ξ|)
|ξ| |y|2 for all x ∈ Ω, for all ξ ∈ R

N \ {0} and for all

y ∈ R
N .

Remark 2.6.4. We chose the special structure in H(A) to apply the nonlinear

regularity theory, which is mainly based on the results of Lieberman [84] and Pucci-

Serrin [112]. If we set

G0(x, t) =
ˆ t

0
A0(x, s)sds,
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then G0 ∈ C1(Ω × R
+) and the function G0(x, ·) is increasing and strictly convex

for all x ∈ Ω. We set G(x, ξ) = G0(x, |ξ|) for all (x, ξ) ∈ Ω × R
N and obtain that

G ∈ C1(Ω × R
N ) and that the function ξ → G(x, ξ) is convex. Moreover, we easily

derive that

∇ξG(x, ξ) = (G0)′
t(x, |ξ|)

ξ

|ξ| = A0(x, |ξ|)ξ = A(x, ξ)

for all ξ ∈ R
N \ {0} and ∇ξG(x, 0) = 0. So, G(x, ·) is the primitive of A(x, ·). This

fact, the convexity of G(x, ·) and since G(x, 0) = 0 for all x ∈ Ω imply that

G(x, ξ) ≤ A(x, ξ) · ξ for all (x, ξ) ∈ Ω × R
N . (2.6.39)

The next lemma summarizes the main properties of A : Ω × R
N → R

N . The
result is an easy consequence of (2.6.38) and the hypotheses H(A).

Lemma 2.6.1. If hypotheses H(A) are satisfied, then the following hold:

(i) A ∈ C(Ω × R
N ,RN ) ∩ C1(Ω × (RN \ {0}),RN ) and the map ξ → A(x, ξ) is

continuous and strictly monotone (hence, maximal monotone) for all x ∈ Ω;

(ii) |A(x, ξ)| ≤ a6
(
1 + |ξ|p−1

)
for all x ∈ Ω, for all ξ ∈ R

N and for some a6 > 0;

(iii) A(x, ξ) · ξ ≥ a3
p−1 |ξ|p for all x ∈ Ω and for all ξ ∈ R

N .

From this lemma along with (2.6.39) we easily deduce the following growth
estimates for the primitive G(x, ·).

Corollary 2.6.1. If hypotheses H(A) hold, then

a3

p(p− 1)
|ξ|p ≤ G(x, ξ) ≤ a7 (1 + |ξ|p)

for all x ∈ Ω, for all ξ ∈ R
N and for some a7 > 0.

Let A : W 1,p(Ω) → W 1,p(Ω)∗ be the nonlinear map defined by

〈A(u), ϕ〉 =
ˆ

Ω
A(x,∇u) · ∇ϕdx for all u, ϕ ∈ W 1,p(Ω). (2.6.40)

The next proposition summarizes the main properties of this operator, see [52].

Proposition 2.6.4. Let the hypotheses H(A) be satisfied and let A : W 1,p(Ω) →
W 1,p(Ω)∗ be the map defined in (2.6.40). Then, A is bounded, continuous, monotone

(hence maximal monotone) and of type (S+).

Let us state some operators which fit in our setting and which are of much
interest.

Example 2.6.1. For simplicity, we drop the x-dependence of the operator A. The

following maps satisfy hypotheses H(A):

(i) Let A(ξ) = |ξ|p−2ξ with 1 < p < ∞. This map corresponds to the p-Laplace

differential operator defined by

∆pu = div
(
|∇u|p−2∇u

)
for all u ∈ W 1,p(Ω).

The potential is G(ξ) = 1
p |ξ|p for all ξ ∈ R

N .
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(ii) The function A(ξ) = |ξ|p−2ξ+µ|ξ|q−2ξ with 1 < q < p < ∞ and µ > 0 compares

with the (p, q)-differential operator defined by ∆pu+µ∆qu for all u ∈ W 1,p(Ω).
The potential is G(ξ) = 1

p |ξ|p + µ
q |ξ|q for all ξ ∈ R

N .

(iii) If A(ξ) =
(
1 + |ξ|2)

p−2
2 ξ with 1 < p < ∞, then this map represents the gener-

alized p-mean curvature differential operator defined by

div
[
(1 + |∇u|2)

p−2
2 ∇u

]
for all u ∈ W 1,p(Ω).

The potential is G(ξ) = 1
p

[
(1 + |ξ|2)

p

2 − 1
]

for all ξ ∈ R
N .

Let us write hypotheses (H) without the structure conditions on A.

H(B, C): The functions B : Ω × R × R
N → R and C : ∂Ω × R → R are Carathéodory

functions satisfying the following structure conditions:

|B(x, s, ξ)| ≤ b1|ξ|p
q1−1

q1 + b2|s|q1−1 + b3, for a.a.x ∈ Ω,

|C(x, s)| ≤ c1|s|q2−1 + c2, for a.a.x ∈ ∂Ω,

for all s ∈ R, for all ξ ∈ R
N , with positive constants bj , ck (j ∈ {1, 2, 3},

k ∈ {1, 2}) and fixed numbers p, q1, q2 such that

1 < p < ∞, p ≤ q1 ≤ p∗, p ≤ q2 ≤ p∗.

Moreover, C satisfies the condition

|C(x, s) − C(y, t)| ≤ L [|x− y|α + |s− t|α] , |C(x, s)| ≤ L

for all (x, s), (y, t) ∈ ∂Ω × [−M0,M0] with α ∈ (0, 1] and constants M0 > 0
and L ≥ 0.

Based on the hypotheses H(A) and H(B, C), problem (2.6.1) becomes

− div A(x,∇u) = B(x, u,∇u) in Ω,

A(x,∇u) · ν = C(x, u) on ∂Ω.
(2.6.41)

Combining Theorem 2.6.1 and the regularity theory of Lieberman [84] leads to
the following result.

Theorem 2.6.2. Let Ω ⊂ R
N , N > 1, be a bounded domain with a C1,α-boundary

∂Ω and let the assumptions H(A) and H(B, C) be satisfied. Then, every weak solution

u ∈ W 1,p(Ω) of problem (2.6.41) belongs to C1,β(Ω) for some β ∈ (0, 1) such that

β = β(a1, a2, a5, α,N) and

‖u‖C1,β(Ω) ≤ C(a1, a2, a3, a5, N, ϑ(1),M, α, b1, b2, b3)

where M is the constant that comes from the statement of Theorem 2.6.1.

Proof. We will apply Theorem 1.7 of Lieberman [84] and the comment after this
theorem concerning global Hölder gradient estimates. First, we know from Theorem
2.6.1 that ‖u‖∞ ≤ M . The only thing we need to do is to check that the conditions
(1.10a)–(1.10d) in [84, p. 320] are satisfied. From conditions H(A)(iii), (ii) we see
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that the assumptions (1.10a) and (1.10b) are satisfied. Moreover, from H(B, C) and
(2.6.38) we obtain

|B(x, s, ξ)| ≤ b1|ξ|p
q1−1

q1 + b2|s|q1−1 + b3

≤ b1|ξ|p + b1 + b2M
q1−1 + b3

= b1|ξ|p−1|ξ| + b1 + b2M
q1−1 + b3

≤ b1

a3
ϑ(|ξ|)|ξ| + b1 + b2M

q1−1 + b3

≤ max
{
b1

a3
, b1 + b2M

q1−1 + b3

}
(ϑ(|ξ|)|ξ| + 1) .

This proves condition (1.10d). Assumption (1.10c) follows from the fact that the
function A is continuous differentiable in the space variable and independent of the
s-variable. Then we may apply the mean value theorem which shows (1.10c). The
desired result follows from Lieberman [84, Theorem 1.7] with the constants β, C
as in that theorem (and their dependence on the data) and the constant M from
Theorem 2.6.1.

2.7 Further developments

1. We studied the boundedness of solutions to the boundary value problem (2.6.1)
when the operators A,B, C satisfy the growth conditions (H). It would be
interesting to know whether it is possible to obtain a similar result if we
replace the constants ai, bj , ck (i ∈ {1, . . . , 6}, j ∈ {1, 2, 3}, k ∈ {1, 2}) with
functions in suitable Ls-spaces.

2. One could investigate if a result like Theorem 2.6.1 is still valid when we
consider the whole space R

N instead of a bounded domain Ω. The main
problem with the whole space is that some of the embeddings are no more
valid.

3. Finally, it is possible to consider a system of equations instead of a single
equation. More precisely, we are interested in studying the boundedness of
solutions of the following problem

− div A1(x, u,∇u) = B1(x, u, v,∇u,∇v) in Ω,

− div A2(x, v,∇v) = B2(x, u, v,∇u,∇v) in Ω,

A1(x, u,∇u) · ν1 = C1(x, u, v) on ∂Ω,

A2(x, v,∇v) · ν2 = C2(x, u, v) on ∂Ω.

(2.7.1)

where the operators Ai,Bi, Ci, i = 1, 2, satisfy suitable structure conditions
that can involve the critical exponents both in the domain and on the bound-
ary.

For the sake of completeness, we incisively say that the boundedness of solutions
of problem (2.7.1) is the object of a current collaboration with prof. P. Winkert.
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Chapter 3

Singular systems in R
N

3.1 Introduction

The increasing study of realistic mathematical models in population biology, whether
we are dealing with a human population, bacterial viral growth or a population of
an endangered species, is a reflection of their use in helping to understand the
dynamic processes involved and in making practical predictions. Ecology, basically
the study of the interrelationship between species and their environment in such
areas as predator-prey, competition interactions or plant-herbivore systems, is now
an enormous field. In order to give to the reader an idea of how these phenomena
work, let us focus on the process of the growth of a living thing.

A fully developed organism is a complex arrangement of many different struc-
tures, yet it grows from a single fertilized cell. The formation of structures out
a less structured tissue is known as morphogenesis. Though many processes are
involved in morphogenesis, the result is a highly reproducible arrangement of the
various structures. This variety arises because different cells develop in different
ways, following a process known as (biological) differentiation. This is a complex
procedure, which involves many phenomena like cell division, cell movement, gene
activation and changes in the shape of the cells. Irrespective of the exact mecha-
nism of differentiation, we point out that the way the cells develop depends on their
position in the tissue. Hence, there must exist some mechanism to ’tell’ the cells
where they are in the tissue, so we can assume that differentiation is triggered by
a patterned signal, called the morphogenetic field. Therefore, morphogenesis is a
(biological) pattern formation.

This brief digression doesn’t want to provide a full description of the differenti-
ation process, instead focuses on one of the mechanisms that generate spatial infor-
mation in the developing tissue. The choice of this mechanism was purely made on
mathematical grounds, and points to the reaction-diffusion models, that have been
used to reproduce biological patterns. The aim of this section is to present some
deterministic models by way of an introduction to the field.

