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Preface

The dynamical simulation of many particle systems is currently a
widespread technique in many fields: e.g. nuclear and atomic physics,
computational materials science, computational chemistry, molecular
biology and pharmacology. Under the locution “Molecular Dynamics”
(MD) we can regroup a variety of approaches and numerical codes, whereas
the commonalities are: 1) the atomistic (or nuclear) resolution (i.e. particles
are atoms or nucleons), 2) the force derivation, starting from the systems’
configuration, through semi-classical (also called semi-empirical) or
quantum mechanics based theoretical frameworks, 3) the (generally explicit)
numerical integration of the Newton-like equations of motion to simulate
the system kinetics. Within this scheme methodology variations can be
found in the literature, but it is undoubtedly valid to qualify the MD
meaning in the field of the scientific computation.

The general scope of this Thesis work is the extension of the MD
methods to the study of the kinetics of larger particles (i.e. from mesoscopic
dimensions and above), where effective particle-particle interactions are
mediated by a field evolving self-consistently with the many particles
system. This objective is mainly motivated by the applications of the
method to control and predict the manipulation of mesoscopic (electrically)
neutral particles by means of electromagnetic (e.m.) interactions: i.e.
exploiting the so called dielectrophoresis (DEP) phenomena in the systems

of electromechanical particles (EMPs). This is the specific case of study



here considered, but in principle the methodology can applied after suitable
adaptation to also other systems.

In the particular case of the DEP driven systems, which will be briefly
introduced in the following, we believe that our modelling approach
satisfies the requirement of the general accurate prediction of the kinetics
evolution; whilst previous theoretical approaches have several limitations
which limit the applicability only under particular conditions.

Applications of DEP range from bio-structure assembling [1, 2] and
nanostructure deposition (e.g. nanocluster, nanowires or nanotube) [3] to
filtering systems [4]. A branch of emerging applications is related to the
controlled manipulation of micro and nano-sized particles dispersed in
colloidal solutions (i.e. biological particles such as cells or DNA), since the
strong selectivity of the response depends on the particle volume, shape and
composition [5, 6]. In fact, the forces exerted by non-uniform AC electric
fields, due to the frequency dependent responses, can be used to move and
manipulate polarizable microparticles (such as cells, marker particles, etc.)
suspended in liquid media. The DEP allows manipulation of suspended
particles without direct contact: this is also significant for many applications
in micro Total-Analysis Systems (UTAS) technology [7]. Manipulation
includes cell partitioning/isolation [8] for the capture/separation without the
use of biomarkers: in fact, cells can be collected, concentrated, separated
and transported using the DEP forces arising from microelectrode structures
having dimensions of the order of 1 to 100 um [5]. One of the core strengths
of DEP is therefore that the characterization of different cells depending
only on the dielectric properties controlled by the particle’s individual

phenotype; hence, the process does not require specific tags or involve
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chemical reactions. The DEP based on AC electro-kinetics has recently been
given more attention in microfluidics [9] due to the development of novel
microfabrication techniques. In a typical device for the capture/separation of
cells, the non-uniform field for the generation of the DEP force, responsible
for the particle’s manipulation and control, is imposed by microelectrodes
patterned on substrates (typically of glass) using fabrication techniques
borrowed from Micro-Electro-Mechanical Systems (MEMS) [7]. The
electric field is applied through the electrodes present in a microfluidic
channel and the fluid flows through it.

As we will discuss in detail in Chapter 1, direct and rather
straightforward numerical solutions of EMPs’ kinetics can be obtained when
the following approximations (which we can indicate as single particle
approximation) are considered: a) diluted limit (i.e. negligible effective
particle-particle interactions), b) point-like particles (i.e. neglecting steric
interactions), c¢) large distance between the particles and the source of the
electric field (electrodes). This theory could be used to estimate roughly the
EMPs’ [10, 11, 12]; however, in many real conditions these approximations
are not verified and DEP is an example of field mediated force which can in
principle induce a complex many particle behavior. Indeed, the forces acting
on the particles depend in the general case on the overall system
configuration since polarization alters locally the field which can be barely
approximated by the external field generated by the sources. As a
consequence, predictive theoretical studies of this large class of systems
could be only possible thanks to the development of real-system models and
numerical simulations. In order to study EMPs beyond the single particle

approximation, computational studies of the DEP driven systems in
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particular conditions have been recently presented in the scientific literature
and they will be briefly presented in Chapter 2. In particular: stable
configurations of particles dispersed in a static fluid [13] have been
determined using Monte Carlo methods [14]; numerical models and
simulations of the movement of cells in a moving fluid within a microfluidic
channel introducing many-particle effects in the mean field approximation
[15, 16] have been derived; finally, exact calculations of the forces by
means of commercial tools [17] in the few-particles case have been
reported.

Our contribution [18] aims to fully overcoming the single particle
approximation, focusing on the theoretical study (see Chapters 4, 5 and
appendices for the formalization of the method) of the dynamics of EMPs
suspended in a colloidal solution in the presence of a non-uniform variable
electric field. Our numerical simulations of a three-dimensional (3D) model
system aim at providing predictions of both stable configurations of the
particles and their dynamics in fully three-dimensional configurations,
minimizing the approximations usually considered in models of mutual
interactions. As a case of study, presented in Chapter 5, a system has been
chosen consisting of biological cells dispersed in a colloidal solution (of
which the typical characteristics of interest are reported in the literature) that
flows into a microfluidic channel in the presence of e.m. fields.
3D simulations of DEP phenomena are rather rare in the literature, as they
require large computational resources; moreover, most 3D DEP models are
based on particles in the already discussed diluted solution limit.
Nevertheless, in real applications, particle manipulation and characterization

using dielectrophoresis are generally performed in a confined region close to



the electrodes, so that the interaction between the particles and the
surrounding walls can be significant. Here we run a detailed study, with a
non-approximate calculation of the forces, which are estimated by
integrating the Maxwell Stress Tensor over the surfaces of the particles [19].
The dynamics are simulated by techniques borrowed from Molecular
Dynamics (MD), which, as stated above, is a simulation method that has
been successfully applied in the atomistic simulation field [20], whilst the
Finite Element Method (FEM) is applied to obtain self-consistent numerical
solutions of the partial differential equations regarding the e.m. field. The
Coupled MD-FEM algorithm and its implementation in the FEniCS
environment are also presented in the theoretical sections. The examples of
the method’s application will focus on DEP induced translation of spherical
particles (in particular a dielectric model of: MDA-MB-231 tumor cells, B-
Lymphocites and mixtures of them), however after suitable adaptation it can
be applied in more general cases (i.e. non-spherical particles, roto-
translation, mixed DEP and conventional electrophoresis).

After validation of the FEniCS developer team, the numerical code
simulating EMPs kinetics by means the cited coupled MD-FEM

methodology is distributed as an open source tool at the web page:

https://bitbucket.org/barolidavide/tumor_detection dolfin/src/master/.

Open source distribution is possible thanks to the use of supporting
frameworks (namely: FEniCS [21] for the PDE solutions, Gmsh [22] for the
meshing and Salome for the graphical analysis) which are covered by GPL

and/or LGPL licenses. The main modules are: a) the MD related routines, b)
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the interface with Gmsh for the automatic meshing of the system
configurations, c¢) the FEniCS interface for the force evaluation. The
modules have been implemented from the scratch in the Python language

while parallelization of the code has been obtained in an MPI environment.



Chapter 1

Electromagnetic forces on dielectric particles
immersed in a dielectric medium

Particles with sizes that range from sub-micrometers to about one
millimeter and with particular electrical and/or magnetic properties
experience mechanical forces and torques when they are subjected to
electromagnetic (e.m.) fields. Particles of this type are called
“electromechanical particles” (EMPs) [23]. Mutual interactions between
EMPs could also occur when they are close enough to modify the force field
obtained in the isolated particle limit.

One of the phenomena that affect electromechanical (e.mec.)
particles is the “dielectrophoresis” (DEP), which describes the force exerted
by a non-uniform electric field on polarizable neutral particles [23]: in a
uniform electric field, neutral particles experience the polarization (an
electric dipole is induced) which does not cause acceleration, whereas in a
non-uniform electric field the forces due to polarization are not balanced
and motion occurs: the net force is directed towards areas with either a
higher or a lower electric field intensity, depending on the polarization
properties of the particle and the background medium. Herbert Pohl’s first
scientific publication defines DEP as “the natural movement of neutral
bodies caused by polarization in an uneven electric field” [24].