3.1.1 Continuous growth models

Single-species models are of relevance to laboratory studies in particular but, in the
real world, can reflect a variety of effects which influence the population dynamics.
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Let N(t) be the population of the species at time t, then the rate of change

dN

dt
= births − deaths + migration (3.1.1)

is a conservation equation for the population. The form of the various terms on
the right-hand side of (3.1.1) necessitates modeling the situation with which we are
concerned. The simplest model has no migration and the birth and death terms are
proportional to N . This means that

dN

dt
= bN − dN ⇒ N(t) = N0e

(b−d)t,

where b, d are positive constants, with initial population N(0) = N0. Thus if b > d

the population grows exponentially while if b < d it dies out. This approach, due
to Malthus [89], is fairly unrealistic. Later, Verhulst [141, 142] proposed that a self-
limiting process should operate when a population becomes too large. He suggested
that

dN

dt
= rN(1 −N/K), (3.1.2)

where r,K > 0. This he called logistic growth in a population. In this model the per
capita birth rate is r(1 −N/K) and depends on N . The constant K is the carrying

capacity of the environment, which is usually determined by the available sustaining
resources.

There are two steady states for (3.1.2), namely, N = 0 and N = K, which occur
when dN/dt = 0. The state N = 0 is unstable since linearization around it gives
dN/dt ' rN , and so N grows exponentially from any small initial value. On the
other hand, the equilibrium N = K is stable: indeed, linearization around it gives
d(N −K)/dt ' −r(N −K) which means that N → K as t → +∞. The parameter
K determines the size of the stable steady state population while r is a measure of
the rate at which it is reached. The solution of (3.1.2) is

N(t) =
N0Ke

rt

[K +N0(ert − 1)]
→ K as t → +∞. (3.1.3)

The main feature of (3.1.3) is that it is particularly convenient to take when seeking
qualitative dynamic behavior in populations in which N = 0 is an unstable steady
state and N(t) tends to a finite positive stable steady state. It occurs in a variety
of different contexts because of its algebraic simplicity and also because it provides
a preliminary qualitative idea of what happens with more realistic forms.

3.1.2 Models for interacting populations

When species interact, the population dynamics of each species is affected. In
general there is a whole web of interacting species which moves towards structurally
complex communities. Throughout this section, we will consider systems involving
two or more species, giving special emphasis on two-species systems. There are
three main types of interaction. If the growth rate of one population is decreasing
while the other is increasing with respect to the first, then the populations are in
a predator-prey situation. If the growth rate of each population is decreasing with
respect to the other then we have competition. Finally, if each population’s growth
rate is enhancing then we have mutualism or symbiosis.
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The Predator-Prey Model

Volterra first proposed a simple model for the predation of one species by another
to explain the oscillatory levels of certain fish catches in the Adriatic (see [143]). If
N(t) is the prey population and P (t) that of the predator at time t then Volterra’s
model is

dN

dt
= N(a− bP ),

dP

dt
= P (cN − d),

(3.1.4)

where a, b, c, d > 0. The assumptions in the model are the following: the prey in
the absence of any predator grows unboundedly in a Malthusian way; the effect of
the predation is to reduce the prey’s per capita growth rate by a term proportional
to both populations; in the absence of any prey for sustenance the predator’s death
rate decays exponentially; the prey’s contribution to the predators’ growth rate is
proportional to the available prey as well as to the size of the predator population.

System (3.1.4) is known as the Lotka-Volterra model since the same equations
were derived by Lotka from a chemical reaction which could exhibit periodic behav-
ior in the chemical concentrations, see [88].

A phase plane analysis shows that the solutions of (3.1.4) are not structurally
stable. This is a major inadequacy of such system, since any small perturbation
can have a very marked effect, and this makes the system of little use for real
interacting populations. One of the unrealistic assumptions in (3.1.4) is that the prey
growth is unbounded in the absence of predation. To be more realistic these growth
rates should depend on both the prey and the predator densities. Anyway this
model, unrealistic though it is, does suggest that simple predator-prey interactions
can result in periodic behavior of the populations. Reasoning heuristically this is
not unexpected since if a prey population increases, it encourages growth of its
predator. More predators however consume more prey, the population of which
starts to decline. With less food around the predator population declines and when
it is low enough, this allows the prey population to increase and the whole cycle
starts over again.

The Competition Model

This model describes the situation in which two or more species inhibit each other’s
growth because, for example, they compete for territory or for the same limited food
sources. In what follows we discuss a very simple competition model which demon-
strates a fairly general principle observed in Nature: namely, when two species
compete for the same limited resources, one of them usually becomes extinct. Con-
sider the basic Lotka-Volterra model with each species N1 and N2 having logistic
growth in the absence of the other. We thus have the following

dN1

dt
= r1N1

[
1 − N1

K1
− b12

N2

K1

]
,

dN2

dt
= r2N2

[
1 − N2

K2
− b21

N1

K2

]
,

where r1,K1, r2,K2, b12, b21 > 0, the r’s are the linear birth rates while the K’s are
the carrying capacities. The coefficients b12, b21 measure the competitive effect of
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N2 on N1 and N1 on N2, respectively: they are in general not equal. As before,
through the phase plane analysis we get the steady states, which have ecological
implications. If there are two stable steady states, then both species can exist, and
so they simply adjust to a lower population size than if there were no competition;
in other words, the competition is not aggressive. If there are three nontrivial steady
states, but only two of them are stable, then the survival will crucially depend on
the advantage each species has. If the interspecific competition of one species is
much stronger than the other, then one species dominates and the other species dies
out. And finally, if the carrying capacities are sufficiently different, then one species
becomes extinct.

The Mutualism or Symbiosis

There are many examples where the interaction of two or more species is to the
advantage of all. Mutualism often plays a crucial role in promoting and even main-
taining such species: plant and seed dispersal is one example. Even if survival is
not at stake, the mutual advantage of symbiosis can be very important. As a topic
of theoretical ecology, this area has not been as widely studied as the others, even
though its importance is comparable to that of predator-prey and competition in-
teractions. This is in part due to the fact that simple models in the Lotka-Volterra
vein give silly results. The simplest mutualism model equivalent to the classical
predator-prey one is

dN1

dt
= r1N1 + a1N1N2,

dN2

dt
= r2N2 + a2N2N1,

where ri, ai > 0, i = 1, 2. Since dN1/dt > 0 and dN2/dt > 0, then N1 and N2 simply
grow unboundedly in mutual benefaction.

3.2 The reaction diffusion system

In an assemblage of particles (cells, bacteria, chemicals, animals and so on), each
particle usually moves around in a random way. The particles spread out as a
result of this irregular individual motion. When this microscopic irregular movement
results in some macroscopic regular motion of the group we can think of it as a
diffusion process. Let S be an arbitrary surface enclosing a volume V . The general
conservation equation says that the rate of change of the amount of material in V

is equal to the rate of flow of material across S into V plus the material created in
V . Thus,

∂

∂t

ˆ

V
c(x, t)dv = −

ˆ

S
J · ds +

ˆ

V
fdv,

where c(x, t) is the concentration of the species while J and f are the flux and the
source of material, respectively. Applying the divergence theorem to the surface
integral and assuming c(x, t) is continuous, the last equation becomes

ˆ

V

[
∂c

∂t
+ ∇ · J − f(c,x, t)

]
dv = 0.

62



Since the volume V is arbitrary, the integrand must be zero and so the conservation

equation for c is the following

∂c

∂t
+ ∇ · J = f(c,x, t). (3.2.1)

Equation (3.2.1) holds for a general flux transport J. Suppose that there are several
interacting species. We then have a vector ui(x, t), i = 1, . . . ,m of densities each
diffusing with its own diffusion coefficient Di and interacting according to the vector
source term f which may depend on the densities themselves. If the flux has the
particular form J = −D∇c, then (3.2.1) becomes

∂u

∂t
= f + ∇ · (D∇u). (3.2.2)

Equation (3.2.2) is referred to as a reaction diffusion system. Such a mechanism
was proposed as a model for the chemical basis of morphogenesis by Turing [138],
and started to be widely studied since about 1970.

Reaction-diffusion equations have found a considerable amount of interest in
the last decades since they arise naturally in a variety of models from theoretical
physics, chemistry and biology. The study of these phenomena needs a variety
of different methods from many areas of mathematics: among others, numerical
analysis, bifurcation and stability theory, semigroup theory, singular perturbations,
phase space and topological methods.

Diffusion models form a reasonable basis for studying insect and animal dispersal
and invasion. Dispersal of interacting and competing species was discussed in [121]
and [122], respectively, while in [71] it has been shown that many species appear to
disperse according to a reaction diffusion model with a constant diffusion coefficient.
In what follows, we present the main mathematical features of these models.

3.2.1 The predator-prey model

The Lotka-Volterra system, whose ordinary version was already investigated in Sec-
tion 3.1.2, reflects only population changes due to predation in a situation where
predator and prey densities are not spatially dependent. However, it does not
take into account either the fact that population is usually not homogeneously dis-
tributed, nor the fact that predators and preys naturally develop strategies for
survival. Both of these considerations involve diffusion processes which can be quite
intricate as different concentration levels of predators and preys may cause different
population movements. Such movements can be determined by the concentration of
the same species (diffusion) and that of other species (cross-diffusion). An example
of such system is the following

ut = ∆[(d1 + ρ12v)u] + u(a1 − b1u− c1v) in Ω × (0,+∞),

vt = ∆[(d2 + ρ21u)v] + v(a2 + b2u− c2v) in Ω × (0,+∞),

u = v = 0 on ∂Ω × (0,+∞),

(3.2.3)

where Ω is a bounded domain in R
N , N ≥ 1, with smooth boundary ∂Ω. Moreover,

ρ12, ρ21 ≥ 0 and di, ai, bi, ci, i = 1, 2, are all positive constants except for a2 which
may be nonpositive. In particular, for u fixed, the right-hand side of the first
equation of (3.2.3) is increasing in v and similarly, for fixed v, the right-hand side
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of the second equation of (3.2.3) is increasing in u. System (3.2.3) is known as
the Lotka-Volterra predator-prey system with cross-diffusion effects. Here u and v,
respectively, represent the population densities of prey and predator species which
are interacting and migrating in the same habitat Ω. The coefficient di represents
the natural dispersive force of movement of an individual, while ρij describes the
mutual interferences between individuals; ρ12 and ρ21 are usually referred to as cross-
diffusion pressures. For example, ρ12 means the tendency that the prey keeps away
from the predator. The boundary condition means that the habitat Ω is surrounded
by a hostile environment.

When looking to steady-state solutions of (3.2.3) one is led, after a suitable
rescaling, to the following

∆[(1 + αv)u] + u(a− u− cv) = 0 in Ω,

∆[(1 + βu)v] + v(b+ du− v) = 0 in Ω,

u = v = 0 on ∂Ω.