In this chapter we will resume the theory of the e.m. forces deriving
some concepts and expressions used in the next chapters. The following
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themes will be presented: the formulation for the electromagnetic force
acting on an electric dipole immersed in an external electric field, the
concept of the effective dipole moment of a polarized particle, the standard
(approximate) dielectrophoretic force acting on a particle and the more
accurate dielectrophoretic force calculated by the use of the Maxwell Stress

Tensor.

1.1 Force on an electric dipole

A finite dipole consists in two-point charges +¢g and —¢ separated by
a vector distance d. In the limit where |d| - 0 and g — oo such that the qd
product remains finite, the point dipole is defined. We consider in the
following discussion a dipole with a finite spacing between the two charges,
immersed in a non-uniform electric field E(r) which includes no
contributions due to the dipole itself. The dipole moment is defined as

follows:

p = qd. (1.1)

In general, the two charges experience different values of force and the

dipole will be subject to a net force equal to:
F = qE(r +d) — qE(1), (1.2)

where 7 is the position vector of the charge —q. Figure 1 shows this case.
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Fig. 1.1 A small dipole in a non-uniform electric field.

If |d| is small compared to the characteristic dimension of the electric field
nonuniformity, E can be expanded about position r using the Taylor series
expansion:

E(r+d)=E()+d-VE(r)+ - (1.3)

By replacing Eq. (1.3) in Eq. (1.2):

F=q[d VIE(r) + - (1.4)
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In the limit |d| — 0 but such that p remains finite, neglecting terms of the
order greater than the first and substituting the definition of Eq. (1.1) in Eq.

(1.4), the force on a dipole results:

Fapp = [p - VIE(T). (1.5)

The dipole therefore experiences a net force only if the external imposed
electric field is non-uniform. Eq. (1.5) represents an approximation for the
force exerted on any physical dipole, such as a polarized particle of finite

size. The approximation used is called dielectrophoretic approximation [23].

1.2 Effective moment of a dielectric particle

In the derivation of Eq. (1.5), no reference is made to the nature of
the dipole moment p, which can be the permanent moment of a polar
particle or might be induced in a particle by an imposed electric field. In this
Thesis, the latter case is considered. In general, the moment-induced field
depends on both externally imposed and mutual field contributions (due to
the presence of other particles).

The moment must relate to the electric field and to the particle
parameters so that it can be used in Eq. (1.5). It is fundamental to identify
the correct expression for the dipole moment to be used in formulation for
the force (Eq. (1.5)) in the case of polarized particle. It is consequently
useful to introduce the concept of effective dipole moment, p.rs. The

effective dipole moment of a dielectric particle immersed in a medium is
12



defined as the moment of an equivalent, free-charge point dipole that causes
the same dipolar electrostatic potential if it is immersed in the same medium
and occupies the same position as the center of the particle.

The electrical potential @4, due to a finite dipole centered in the
origin of a Cartesian reference system and aligned with the z axis, immersed
in a linear dielectric medium of permittivity &,, in the point with

coordinates (r,19), radial and polar respectively, assumes the following form

(see Appendix A):
dcost
Caip(r9) =13 (1.6)

As a consequence, the formula of the electric potential produced by
the polarized dielectric particle will contain the effective moment instead of

the term qd:

__ Deffcos?
d(r,9) = el (1.7)

The expression of p,rr for the case of a spherical particle is
presented below. Consider an isolated homogeneous dielectric particle of
radius R, permittivity &, and conductivity o,,, immersed in a dielectric fluid
medium of permittivity &, and conductivity o,,. The particle and the

medium are therefore characterised by the ohmic conductivity with no

dielectric loss.
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The calculated potential of the sphere can be expressed in the form of Eq.
(1.7); and indicating with E the electric field in which the dipole is

immersed, the effective moment is (see Appendix B):

Perr = 4‘T["fmeMR3Eo (1.8)
where

Ep—Fm
fem = spp+2§m (19)

is the so-called Clausius-Mossotti factor, which contains the complex

dielectric constants of the particle and of the medium, defined as it follows

(see Appendix B):
Ep = Em — i%’", (1.10.a)
& =g, —iL (1.10.b)

fcum 1s therefore a complex quantity, dependent on the angular frequency w.