(3.2.4)

Most research is concerned with the existence of positive solutions of (3.2.4). When
there are no cross-diffusion effects (α = β = 0), it is reduced to the classical
predator-prey system, which has been extensively studied by many authors (see
for instance [17, 87]). In particular, [87, Theorem 3.1] gives the exact range of
parameter (a, b, c, d) for the existence of a positive solution of (3.2.4).

3.2.2 The competitive model

A central problem in population ecology is the understanding of the interactions
between competing species. To this aim, different models based on reaction-diffusion
equations have been developed with the aim to investigate phenomena of coexistence
and exclusion for such species. A typical example of such a system is the following

ut(x, t) − d1∆u = u(a1 − b1u− c1v) = 0 in Ω × (0,+∞),

vt(x, t) − d2∆v = v(a2 − b2v − c2u) = 0 in Ω × (0,+∞),

u = v = 0 on ∂Ω × (0,+∞),

(3.2.5)

where Ω is an open bounded set of RN . This system models the situation where two
species of densities u and v co-exist in Ω. The constants d1, d2 > 0 give the rates at
which the species diffuse. The constants a1, a2 give, if positive, the net birth rates
of the species and, if negative, their net death rates. The coefficients b1, b2 account
for self-regulation of each species. In particular, if we assume b1, b2 > 0, this assures
that the species are self-limiting, i.e., u and v must remain bounded as t → +∞.
Finally, c1, c2 > 0, which means that, for u fixed, the right-hand side of the first
equation of (3.2.5) is decreasing in v and, similarly, for fixed v, the right-hand side
of the second equation of (3.2.5) is decreasing in u.

When looking for the steady-state solutions of (3.2.5) satisfying homogeneous
Dirichlet boundary conditions, we are led to the following system

−d1∆u = u(a1 − b1u− c1v) in Ω,

−d2∆v = v(a2 − b2v − c2u) in Ω,

u = v = 0 on ∂Ω.

(3.2.6)

Since, in the usual interpretation of the competition model, u and v are population
variables, it is natural to consider only non-negative solutions of (3.2.6). There is a
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clearly trivial solution u = v = 0 for all values of the parameters. In addition, for
some values of the parameters, there exist positive so-called semi-trivial solutions,
where one of the dependent variables is identically zero and the other nonzero on Ω,
that is (u, v) = (u, 0) or (0, v). If both u and v are positive for x ∈ Ω, it is referred
to as a coexistence state.

3.3 The slow diffusion

Many nonlinear problems in physics and mechanics, such as problems of fluid
mechanics, reaction-diffusion problems, non-Newtonian fluid flows and fluid flows
through certain types of porous media are formulated by partial differential equa-
tions that contains the p-Laplacian. For example, the equation of turbulent filtration
in porous media, after a suitable rescaling leads to the following

∂u

∂t
= ∆pu, (3.3.1)

also known as the evolution p-Laplacian equation. Equation (3.3.1) is degenerate if
p > 2 and singular if 1 < p < 2. The case p > 2 is called the slow diffusion and the
case p < 2 is the fast diffusion. The slow diffusion case is particularly well-suited
to model diffusion processes related to population growths. Suppose a species is
initially localized in space: then linear diffusion dictates immediate spreading of
the population everywhere in space, whereas the nonlinear, slow-diffusion equation
(3.3.1) predicts finite speed of propagation of the populated region. Clearly the
second nonlinear model best describes real-life diffusion processes. Consider now
the following equation

∂u

∂t
= ∆pu+ λuq,

where p > 1, q > 0 and λ ∈ R\{0}. Here the term λuq describes the nonlinear source
in the diffusion process, called ’heat source’ if λ > 0 and ’cold source’ if λ < 0. The
appearance of nonlinear sources exerts a great influence to the properties of solutions
and the influence of ’heat source’ and ’cold source’ is completely different.

Finally, consider a weakly coupled quasilinear elliptic system with homogeneous
Dirichlet data

−∆pu = f(x, u, v) in Ω,

−∆qv = g(x, u, v) in Ω,

u = v = 0 on ∂Ω,

(3.3.2)

where Ω is a bounded domain in R
N with smooth boundary ∂Ω and f, g are suit-

able functions. Systems of the above form are mathematical models occurring in
studies of generalized reaction-diffusion theory, non-Newtonian fluid theory, non-
Newtonian filtration and turbulent flow of a gas in a porous medium. In the non-
Newtonian fluid theory, the quantity (p, q) is characteristic of the medium. Media
with (p, q) > (2, 2) are called dilatant fluids while if (p, q) < (2, 2) they are pseudo-

plastic fluids. If (p, q) = (2, 2), they are Newtonian fluids. Moreover, systems like
(3.3.2) describe nonlinear phenomena such as chemical reactions, pattern formation,
population evolution where, for example, u and v represent the concentrations of two
species in the process. In the framework described in the previous section, we are
mainly interested in the slow diffusion case with suitable monotonicity assumptions
on the reactions f and g in (3.3.2).
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Several methods have been used to treat quasilinear equations and systems. In
the scalar case, weak solutions can be obtained through variational methods which
provide critical points of the corresponding energy functional. This approach is
also fruitful in the case of potential systems, that is when the nonlinearities on the
right hand side are the gradient of a C1-functional. However, due to the loss of the
variational structure, the treatment of nonvariational systems is more complicated
and is based mostly on topological methods. Recently, there have been significant
studies in this direction. Some existence and uniqueness result have been obtained
with the assumption that (3.3.2) is the semilinear Lane-Emden system, which means
f = f(v) and g = g(u) (see [35, 40]). The quasilinear Lane-Emden system was
instead studied in [62]. When f and g are generic functions with suitable growth
conditions some existence results, mainly based on the comparison principle and the
Schauder’s fixed point theorem, were obtained in [70]

3.4 Singular elliptic systems

In the previous section we described what happens from the physical and biological
point of view when we deal with systems of elliptic regular equations. Here with the
term regular we mean an equation which does not contain terms that could go to
+∞ as the variables approach zero. The aim of this section is to analyze the singular

case, i.e., when the situation described above could happen. Singular boundary value
problems for a single equation have been widely studied in the past several decades.
While starting out as the study of ordinary differential equations in [127, 132], it
rapidly progressed to the study of elliptic nonlinear boundary value problems, see
[39, 78]. Presently, many of the earlier results have been generalized to different
operators, often quasilinear and anisotropic, which often occur in applications such
as fluid dynamics (see [28, 32, 33, 34]).

Although there is a substantial literature on systems of regular elliptic partial
differential equations, to the best of our knowledge there has been no similar study
of results for systems of singular elliptic problems even though they arise naturally
in applications.

3.4.1 The Gierer-Meinhardt model

In 1972 Gierer and Meinhardt [57] proposed a mathematical model for pattern
formation of spatial tissue structures in morphogenesis. The mechanism behind
their model is based on the existence of two chemical substances: a slowly diffusing
activator and a rapidly diffusing inhibitor. The ratio of their diffusion rates is
assumed to be small.

The Gierer-Meinhardt model reads as

ut = d1∆u− αu+ cρ
up

vq
in Ω × (0, T ),

vt = d2∆v − βv + c′ρ′u
r

vs
in Ω × (0, T ),

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω × (0, T ),

(3.4.1)

in a smooth bounded domain Ω of RN , while n is the outer unit normal of Ω. Here
the unknowns u, v stand for the concentration of activator and inhibitor with the
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source distribution ρ, ρ′, respectively. Moreover, d1, d2 are the diffusion coefficients
and α, β, c, c′ > 0. Finally, the exponents p, q, r, s > 0 verify the relation qr >

(p− 1)(s+ 1) > 0. Using the original terminology of [57], we say that the activator
and inhibitor sources are different when q 6= s.

Many works have been devoted to the study of the steady-state solutions of
(3.4.1); that is, solutions of the stationary system

d1∆u− αu+ cρ
up

vq
= 0 in Ω,

d2∆v − βv + c′ρ′u
r

vs
= 0 in Ω,

∂u

∂n
=
∂v

∂n
= 0 on ∂Ω.

(3.4.2)

Problem (3.4.2) is quite difficult to solve in general, since it does not have a varia-

tional structure. A first step is to study its shadow system, an idea due to Keener [72].
Let us observe that dividing the second equation by d2, letting formally d2 → +∞
and making use of the boundary conditions we obtain that v = ξ ≡ constant and
the corresponding system is

d1∆u− αu+ cρ
up

ξq
= 0 in Ω,

ξs+1 =
cρ′

β|Ω|

ˆ

Ω
ur

u > 0 in Ω,

∂u

∂n
= 0 on ∂Ω.

New features of Gierer-Meinhardt type systems are emphasized in [54], where the
author considered the following

∆u− αu+
up

vq
+ ρ(x) = 0, u > 0, in Ω,

∆v − βv +
ur

vs
= 0, v > 0, in Ω,

u = 0, v = 0 on ∂Ω,

(3.4.3)

in a smooth bounded domain Ω. Here ρ ∈ C0,γ(Ω), 0 < γ < 1, represents the source
distribution of the activator. We assume that ρ ≥ 0, with ρ 6≡ 0, in Ω while α, β ≥ 0.
Let us notice that the homogeneous Dirichlet boundary condition in (3.4.3), instead
of the Neumann boundary condition as in (3.4.2), turns the system singular. Indeed,
the nonlinearities up/vq and ur/vs become unbounded around the boundary.

3.4.2 The quasilinear case

In this subsection we consider a quasilinear generalization of (3.4.2), namely

−∆pu = f(u, v) in Ω,

−∆qv = g(u, v) in Ω,

u, v > 0 in Ω,

u, v = 0 on ∂Ω,

(3.4.4)

on a bounded domain Ω with a C1,α boundary ∂Ω, α ∈ (0, 1), while 1 < p, q ≤ N .
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Many important singular problems fit the setting of (3.4.4). For example, much
interest was devoted to the case when

f(u, v) = uα1vβ1 and g(u, v) = uα2vβ2 , (3.4.5)

with αi, βi ∈ R being possibly negative. System (3.4.4) with the growth condi-
tion (3.4.5) was examined in [55, 56, 98] under the assumption that the associated
system has a cooperative structure, that is, α1, β2 < 0 < α2, β1. In all these pa-
pers the authors obtained existence results via different techniques: an iterative
scheme constructed through a sub-supersolution [55], a fixed point argument in a
sub-supersolution setting [56], a sub-supersolution method for system combined with
perturbation techniques [98].

Another important class of singular problems incorporated in statement (3.4.4)
patterns the system for

f(u, v) = uα1 + vβ1 and g(u, v) = uα2 + vβ2 ,

with possibly negative exponents. Relevant contributions on this topic can be found
in [3, 46]. In [99] the authors instead considered a more general class of functions
f, g, satisfying the following hypotheses:

f(s1, s2) ≤ m1(1 + sα1
1 )(1 + sβ1

2 ) ∀ s1, s2 > 0,

with m1 > 0 and α1, β1 < 0 such that α1 + β1 > −1,
(3.4.6)

and

g(s1, s2) ≤ m2(1 + sα2
1 )(1 + sβ2

2 ) ∀ s1, s2 > 0,

with m2 > 0 and α2, β2 < 0 such that α2 + β2 > −1.
(3.4.7)

The main technical difficulty consists in the presence of singular terms that can occur
under hypotheses (3.4.6)-(3.4.7). Indeed, the imposed hypotheses do not guarantee
that the Euler functional associated to problem (3.4.4) is well defined, so the vari-
ational method can not be applied. In addition, the method of sub-supersolution
in its system version does not work for problem (3.4.4) due to its noncooperative
character, which means that generally the functions f(u, · ) and g( ·, v) are not nec-
essarily increasing whenever u, v are fixed. To handle this problem, the authors
in [99] exploited the behavior toward zero and infinity of the nonlinearities f, g by
introducing adequate truncations. This gave rise to a regularized system for (3.4.4)
depending on a parameter ε > 0 whose study is relevant for the initial problem. By
applying Schauder’s fixed point theorem, they showed that the regularized system
has a positive and sufficiently regular solution (uε, vε). Moreover, this solution is
located in some rectangle which does not contain zero for all ε > 0, whose lower
bound is independent of ε whereas the upper bound can depend on ε. Then, a posi-
tive solution of (3.4.4) is obtained by passing to the limit as ε → 0. Their arguments
are based on a-priori estimates, Hardy-Sobolev inequality and the (S+)-property of
the negative p-Laplacian.

In [100] different classes of functions were considered, namely those satisfying
the following

m1s
α1
1 sβ1

2 ≤ f(s1, s2) ≤ M1s
α1
1 sβ1

2 ∀ s1, s2 > 0, withM1,m1 > 0

andα1 ∈ R, β1 < 0 such that |α1| − β1 < min(1, p− 1),
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and

m2s
α2
1 sβ2

2 ≤ g(s1, s2) ≤ M2s
α2
1 sβ2

2 ∀ s1, s2 > 0, withM2,m2 > 0

andβ2 ∈ R, α2 < 0 such that |β2| − α2 < min(1, q − 1),

A basic feature of this setting is that now the singularity in problem (3.4.4) comes
out through a competitive structure of the nonlinearities f(u, v) and g(u, v). It is
caused by the fact that the parameters β1, α2 are negative, which prevents f and
g to be increasing with respect to v and u, respectively. Due to this, the sub-
supersolution method is not directly applicable without additional assumptions. In
order to establish the existence of positive solutions, the authors developed some
comparison arguments, which allowed them to get an auxiliary result that provides
a-priori estimates. In turn, these estimates enabled them to obtain the result again
by applying the Schauder’s fixed point theorem to a fixed point problem associated
to (3.4.4).

3.4.3 Singular elliptic systems in the whole space R
N

In Section 3.4.1 we saw how Gierer and Meinhardt proposed system (3.4.1) as a
model of biological pattern formation, making particular attention to its stationary
version (3.4.2). Let us consider the following particular case of (3.4.2)

d∆a− a+ a2/h = 0 in Ω,

D∆h− h+ a2 = 0 in Ω,

∂a

∂h
=
∂v

∂n
= 0 on ∂Ω,

(3.4.8)

where Ω is a bounded domain of RN , N = 1, 2. The associated shadow system reads
as

d∆a− a+ a2/ξ = 0 in Ω,

ξ =
1

|Ω|

ˆ

Ω
a2

a > 0 in Ω,

∂a

∂n
= 0 on ∂Ω.

After the rescaling w(y) = ξ−1a(d1/2y) we obtain the following scalar equation

∆w − w + w2 = 0 in Ωd,

w > 0 in Ωd,

∂w

∂n
= 0 on ∂Ωd,

(3.4.9)

where Ωd denotes the expanding domain d−1/2Ω. The study of nonconstant solutions
of (3.4.9) and the related equations as d approaches zero has been the object of
extensive research in recent years. Since the domain is expanding as d → 0, it is
natural to search for solutions w which resemble, after a convenient translation of
the origin, a solution of the limiting problem

∆w − w + w2 = 0 in R
N ,

0 < w(y) → 0 as |y| → ∞.
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It is well known that this problem has solutions for N ≤ 5, which are unique
up to translations and radially symmetric. It is of course natural to ask whether
these solutions will actually correspond to limiting configuration solutions of the full
system when D becomes finite and d very small. Let us make in (3.4.8) the scaling

u(x) = σ−1a(d1/2x), v(x) = σ−1h(d1/2x).

Then, letting d → 0 we obtain, for N = 2, the limiting system

∆u− u+ u2/v = 0 in R
2,

∆v − σ2v + u2 = 0 in R
2,

u, v > 0, u, v → 0 as |x| → +∞.

This setting is rather natural, since it may correspond to a very large domain with
the pattern formation process taking place only very far away from the boundary.

Of course problem (3.4.8) can be generalized to the case N ≥ 3. This was made
for example in [101], where the authors considered the following system

−∆u+ α(x)u = h1(x)
1
vq

in R
N ,

−∆v + β(x)v = h2(x)
ur

vs
in R

N ,

u, v > 0 in R
N ,

u(x), v(x) → 0 as |x| → ∞.

. (3.4.10)

Here α, β, h1, h2 are given, not necessarily continuous functions, s ∈ ]0, 1[ and q, r > 0
such that r− s ≤ 1. The main idea for solving system (3.4.10) is to regularize it by
introducing a suitable parameter ε, as made in Section 3.4.2, and then to solve the
regularized system by applying the Schauder’s fixed point theorem.

The main difficulty when dealing with problems in the whole space is the lack of
compactness due to the translation and dilation invariance of RN . Moreover, some
powerful tools as the Hardy-Sobolev inequality are no more at hand. To prove the
existence of solution of problem (3.4.10) the authors applied the reasoning used in
[4] to demonstrate the uniqueness of the solution to the following problem

−∆u+ a(x)u = h(x)u−γ in R
N ,

u > 0 in R
N ,

where γ is a positive number.
System (3.4.8) could be also generalized to its quasilinear version. To the best

of our knowledge, this problem was not yet studied in the literature, motivated by
the discussion in Section 3.3. An attempt in this direction was made in our work
[91], which is the subject of the next section.

3.5 Our results

We consider the following system of quasilinear elliptic equations

−∆p1u = a1(x)f(u, v) in R
N ,

−∆p2v = a2(x)g(u, v) in R
N ,

u, v > 0 in R
N ,

u, v → 0, as |x| → +∞,

(3.5.1)
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where N ≥ 3 and 1 < pi < N . Nonlinearities f, g : R+ × R
+ → R

+ are continuous
and fulfill the condition

(Hf,g) There exist mi,Mi > 0, i = 1, 2, such that

m1s
α1 ≤ f(s, t) ≤ M1s

α1(1 + tβ1),

m2t
β2 ≤ g(s, t) ≤ M2(1 + sα2)tβ2

for all s, t ∈ R
+, with −1 < α1, β2 < 0 < α2, β1,

α1 + α2 < p1 − 1, β1 + β2 < p2 − 1, (3.5.2)

as well as

β1 <
p∗

2

p∗
1

min{p1 − 1, p∗
1 − p1}, α2 <

p∗
1

p∗
2

min{p2 − 1, p∗
2 − p2}.

As usual, p∗
i denotes the critical Sobolev exponent corresponding to pi, see Section

2.6.1. Coefficients ai : RN → R satisfy the assumption

(Ha) ai(x) > 0 a.e. in R
N and ai ∈ L1(RN ) ∩ Lζi(RN ), where

1
ζ1

≤ 1 − p1

p∗
1

− β1

p∗
2

,
1
ζ2

≤ 1 − p2

p∗
2

− α2

p∗
1

.

Let D1,pi(RN ) be the closure of C∞
0 (RN ) with respect to the norm

‖w‖D1,pi (RN ) := ‖∇w‖Lpi (RN ).

Recall that
D1,pi(RN ) = {w ∈ Lp∗

i (RN ) : |∇w| ∈ Lpi(RN )};

see, e.g., [83, Theorem 8.3]. A pair (u, v) ∈ D1,p1(RN ) × D1,p2(RN ) is called a weak
solution to (3.5.1) provided u, v > 0 a.e. in R

N , u(x), v(x) → 0 as |x| → +∞ and
ˆ

RN

|∇u|p1−2∇u∇ϕdx =
ˆ

RN

a1f(u, v)ϕdx,
ˆ

RN

|∇v|p2−2∇v∇ψ dx =
ˆ

RN

a2g(u, v)ψ dx

for all (ϕ,ψ) ∈ D1,p1(RN ) × D1,p2(RN ).
The most interesting aspect lies in the fact that both f and g can exhibit singu-

larities through R
N which, without loss of generality, are located at zero. Indeed,

−1 < α1, β2 < 0 by (Hf,g). This in general represents a serious difficulty to over-
come.

We have already seen that singular systems in the whole space have been investi-
gated only for p := q := 2, essentially exploiting the linearity of involved differential
operators, see Section 3.4.3. Nevertheless, even in the semilinear case, (3.5.1) cannot
be reduced to Gierer-Meinhardt’s case once (Hf,g) is assumed. Moreover, variational
methods do not work, at least not in a direct way, because the Euler functional as-
sociated with problem (3.5.1) is not well defined. A similar comment holds for
sub-supersolution techniques, that are usually employed in the case of bounded do-
mains, as already seen. Hence, we were naturally led to apply fixed point results.
An a-priori estimate in L∞(RN ) × L∞(RN ) for weak solutions of (3.5.1) is first
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established (cf. Theorem 3.5.1) by a Moser’s type iteration procedure and an ad-
equate truncation which, due to singular terms, require a specific treatment. We
next perturb (3.5.1) by introducing a parameter ε > 0. This produces the family of
regularized systems

−∆p1u = a1(x)f(u+ ε, v) in R
N ,

−∆p2v = a2(x)g(u, v + ε) in R
N ,

u, v > 0 in R
N ,

(3.5.3)

whose study yields useful informations on (3.5.1). Indeed, the previous L∞- bound-
edness still holds for solutions to (3.5.3), regardless of ε. Thus, via Schauder’s
fixed point theorem we get a weak solution (uε, vε) lying inside a rectangle given by
positive lower bounds, where ε does not appear, and positive upper bounds, that
may instead depend on ε. Finally, letting ε → 0+ and using the (S)+-property of
the negative p-Laplacian in D1,p(RN ) (see Lemma 3.5.3) yields a weak solution to
(3.5.1).

3.5.1 Preliminaries

Let Ω ⊆ R
N be a measurable set, t ∈ R and w, z ∈ Lp(RN ). As seen in Chapter 2,

we write |Ω| for the Lebesgue measure of Ω, while we set

Ω(w ≤ t) := {x ∈ Ω : w(x) ≤ t} and ‖w‖p := ‖w‖Lp(RN ).