1.3 Standard Dielectrophoretic force

The discussion carried out in the previous sections reveals
implications for the so-called ponderomotive force exerted by a non-

uniform electric field upon dielectric materials.
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It is assumed that the motion of EMPs is induced by a sinusoidally time-
varying and non-uniform electric field and consequently exponential

notation can be used [25]:
E(r,t) = Re{E(r)e~@t}. (1.11)

By replacing in Eq. (1.5) p with p.sf and E(r) with the expression of the
electric field of Eq. (1.11), the time dependent force acting on the dielectric
particle, called Standard DEP force and here indicated with F5TP, is
obtained:

FST2 = [p,., - V| E(r, ). (1.12)

eff

This force consists of a constant average component and a time-varying
term. The latter term is usually damped because of the viscosity of the
suspension medium in the cases of particles with size in the range from 1 to
1000 pm. Consequently, the only relevant term is the one averaged over

time. Starting from the previous equation, this term can be written [1]:
(FSTP) = ~Re{[peysys - V]E* (1)) (1.13)

where ( ) indicates the time-average and the asterisk indicates the complex

conjugation. By inserting Eq. (1.8) in Eq. (1.13), using the vector identity:

V-(A-B)=(A-V) B+ (B-V) A+ BA(VAA)+AA(VAB)

15



and the condition V AE = 0 (irrotationality of the field E), the force

assumes the form:

(FSTP) = anmRe{fCM}R3V(|ERMS|2)a (1.14)

where Egys 1s the root mean square of electric field.

The Eq. (1.14) predicts the fundamental phenomenology of
dielectrophoresis relative to spherical dielectric particles. The following are
the main characteristics of the dielectrophoretic force acting on a lossless

dielectric spherical particle immersed in a lossless medium:

e the intensity of (FSTP) is proportional to particle volume, &,

Re{fcu} and V(|Egpys|?);

e the sign of (F5TP) depends upon the sign of Re{f-y };

e depending on Re{f;y}, by Eq.s (1.9), (1.10a) and (1.10b) it follows
that (FSTP) depends on the frequency;

e particles experience a DEP force only when the electric field is non-

uniform;

e (F5TP) does not depend on the polarity of the electric field and is

observed with AC as well as DC excitation;
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o the (FSTP) vector is directed along V(|Eguys|?) and therefore can

have any orientation with respect to the electric field vector;

e DEP is usually observed for particles with diameters ranging from

approximately 1 to 1000 pm.

1.3.1 Application potential of DEP

(FSTP) depends on the shape and size of the particle, the intensity and
frequency of the oscillating electric field and the dielectric properties of the
particle and medium. A distinction can be made between positive
dielectrophoresis (p-DEP) and negative dielectrophoresis (n-DEP), defined

as follows:

a) p-DEP: Re{fcy} > 0, particles are attracted toward the electric field

intensity maxima and repelled from the minima;

b) n-DEP: Re{f-y} < 0, particles are attracted toward electric field

intensity minima and repelled from the maxima.

Re{fcm} represents the effects of the arrangement of electrical charges,
depending on the permittivity and conductivity values of the particle and the
medium. Phenomenology is explained as follows. When a particle is

suspended in a medium (typically an electrolyte) in the presence of an
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electric field, the charges inside the particle and inside the medium will be
redistributed at the particle-medium interface depending on their
polarizability. Two cases can be distinguished, corresponding to the

previous definitions a) and b) respectively:

A) the polarizability of the particle is higher than that of the medium: an

excess of charge will accumulate at the particle’s side;

B) the polarizability of the medium is higher than that of the particle: an

excess of charge will accumulate at the medium’s side.

In both cases, the resulting charge distribution is non-uniform and involves
a difference in the charge density on either side of the particle. An induced
dipole across the particle, aligned with the applied electric field, is therefore
generated. When the particle-medium system is in the presence of a non-
uniform electric field, the particle feels different forces at each end. Figure
1.2 shows this situation in an example where a pair of electrodes of different
shape generates a non-uniform electric field. The difference in force at both
ends generates a net force with direction depending on the polarizability of

the particle and the medium.
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(a) . 'S (b)

Fig. 1.2 (a): Field lines of a non-uniform electric field generated by a pair of
electrodes with different shape. (b) and (c): Dielectric particle in a medium in the presence
of the non-uniform electric field (the field lines are not shown); the arrows indicate the

Vi@

forces acting on the charge distributions; the width of the arrows indicates the intensity of
the forces; qualitative electric charge arrangements at the particle-medium interface are
shown. In (b) the dielectric parameters of the particle and the medium result in Re{f¢y} >
0 and the electric charge arrangement generates p-DEP, with a net force directed towards
the electric field intensity maxima. In the case (c) instead Re{f;y} < 0 and n-DEP is
generated, with a net force directed towards the electric field intensity minima.