The meaning of Ω(w > t), etc. is analogous. By definition, w ≤ z if w(x) ≤ z(x)
a.e. in R

N .
Given 1 ≤ q < p, neither Lp(RN ) ↪→ Lq(RN ) nor the reverse embedding hold

true. However, the situation looks better for functions belonging to L1(RN ), as the
next proposition shows.

Proposition 3.5.1. Suppose p > 1 and w ∈ L1(RN ) ∩Lp(RN ). Then, w ∈ Lq(RN )
whatever q ∈ ]1, p[.

Proof. Thanks to Hölder’s inequality, with exponents p/q and p/(p−q), and Cheby-
shev’s inequality we have

‖w‖q
q =

ˆ

RN (|w|≤1)
|w|qdx+

ˆ

RN (|w|>1)
|w|qdx

≤
ˆ

RN (|w|≤1)
|w| dx+

(
ˆ

RN (|w|>1)
|w|pdx

)q/p

|RN (|w| > 1)|1−q/p

≤
ˆ

RN

|w| dx+
(ˆ

RN

|w|pdx
)q/p (ˆ

RN

|w|pdx
)1−q/p

= ‖w‖1 + ‖w‖p
p.

This completes the proof.

The summability properties of ai collected below will be exploited throughout
the section.

Remark 3.5.1. Let assumption (Ha) be fulfilled. Then, for any i = 1, 2, the fol-

lowing holds
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(j1) ai ∈ L(p∗
i )′

(RN );

(j2) ai ∈ Lγi(RN ), where γi := 1/(1 − ti), with

t1 :=
α1 + 1
p∗

1

+
β1

p∗
2

, t2 :=
α2

p∗
1

+
β2 + 1
p∗

2

;

(j3) ai ∈ Lδi(RN ), for δi := 1/(1 − si) and

s1 :=
α1 + 1
p∗

1

, s2 :=
β2 + 1
p∗

2

;

(j4) ai ∈ Lξi(RN ), where ξi ∈ ]p∗
i /(p

∗
i − pi), ζi[.

To verify (j1)–(j4) we simply note that ζi > max{(p∗
i )′, γi, δi, ξi} and apply Proposi-

tion 3.5.1.

Let us next show that the operator −∆p is of type (S)+ in D1,p(RN ).

Proposition 3.5.2. If 1 < p < N and (un) ⊆ D1,p(RN ) satisfies

un ⇀ u in D1,p(RN ), (3.5.4)

lim sup
n→∞

〈−∆pun, un − u〉 ≤ 0, (3.5.5)

then un → u in D1,p(RN ).

Proof. By monotonicity one has

〈−∆pun − (−∆pu), un − u〉 ≥ 0 ∀n ∈ N,

which evidently entails

lim inf
n→∞ 〈−∆pun − (−∆pu), un − u〉 ≥ 0.

Via (3.5.4)–(3.5.5) we then get

lim sup
n→∞

〈−∆pun − (−∆pu), un − u〉 ≤ 0.

Therefore,

lim
n→∞

ˆ

RN

(
|∇un|p−2∇un − |∇u|p−2∇u

)
(∇un − ∇u) dx = 0. (3.5.6)

Since [108, Lemma A.0.5] yields
ˆ

RN

(
|∇un|p−2∇un − |∇u|p−2∇u

)
(∇un − ∇u) dx

≥





Cp

´

RN

|∇(un−u)|2
(|∇un|+|∇u|)2−p dx if 1 < p < 2,

Cp

´

RN |∇(un − u)|p dx otherwise

∀n ∈ N,

the desired conclusion, namely

lim
n→∞

ˆ

RN

|∇(un − u)|p dx = 0,
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directly follows from (3.5.6) once p ≥ 2. If 1 < p < 2 then Hölder’s inequality and
(3.5.4) lead to

ˆ

RN

|∇(un − u)|p dx

=
ˆ

RN

|∇(un − u)|p

(|∇un| + |∇u|) p(2−p)
2

(|∇un| + |∇u|)
p(2−p)

2 dx

≤
(
ˆ

RN

|∇(un − u)|2
(|∇un| + |∇u|)2−p

dx

) p

2 (ˆ

RN

(|∇un| + |∇u|)pdx

) 2−p

2

≤ C

(
ˆ

RN

|∇(un − u)|2
(|∇un| + |∇u|)2−p

dx

) p

2

, n ∈ N,

with appropriate C > 0. Now, the argument goes on as before.

3.5.2 Boundedness of solutions

The main result of this subsection, Theorem 3.5.1 below, provides an L∞(RN )-a
priori estimate for weak solutions to (3.5.1). Its proof will be performed into three
steps.

Lemma 3.5.1 (Lp∗
i (RN )-uniform boundedness). There exists ρ > 0 such that

max
{

‖u‖p∗
1
, ‖v‖p∗

2

}
≤ ρ (3.5.7)

for every (u, v) ∈ D1,p1(RN ) × D1,p2(RN ) solving problem (3.5.1).

Proof. Multiply both equations in (3.5.1) by u and v, respectively, integrate over
R

N , and use (Hf,g) to arrive at

‖∇u‖p1
p1

=
ˆ

RN

a1f(u, v)u dx ≤ M1

ˆ

RN

a1u
α1+1(1 + vβ1) dx,

‖∇v‖p2
p2

=
ˆ

RN

a2g(u, v)v dx ≤ M2

ˆ

RN

a2(1 + uα2)vβ2+1 dx.

Through the embedding D1,pi(RN ) ↪→ Lp∗
i (RN ), besides Hölder’s inequality, we

obtain

‖∇u‖p1
p1

≤ M1

(
‖a1‖δ1‖u‖α1+1

p∗
1

+ ‖a1‖γ1‖u‖α1+1
p∗

1
‖v‖β1

p∗
2

)

≤ C1‖∇u‖α1+1
p1

(
‖a1‖δ1 + ‖a1‖γ1‖∇v‖β1

p2

)
;

cf. also Remark 3.5.1. Likewise,

‖∇v‖p2
p2

≤ C2‖∇v‖β2+1
p2

(
‖a2‖δ2 + ‖a2‖γ2‖∇u‖α2

p1

)
.

Thus, a fortiori,

‖∇u‖p1−1−α1
p1

≤ C1

(
‖a1‖δ1 + ‖a1‖γ1‖∇v‖β1

p2

)
,

‖∇v‖p2−1−β2
p2

≤ C2

(
‖a2‖δ2 + ‖a2‖γ2‖∇u‖α2

p1

)
,

(3.5.8)

which imply

‖∇u‖p1−1−α1
p1

+ ‖∇v‖p2−1−β2
p2

≤ C1

(
‖a1‖δ1 + ‖a1‖γ1‖∇v‖β1

p2

)
+ C2

(
‖a2‖δ2 + ‖a2‖γ2‖∇u‖α2

p1

)
.
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Rewriting this inequality as

‖∇u‖α2
p1

(
‖∇u‖p1−1−α1−α2

p1
− C2‖a2‖γ2

)

+ ‖∇v‖β1
p2

(
‖∇v‖p2−1−β1−β2

p2
− C1‖a1‖γ1

)

≤ C1‖a1‖δ1 + C2‖a2‖δ2 ,

(3.5.9)

four situations may occur. If

‖∇u‖p1−1−α1−α2
p1

≤ C2‖a2‖γ2 , ‖∇v‖p2−1−β1−β2
p2

≤ C1‖a1‖γ1

then (3.5.7) follows from (j2) of Remark 3.5.1, conditions (3.5.2), and the embedding
D1,pi(RN ) ↪→ Lp∗

i (RN ). Assume next that

‖∇u‖p1−1−α1−α2
p1

> C2‖a2‖γ2 , ‖∇v‖p2−1−β1−β2
p2

> C1‖a1‖γ1 . (3.5.10)

Thanks to (3.5.9) we have

‖∇u‖α2
p1

(‖∇u‖p1−1−α1−α2
p1

− C2‖a2‖γ2) ≤ C1‖a1‖δ1 + C2‖a2‖δ2 ,

whence, on account of (3.5.10),

‖∇u‖p1−1−α1−α2
p1

≤ C1‖a1‖δ1 + C2‖a2‖δ2

‖∇u‖α2
p1

+ C2‖a2‖γ2

≤ C1‖a1‖δ1 + C2‖a2‖δ2

‖a2‖
α2

p1−1−α1−α2
γ2

+ C2‖a2‖γ2 .

A similar inequality holds true for v. So, (3.5.7) is achieved reasoning as before.
Finally, if

‖∇u‖p1−1−α1−α2
p1

≤ C2‖a2‖γ2 , ‖∇v‖p2−1−β1−β2
p2

> C1‖a1‖γ1 (3.5.11)

then (3.5.8) and (3.5.11) entail

‖∇v‖p2−1−β2
p2

≤ C2

[
‖a2‖δ2 + ‖a2‖γ2 (C2‖a2‖γ2)

α2
p1−1−α1−α2

]
.

By (3.5.2) again we thus get

max{‖∇u‖p1 , ‖∇v‖p2} ≤ C3 ,

where C3 > 0. This yields (3.5.7), because D1,pi(RN ) ↪→ Lp∗
i (RN ). The last case,

i.e.,
‖∇u‖p1−1−α1−α2

p1
> C2‖a2‖γ2 , ‖∇v‖p2−1−β1−β2

p2
≤ C1‖a1‖γ1

is analogous.

To shorten notation, we write

D1,pi(RN )+ := {w ∈ D1,pi(RN ) : w ≥ 0 a.e. in R
N }.

Lemma 3.5.2 (Truncation). Let (u, v) ∈ D1,p1(RN )×D1,p2(RN ) be a weak solution

of (3.5.1). Then,
ˆ

RN (u>1)
|∇u|p1−2∇u∇ϕdx ≤ M1

ˆ

RN (u>1)
a1(1 + vβ1)ϕdx, (3.5.12)

ˆ

RN (v>1)
|∇v|p2−2∇v∇ψ dx ≤ M2

ˆ

RN (v>1)
a2(1 + uα2)ψ dx (3.5.13)

for all (ϕ,ψ) ∈ D1,p1(RN )+ × D1,p2(RN )+.

75



Proof. Pick a C1 cut-off function η : R → [0, 1] such that

η(t) =

{
0 if t ≤ 0,
1 if t ≥ 1,

η′(t) ≥ 0 ∀ t ∈ [0, 1],

and, given δ > 0, define ηδ(t) := η
(

t−1
δ

)
. If w ∈ D1,pi(RN ), then

ηδ ◦ w ∈ D1,pi(RN ), ∇(ηδ ◦ w) = (η′
δ ◦ w)∇w, (3.5.14)

as a standard verification shows.
Fix now (ϕ,ψ) ∈ D1,p1(RN )+×D1,p2(RN )+. Multiply the first equation in (3.5.1)

by (ηδ ◦ u)ϕ, integrate over R
N , and use (Hf,g) to achieve

ˆ

RN

|∇u|p1−2∇u∇((ηδ ◦ u)ϕ) dx ≤ M1

ˆ

RN

a1u
α1(1 + vβ1)(ηδ ◦ u)ϕdx.

By (3.5.14) we have
ˆ

RN

|∇u|p1−2∇u∇((ηδ ◦ u)ϕ) dx

=
ˆ

RN

|∇u|p1(η′
δ ◦ u)ϕdx+

ˆ

RN

(ηδ ◦ u)|∇u|p1−2∇u∇ϕdx,

while η′
δ ◦ u ≥ 0 in R

N . Therefore,
ˆ

RN

(ηδ ◦ u)|∇u|p1−2∇u∇ϕdx ≤ M1

ˆ

RN

a1u
α1(1 + vβ1)(ηδ ◦ u)ϕdx.

Letting δ → 0+ gives (3.5.12). The proof of (3.5.13) is similar.

Lemma 3.5.3 (Moser’s iteration). There exists Λ > 0 such that

max{‖u‖L∞(Ω1), ‖v‖L∞(Ω2)} ≤ Λ, (3.5.15)

where

Ω1 := R
N (u > 1) and Ω2 := R

N (v > 1),

for every (u, v) ∈ D1,p1(RN ) × D1,p2(RN ) solving problem (3.5.1).

Proof. Given w ∈ Lp(Ω1), we shall write ‖w‖p in place of ‖w‖Lp(Ω1) when no con-
fusion can arise. Observe that m(Ω1) < +∞ and define, provided M > 1,

uM (x) := min{u(x),M}, x ∈ R
N .

Choosing ϕ := uκp1+1
M , with κ ≥ 0, in (3.5.12) gives

(κp1 + 1)
ˆ

Ω1(u≤M)
uκp1

M |∇u|p1−2∇u∇uM dx

≤ M1

ˆ

Ω1

a1(1 + vβ1)uκp1+1
M dx.

(3.5.16)

Through the Sobolev embedding theorem we have

(κp1 + 1)
ˆ

Ω1(u≤M)
uκp1

M |∇u|p1−2∇u∇uM dx

= (κp1 + 1)
ˆ

Ω1(u≤M)
(|∇u|uκ)p1dx =

κp1 + 1
(κ+ 1)p1

ˆ

Ω1(u≤M)
|∇uκ+1|p1dx

=
κp1 + 1

(κ+ 1)p1

ˆ

Ω1

|∇uκ+1
M |p1dx ≥ C1

κp1 + 1
(κ+ 1)p1

‖uκ+1
M ‖p1

p∗
1
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for appropriate C1 > 0. By Remark 3.5.1, Hölder’s inequality entails
ˆ

Ω1

a1(1 + vβ1)uκp1+1
M dx ≤

ˆ

Ω1

a1(1 + vβ1)uκp1+1dx

≤
(
‖a1‖ξ1 + ‖a1‖ζ1‖v‖β1

p∗
2

)
‖u‖κp1+1

(κp1+1)ξ′
1
.

Hence, (3.5.16) becomes

κp1 + 1
(κ+ 1)p1

‖uκ+1
M ‖p1

p∗
1

≤ C2

(
‖a1‖ξ1 + ‖a1‖ζ1‖v‖β1

p∗
2

)
‖u‖κp1+1

(κp1+1)ξ′
1
.

Since u(x) = lim
M→∞

uM (x) a.e. in R
N , using the Fatou lemma gives

κp1 + 1
(κ+ 1)p1

‖u‖(κ+1)p1

(κ+1)p∗
1

≤ C2

(
‖a1‖ξ1 + ‖a1‖ζ1‖v‖β1

p∗
2

)
‖u‖κp1+1

(κp1+1)ξ′
1
,

namely

‖u‖(κ+1)p∗
1

≤ C
η(κ)
3 σ(κ)

(
1 + ‖v‖β1

p∗
2

)η(κ)
‖u‖

κp1+1

(κ+1)p1

(κp1+1)ξ′
1
, (3.5.17)

where C3 > 0, while

η(κ) :=
1

(κ+ 1)p1
, σ(κ) :=

[
κ+ 1

(κp1 + 1)1/p1

] 1
κ+1

.

Let us next verify that

(κ+ 1)p∗
1 > (κp1 + 1)ξ′

1 ∀κ ∈ R
+
0 ,

which clearly is equivalent to

1
ξ1
< 1 − κp1 + 1

(κ+ 1)p∗
1

, κ ∈ R
+
0 . (3.5.18)

Indeed, the function κ 7→ κp1+1
(κ+1)p∗

1
is increasing on R

+
0 and tends to p1

p∗
1
, as k → ∞. So,

(3.5.18) holds true, because 1
ξ1
< 1 − p1

p∗
1
; see Remark 3.5.1. Now, Moser’s iteration

can start. If there exists a sequence (κn) ⊆ R
+
0 fulfilling

lim
n→∞

κn = +∞, ‖u‖(κn+1)p∗
1

≤ 1 ∀n ∈ N

then ‖u‖L∞(Ω1) ≤ 1. Otherwise, with appropriate κ0 > 0, we have

‖u‖(κ+1)p∗
1
> 1 for any κ > κ0, besides ‖u‖(κ0+1)p∗

1
≤ 1. (3.5.19)

Pick κ1 > κ0 such that (κ1p1 + 1)ξ′
1 = (κ0 + 1)p∗

1, set κ := κ1 in (3.5.17), and use
(3.5.19) to arrive at

‖u‖(κ1+1)p∗
1

≤ C
η(κ1)
3 σ(κ1)

(
1 + ‖v‖β1

p∗
2

)η(κ1)
‖u‖

κ1p1+1

(κ1+1)p1

(κ0+1)p∗
1

≤ C
η(κ1)
3 σ(κ1)

(
1 + ‖v‖β1

p∗
2

)η(κ1)
.

(3.5.20)

Choose next κ2 > κ0 satisfying (κ2p1 + 1)ξ′
1 = (κ1 + 1)p∗

1. From (3.5.17), written
for κ := κ2, as well as (3.5.19)–(3.5.20) it follows that

‖u‖(κ2+1)p∗
1

≤ C
η(κ2)
3 σ(κ2)

(
1 + ‖v‖β1

p∗
2

)
)η(κ2)‖u‖

κ2p1+1

(κ2+1)p1

(κ1+1)p∗
1

≤ C
η(κ2)
3 σ(κ2)

(
1 + ‖v‖β1

p∗
2

)η(κ2)
‖u‖(κ1+1)p∗

1

≤ C
η(κ2)+η(κ1)
3 σ(κ2)σ(κ1)

(
1 + ‖v‖β1

p∗
2

)η(κ2)+η(κ1)
.
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By induction, we construct a sequence (κn) ⊆ (κ0,+∞) enjoying the properties
below:

(κnp1 + 1)ξ′
1 = (κn−1 + 1)p∗

1 , n ∈ N; (3.5.21)

‖u‖(kn+1)p∗
1

≤ C

n∑
i=1

η(κi)

3

n∏

i=1

σ(κi)
(
1 + ‖v‖β1

p∗
2

)
n∑

i=1

η(κi)

(3.5.22)

for all n ∈ N. A simple computation based on (3.5.21) yields

(κn + 1) ' (κ0 + 1)
(
p∗

1

p1ξ′
1

)n

as n → ∞, (3.5.23)

where p∗
1

p1ξ′
1
> 1 due to (j4) of Remark 3.5.1. Further, if C4 > 0 satisfies

1 <
[

t+ 1
(tp1 + 1)1/p1

] 1√
t+1 ≤ C4 , t ∈ R

+
0 ,

(cf. [44, p. 116]), then

n∏

i=1

σ(κi) =
n∏

i=1

(
κi + 1

(κip1 + 1)1/p1

) 1
κi+1

=
n∏

i=1

[(
κi + 1

(κip1 + 1)1/p1

) 1√
κi+1

] 1√
κi+1

≤ C

n∑
i=1

1√
κi+1

4 .

Consequently, (3.5.22) becomes

‖u‖(kn+1)p∗
1

≤ C

n∑
i=1

η(κi)

3 C

n∑
i=1

1√
κi+1

4

(
1 + ‖v‖β1

p∗
2

)
n∑

i=1

η(κi)

.

Observe that, by (3.5.23), we have that κn + 1 → +∞ and 1
κn+1 ' 1

κ0+1

(
p1ξ′

1
p∗

1

)n
.

Moreover, (3.5.7) entails ‖v‖p∗
2

≤ ρ. Therefore, there exists a constant C5 > 0 such
that

‖u‖(κn+1)p∗
1

≤ C5 ∀n ∈ N,

whence ‖u‖L∞(Ω1) ≤ C5. Thus, in either case, ‖u‖L∞(Ω1) ≤ Λ, with Λ := max{1, C5}.
A similar argument applies to v.

Using (3.5.15) and taking into account the definition of sets Ωi we immediately
infer the following

Theorem 3.5.1. Under assumptions (Hf,g) and (Ha), it follows that

max{‖u‖∞, ‖v‖∞} ≤ Λ (3.5.24)

for every weak solution (u, v) ∈ D1,p1(RN ) × D1,p2(RN ) to problem (3.5.1). Here, Λ
is given by Lemma 3.5.3.
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3.5.3 The regularized system

From Remark 3.5.1 we already know that ai ∈ L(p∗
i )′

(RN ). Therefore, thanks to
Minty-Browder’s theorem (see [22, Theorem V.16]), the equation

− ∆pi
wi = ai(x) in R

N (3.5.25)

admits an unique solution wi ∈ D1,pi(RN ), i = 1, 2. Moreover, it is simple to prove
that wi > 0 and wi ∈ L∞(RN ).

Indeed, testing (3.5.25) with ϕ := w−
i yields wi ≥ 0, because ai > 0 by (Ha).

Through the strong maximum principle we further obtain

ess inf
Br(x)

wi > 0 for any r > 0, x ∈ R
N .

Hence, wi > 0. Moser’s iteration technique then produces wi ∈ L∞(RN ).
Next, fix ε ∈ ]0, 1[ and define

(u, v) =
(

[m1(Λ + 1)α1 ]
1

p1−1w1, [m2(Λ + 1)β2 ]
1

p2−1w2

)
, (3.5.26)

(uε, vε) =
(

[M1ε
α1(1 + Λβ1)]

1
p1−1w1, [M2ε

β2(1 + Λα2)]
1

p2−1w2

)
,

as well as

Kε :=
{

(z1, z2) ∈ Lp∗
1(RN ) × Lp∗

2(RN ) : u ≤ z1 ≤ uε , v ≤ z2 ≤ vε

}
.

Obviously, Kε is bounded, convex, closed in Lp∗
1(RN )×Lp∗

2(RN ). Given (z1, z2) ∈ Kε,
we write

z̃i := min{zi,Λ}, i = 1, 2. (3.5.27)

On account of (3.5.27), hypothesis (Hf,g) entails

a1m1(Λ + 1)α1 ≤ a1f(z̃1 + ε, z̃2) ≤ a1M1ε
α1(1 + Λβ1),

(3.5.28)

a2m2(Λ + 1)β2 ≤ a2g(z̃1, z̃2 + ε) ≤ a2M2(1 + Λα2)εβ2 .

Moreover, since ai ∈ L(p∗
i )′

(RN ), then the functions

x 7→ a1(x)f(z̃1(x) + ε, z̃2(x)), x 7→ a2(x)g(z̃1(x), z̃2(x) + ε)

belong to D−1,p′
1(RN ) and D−1,p′

2(RN ), respectively. Consequently, by Minty-Browder’s
theorem again, there exists an unique weak solution (uε, vε) of the problem

−∆p1u = a1(x)f(z̃1(x) + ε, z̃2(x)) in R
N ,

−∆p2v = a2(x)g(z̃1(x), z̃2(x) + ε) in R
N ,

uε, vε > 0 in R
N .

(3.5.29)

Let T : Kε → Lp∗
1(RN ) × Lp∗

2(RN ) be defined by T (z1, z2) = (uε, vε) for every
(z1, z2) ∈ Kε.

Lemma 3.5.4. It holds u ≤ uε ≤ uε and v ≤ vε ≤ vε. So, in particular, T (Kε) ⊆
Kε.
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Proof. Via (3.5.26), (3.5.25), (3.5.29), and (3.5.28) we get
ˆ

RN

(−∆p1u− (−∆p1uε))(u− uε)+dx

=
ˆ

RN

(
−∆p1({m1(Λ + 1)α1}

1
p1−1w1) − (−∆p1uε)

)
(u− uε)+dx

=
ˆ

RN

a1 ((m1(Λ + 1)α1 − f(z̃1 + ε, z̃2)) (u− uε)+dx ≤ 0.

Furthermore, [108, Lemma A.0.5] gives
ˆ

RN

(−∆p1u− (−∆p1uε))(u− uε)+dx

=
ˆ

RN

(
|∇u|p1−2∇u− |∇uε|p1−2∇uε

)
∇(u− uε)+dx ≥ 0.

This implies that
ˆ

RN

(−∆p1u− (−∆p1uε)) (u− uε)+dx = 0,

which ensures (u−uε)+ = 0, i.e., u ≤ uε. The remaining inequalities can be verified
in a similar way.

Lemma 3.5.5. The operator T is continuous and compact.

Proof. Pick a sequence (z1,n, z2,n) ⊆ Kε such that

(z1,n, z2,n) → (z1, z2) in Lp∗
1(RN ) × Lp∗

2(RN ).

If (un, vn) := T (z1,n, z2,n) and (u, v) := T (z1, z2), then
ˆ

RN

|∇un|p1−2∇un∇ϕdx =
ˆ

RN

a1f(z̃1,n + ε, z̃2,n)ϕdx, (3.5.30)
ˆ

RN

|∇vn|p2−2∇vn∇ψ dx =
ˆ

RN

a2g(z̃1,n, z̃2,n + ε)ψ dx, (3.5.31)
ˆ

RN

|∇u|p1−2∇u∇ϕdx =
ˆ

RN

a1f(z̃1 + ε, z̃2)ϕdx,
ˆ

RN

|∇v|p2−2∇v∇ψ dx =
ˆ

RN

a2g(z̃1, z̃2 + ε)ψ dx

for every (ϕ,ψ) ∈ D1,p1(RN ) × D1,p2(RN ). Set ϕ := un in (3.5.30). From (3.5.28) it
follows, after using Hölder’s inequality, that

‖∇un‖p1
p1

=
ˆ

RN

a1f(z̃1,n + ε, z̃2,n)un dx

≤ M1

ˆ

RN

a1ε
α1(1 + Λβ1)un dx ≤ Cε

ˆ

RN

a1un dx

≤ Cε‖a1‖(p∗
1)′‖un‖p∗

1
≤ cp1Cε‖a1‖(p∗

1)′‖∇un‖p1 ∀n ∈ N,

where Cε := M1ε
α1(1+Λβ1). This actually means that (un) is bounded in D1,p1(RN ),

because p1 > 1. By (3.5.31), an analogous conclusion holds for (vn). Along subse-
quences if necessary, we may thus assume that

(un, vn) ⇀ (u, v) in D1,p1(RN ) × D1,p2(RN ). (3.5.32)
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So, (un, vn) converges strongly in Lq1(Br1) × Lq2(Br2) for any ri > 0 and any 1 ≤
qi ≤ p∗

i whence, up to subsequences again,

(un, vn) → (u, v) a.e. in R
N . (3.5.33)

Now, combining Lemma 3.5.4 with Lebesgue’s dominated convergence theorem, we
obtain

(un, vn) → (u, v) in Lp∗
1(RN ) × Lp∗

2(RN ), (3.5.34)

as desired. Let us finally verify that T (Kε) is relatively compact. If (un, vn) :=
T (z1,n, z2,n), n ∈ N, then (3.5.30)–(3.5.31) can be written. Hence, the previous
argument yields a pair (u, v) ∈ Lp∗

1(RN )×Lp∗
2(RN ) fulfilling (3.5.34), possibly along

a subsequence. This completes the proof.

Thanks to Lemmas 3.5.4–3.5.5, Schauder’s fixed point theorem applies, and there
exists (uε, vε) ∈ Kε such that (uε, vε) = T (uε, vε). Through Theorem 3.5.1, we next
arrive at

Theorem 3.5.2. Under hypotheses (Hf,g) and (Ha), for every ε > 0 small, problem

(3.5.3) admits a solution (uε, vε) ∈ D1,p1(RN ) × D1,p2(RN ) complying with (3.5.24).

3.5.4 Existence of solutions

We are now ready to establish the main result.

Theorem 3.5.3. Let (Hf,g) and (Ha) be satisfied. Then, (3.5.1) has a weak solution

(u, v) ∈ D1,p1(RN ) × D1,p2(RN ) which is essentially bounded.

Proof. Pick ε := 1
n , with n ∈ N big enough. Theorem 3.5.2 gives a pair (un, vn),

where un := u 1
n

and vn := v 1
n

, such that

ˆ

RN

|∇un|p1−2∇un∇ϕdx =
ˆ

RN

a1f

(
un +

1
n
, vn

)
ϕdx,

ˆ

RN

|∇vn|p2−2∇vn∇ψ dx =
ˆ

RN

a2g

(
un, vn +

1
n

)
ψ dx

(3.5.35)

for every (ϕ,ψ) ∈ D1,p1(RN ) × D1,p2(RN ). Moreover, from Lemma 3.5.4 we have

0 < u ≤ un ≤ Λ, 0 < v ≤ vn ≤ Λ. (3.5.36)

Thanks to (Hf,g), (3.5.36), and (Ha), choosing ϕ := un, ψ := vn in (3.5.35) easily
entails

‖∇un‖p1
p1

≤ M1

ˆ

RN

a1u
α1+1
n (1 + vβ1

n )dx ≤ M1Λα1+1(1 + Λβ1)‖a1‖1 ,

‖∇vn‖p2
p2

≤ M2

ˆ

RN

a2(1 + uα2
n )vβ2+1

n dx ≤ M2(1 + Λα2)Λβ2+1‖a2‖1,

whence both (un) ⊆ D1,p1(RN ) and (vn) ⊆ D1,p2(RN ) are bounded. Along subse-
quences if necessary, we thus have (3.5.32)–(3.5.33). Let us next show that

(un, vn) → (u, v) strongly in D1,p1(RN ) × D1,p2(RN ). (3.5.37)

Testing the first equation in (3.5.35) with ϕ := un − u yields
ˆ

RN

|∇un|p1−2∇un∇(un − u)dx =
ˆ

RN

a1f

(
un +

1
n
, vn

)
(un − u)dx. (3.5.38)
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Observe that the right-hand side of (3.5.38) ges to zero as n → ∞. Indeed, by
(Hf,g), (3.5.36) and (Ha) again,

∣∣∣∣a1f

(
un +

1
n
, vn

)
(un − u)

∣∣∣∣ ≤ 2M1Λα1+1(1 + Λβ1)a1 ∀n ∈ N,

so that, recalling (3.5.33), Lebesgue’s dominated convergence theorem applies. Through
(3.5.38) we obtain lim

n→∞
〈−∆p1un, un − u〉 = 0. Likewise, 〈−∆p2vn, vn − v〉 → 0 as

n → ∞, and (3.5.37) directly follows from Proposition 3.5.2. On account of (3.5.35),
and having in mind (3.5.37), the final step is to verify that

lim
n→∞

ˆ

RN

a1f

(
un +

1
n
, vn

)
ϕdx =

ˆ

RN

a1f(u, v)ϕdx, (3.5.39)

lim
n→∞

ˆ

RN

a2g

(
un, vn +

1
n

)
ψ dx =

ˆ

RN

a2g(u, v)ψ dx (3.5.40)

for all (ϕ,ψ) ∈ D1,p1(RN ) × D1,p2(RN ). If ϕ ∈ D1,p1(RN ) then (j1) in Remark 3.5.1
gives a1ϕ ∈ L1(RN ). Since, as before,

∣∣∣∣a1f

(
un +

1
n
, vn

)
ϕ

∣∣∣∣ ≤ M1Λα1+1(1 + Λβ1)a1|ϕ|, n ∈ N,

assertion (3.5.39) stems from the Lebesgue dominated convergence theorem. The
proof of (3.5.40) is similar at all.

It remains to prove that u, v → 0 as |x| → +∞. We will prove the result only
for u, since the arguments for v are completely similar. Consider again the first
equation of (3.5.1) with ϕ = u. Since we already know that v ∈ L∞(RN ), it follows
that

ˆ

RN

|∇u|p1−2∇u · ∇ϕdx ≤ C

ˆ

RN

a1u
α1ϕdx, ∀ϕ ∈ D1,p(RN ), (3.5.41)

where C = C(Λ,M1, β1). For every κ ≥ 0 and n ∈ N we choose the following test
function ϕ = uκp1+1ηp1

n , where ηn is such that

ηn(x) =





1 in Bn+1 := B1+ 1
2n

0 in Bc
n.

Clearly we have ∇ϕ = (κp1 + 1)∇uuκp1ηp1
n + p1u

κp1+1ηp1−1
n ∇ηn, as well as |∇ηn| ≤

C12n, with C1 > 0. Testing (3.5.41) with such ϕ we have

(κp1 + 1)
ˆ

RN

|∇u|p1uκp1ηp1
n dx+ p1

ˆ

RN

|∇u|p1−2uκp1+1ηp1−1
n ∇ηndx

≤ C

ˆ

RN

a1u
α1+1+κp1ηp1

n dx,

which, passing to the absolute values, implies that

(κp1 + 1)
ˆ

RN

|∇u|p1uκp1ηp1
n dx

≤ C

ˆ

RN

a1u
α1+1+κp1ηp1

n dx+ p1

ˆ

RN

|∇u|p1−1uκp1+1ηp1−1
n |∇ηn|dx.

(3.5.42)

Thanks to Young’s inequality with exponents p1/(p1 − 1) and p1 it follows that

p1

ˆ

RN

(|∇u|p1−1ηp1−1
n uκ(p1−1))uκ+1|∇ηn|dx

≤ p1ε

ˆ

RN

|∇u|p1uκp1ηp1
n dx+ p1Cε

ˆ

RN

u(κ+1)p1 |∇ηn|p1dx,
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for every ε > 0. In particular, we choose ε = κp+1
2p1

, and so equation (3.5.42) becomes

κp1 + 1
2

ˆ

RN

|∇u|p1uκp1ηp1
n dx ≤ C

ˆ

RN

a1u
α1+1+κp1ηp1

n dx+p1Cε

ˆ

RN

u(κ+1)p1 |∇ηn|p1dx,

that is

κp1 + 1
2(κ+ 1)p1

ˆ

RN

|∇uκ+1|p1ηp1
n dx ≤ C

ˆ

RN

a1u
α1+1+κp1ηp1

n dx+p1Cε

ˆ

RN

u(κ+1)p1 |∇ηn|p1dx.

Adding to both sides the positive quantity κp1+1
2(κ+1)p1

´

RN u
(κ+1)p1 |∇ηn|p1dx and sum-

marizing the constants implies

κp1 + 1
(κ+ 1)p1

ˆ

RN

|∇(uκ+1ηn)|p1dx ≤ C

ˆ

RN

a1u
α1+1+κp1ηp1

n dx+C2

ˆ

RN

u(κ+1)p1 |∇ηn|p1dx.

Thanks to Sobolev’s inequality we have

1
cp1

κp1 + 1
(κ+ 1)p1

(ˆ

RN

(uκ+1ηn)p∗
1dx

)p1/p∗
1

≤ C

ˆ

RN

a1u
α1+1+κp1ηp1

n dx+ C2

ˆ

RN

u(κ+1)p1 |∇ηn|p1dx,

which, bearing in mind the definition of ηn, is equivalent to

1
cp1

κp1 + 1
(κ+ 1)p1

(
ˆ

Bn+1

u(κ+1)p∗
1dx

)p1/p∗
1

≤ C

ˆ

Bn

a1u
α1+1+κp1dx+ 2np1C3

ˆ

Bn

u(κ+1)p1dx.

(3.5.43)

Applying Hölder’s inequality with exponents ξ1 and ξ′
1 to the first term on the

right-hand side gives

ˆ

Bn

a1u
α1+1+κp1dx ≤ ‖a1‖ξ1

(
ˆ

Bn

u(α1+1+κp1)ξ′
1dx

)1/ξ′
1

.

Moreover, choose q = κp1+1
κp1+1+α1

and apply Hölder’s inequality with q and q′ to the
last integral of the inequality above (note that q > 1). This gives

(
ˆ

Bn

u(α1+1+κp1)ξ′
1dx

)1/ξ′
1

≤
(
ˆ

Bn

u(κp1+1)ξ′
1dx

)κp1+1+α1
(κp1+1)ξ′

1 |Bn|
−α1

(κp1+1)ξ′
1 ,

being −α1 > 0. Furthermore, let s = (κp1+1)ξ′
1

κp1
, apply Hölder’s inequality to the last

term of (3.5.43) with exponents s and s′, with s > 1, and take into account that
u ∈ L∞(RN )

ˆ

Bn

u(κ+1)p1dx =
ˆ

Bn

uκp1up1dx ≤
(
ˆ

Bn

u(κp1+1)ξ′
1dx

) κp1
(κp1+1)ξ′

1

(
ˆ

Bn

up1s′
dx

)1/s′

≤ |Bn|Λp1‖u‖κp1

(κp1+1)ξ′
1
.

Taking into account these inequalities it follows that

1
cp1

κp1 + 1
(κ+ 1)p1

(
ˆ

Bn+1

u(κ+1)p∗
1dx

)p1/p∗
1

≤ C|Bn|
−α1

(κp1+1)ξ′
1 ‖a1‖ξ1‖u‖κp1+1+α1

L
(κp1+1)ξ′

1 (Bn)
+ 2np1C3Λp1 |Bn|‖u‖κp1

L
(κp1+1)ξ′

1 (Bn)
,
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which, summarizing the constants and taking into account once again that u ∈
L∞(RN ) gives

‖u‖(κ+1)p1

L
(κ+1)p∗

1 (Bn+1)
≤ C4

(
|Bn|

−α1
(κp1+1)ξ′

1 ‖a1‖ξ1Λκp1+α1 + 2np1Λκp1−1|Bn|
)

‖u‖
L

(κp1+1)ξ′
1 (Bn)

.

that is

‖u‖
L

(κ+1)p∗
1 (Bn+1)

≤
[
C4

(
|Bn|

−α1
(κp1+1)ξ′

1 ‖a1‖ξ1Λκp1+α1 + 2np1Λκp1−1|Bn|
)] 1

(κ+1)p1

‖u‖
1

(κ+1)p1

L
(κp1+1)ξ′

1 (Bn)
.

(3.5.44)

We inductively construct a sequence (κn) such that (κnp1 + 1)ξ′
1 = (κn−1 + 1)p∗

1, for
every n ∈ N0. Since it can be proved that κn ' ( p∗

1
p1ξ′

1

)n+1, where p∗
1

p1ξ′
1
> 1, it follows

that κn → +∞ as n → +∞. Inserting κ = κn in (3.5.44) we obtain

‖u‖
L

(κn+1)p∗
1 (Bn+1)

≤
[
C4

(
|Bn|

−α1
(κnp1+1)ξ′

1 ‖a1‖ξ1Λκnp1+α1

+ 2np1Λκnp1−1|Bn|
)] 1

(κn+1)p1 ‖u‖
1

(κn+1)p1

L
(κnp1+1)ξ′

1 (Bn)
.

(3.5.45)

Since

lim
n→+∞

[
C4

(
|Bn|

−α1
(κnp1+1)ξ′

1 ‖a1‖ξ1Λκnp1+α1 + 2np1Λκnp1−1|Bn|
)] 1

(κn+1)p1

∈ R,

there exists a constant C5 > 0 such that

[
C4

(
|Bn|

−α1
(κnp1+1)ξ′

1 ‖a1‖ξ1Λκnp1+α1 + 2np1Λκnp1−1|Bn|
)] 1

(κn+1)p1

≤ C5, (3.5.46)

for every n ∈ N0. We want to get a better estimate of inequality (3.5.45). To this
end, let κ0 > 0 such that (κ0p1 + 1)ξ′

1 = p∗
1. Inserting κ = κ0 in (3.5.45) and taking

into account (3.5.46) we have

‖u‖
L

(κ0+1)p∗
1 (B1)

≤ C5‖u‖
1

(κ0+1)p1

L
p∗

1 (B0)
.

Let now κ1 > κ0 such that (κ1p1 + 1)ξ′
1 = (κ0 + 1)p∗

1. Inserting κ = κ1 in (3.5.45)
we have

‖u‖
L

(κ1+1)p∗
1 (B2)

≤ C5‖u‖
1

(κ1+1)p1

L
(κ0+1)p∗

1 (B1)

≤ C
1+ 1

(κ1+1)p1
5 ‖u‖

1
(κ1+1)p1

1
(κ0+1)p1

L
p∗

1 (B0)
.

Proceeding by induction, we find κn > κ0 for which it holds, after setting an :=
1

(κn+1)p1
, that

‖u‖
L

(κn+1)p∗
1 (Bn+1)

≤ C
1+an+anan−1+···+an...a1

5 ‖u‖

n∏
i=0

an

L
p∗

1 (B0)
. (3.5.47)
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A simple computation shows that, if γ := p1ξ′
1

p∗
1

, then an ' γn+1, which implies that

an−ian−i−1 . . . an ' γn−i+1+n−i+1+1+···+n+1 = γ2in− i(i+1)
2

+i ∀ i ∈ {1, . . . , n},

and so

an + anan−1 + · · · + an . . . a1 '
n∑

i=0

γ2in− i(i+1)
2

+i.

Moreover, after a changing of variables, it follows that

N∑

n=0

γ2Nn− n(n+1)
2

+n ≤
N∑

n=0

γ
3
2

n(N+1) ≤
N∑

n=0

γn,

for N sufficiently large. From (3.5.47) we finally derive that

‖u‖
L

(κn+1)p∗
1 (Bn+1)

≤ C

n∑
i=0

γi

5 ‖u‖

n∏
i=0

γn

L
p∗

1 (B0)
.

Taking the limit as n → +∞ we find a constant C̃ > 0 such that

‖u‖L∞(B1) ≤ C̃‖u‖
L

p∗
1 (B0)

,

being B1 the ball of radius 1 and B0 the ball of radius 2. In what follows, we will
write B2 := B0, for the reader’s convenience. Let now x ∈ R

N be an arbitrary point.
Then we have

|u(x)| ≤ sup
B1(x)

= ‖u‖L∞(B1) ≤ C̃‖u‖
L

p∗
1 (B2(x))

= C̃

(
ˆ

B2(x)
up∗

1dx

)1/p∗
1

≤ C̃



ˆ

RN \B |x|
2

(0)
up∗

1dx




1/p∗
1

,

being B2(x) ⊆ R
N \ B |x|

2

(0) whenever |x| ≥ 4. Taking the limit as |x| → +∞, we

obtain that u(x) → 0, and so the thesis follows. A similar argument gives v(x) → 0
as |x| → +∞. The proof is thus complete.

3.6 Further developments

1. It is clear that the global bound obtained for solutions of (3.5.1), see inequality
(3.5.15), is not sharp. Therefore, one task could be to see if it could be
improved, maybe with more refined techniques.

2. One could investigate on further regularity properties of solutions obtained in
Theorem 3.5.3, taking advantage of the regularity theory of Lieberman [84].

3. It could be interesting to see if the same existence results still hold if one
considers a more general elliptic operator A than the p-Laplacian.

85



Bibliography

[1] R.A. Adams, Sobolev spaces, Academic Press, New York-London (1975). 46

[2] N.N. Akhmediev, A.V. Buryak and M. Karlsson, Radiationless optical solitons

with oscillating tails, Optics Comm., 110, pp. 540-544 (1994). 6
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