Due to all its characteristics, the DEP force allows the control and
manipulation of particles of micrometric size dispersed in colloidal
solutions. It is very remarkable, for practical applications, the ability of DEP
to induce both negative and positive forces. Thanks to this prerogative, the
DEP force allows the separation of particles: in sorting operation mode,
when two types of particles are present, the frequency can be chosen for the
capturing and separations so as one cell type experiences n-DEP moving
away from the electrodes, and the second type experiences p-DEP, moving

towards the electrodes, as can be seen in Eq. (1.14).
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As will be seen in Chap. 5, the control/separation by DEP of particles
dispersed in a liquid medium will be the subject of computational studies in

this Thesis.
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1.3.2 Clausius-Mossotti factor and Standard DEP force

In this next section, further considerations on the link between frp,
and (FSTP) are given.

The explicit form of the Clausius-Mossotti factor is:

g —F ep—Em—iB—m
Ep—E - -
_ fp™em p m w
fCM - 2 428 - .opt2om* (1153)
1] m Ept2&m —lT

The real and imaginary parts are:

— Ep—Em | _ (sp_Em)(sp+25m)‘ﬁ(‘7m‘”p)(‘7p+20m)

Re{fCM} = Re {§p+2§m} - (5p+25m)2+ﬁ(‘7p+2‘7m)2 s (115b)
_ Ep—Fm | _ (Jm—ap)(sp+2£m)—%(£p—£m)(ap+20m)

Im{fou} = Im {22 = ey (1.150)

It was seen by Eq. (1.14) that the sign of the time-average DEP force
direction depends on the sign of Re{f;y}, which contains all frequency
dependence of the force. The frequency value at which Re{f;,} becomes
zero is called the crossover frequency, v.. By varying the frequency and
exceeding this value, the force changes sign and the DEP response switches
between n-DEP and p-DEP (or between p-DEP and n-DEP). From Eq.

(1.15b), it can be seen that its form is:
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_ 1 (O'm_o'p)(ap"'zo'm) (116)

Ve = 2\ (ep—em)(ep+2em)’

The high- and low-frequency limits for Re{f,,,} are:

lim,,_, Re{foy} = ;f;gn, (1.17a)
lim,o Re{fcu} = ;”;2‘;";. (1.17b)

From these expressions for the limits, it can be seen that DC conduction
governs the low-frequency DEP behaviour, and dielectric polarization
governs the high-frequency one. These conditions will be referred in Chap.

2.

1.3.3 Velocity field induced by the DEP force

Particles in colloidal solution in a liquid medium, which move under
the action of the DEP force, undergo the effect of the drag force stemming
from the viscosity of the medium. For a spherical object of radius R, in the

case of a static fluid, the drag force is given by [26]:
F4rqq = 6TNRD, (1.18)

where 71 is the dynamic viscosity and v is the instantaneous velocity of the
particle. Eq. (1.18) is referred as the Stokes law [27].
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Assuming the validity of the single particle approximation, which is valid
when the particles are far away from each other and from the electric field
sources, it is possible to obtain each particle’s velocity field induced by
DEP, here indicated by vpgp. The DEP force is counterbalanced by the drag
force due to the liquid if each particle subjected to the DEP force reaches
very quickly a steady regime of motion [28] and, as a result, the electric and
fluid components are completely uncoupled. By replacing v with vpgp in

Eq. (1.18) and equating with the dielectrophoretic force of Eq. (1.14):

2me, Re{fey }R3V(|Erys|?) = 6mnRvpgp,

the following expression for the velocity field is obtained:

mR*Re{fcm}
VUpep = %VUEF) = ppepV(IEI?), (1.19)
where

emR%Ref{ }
UpEp = %fm (1.20)

is the so-called “DEP mobility”.
In the case of a moving fluid, v in Eq. (1.18) must be replaced with u — v,
being u the local velocity of the fluid.

In DEP applications, microfluidic devices equipped with electrodes
are often used (see Fig. 1.3 for a schematic from Ref. [6], while additional

details on this type of device will be presented in Chapter 5) and the
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expressions here derived are used to numerically evaluate an approximate
kinetics of these systems of EMPs. Indeed, the velocity field of Eq. (1.19)
can be determined by the numerical solution of the electric field equation
and used to derive the trajectories of suspended particles, as shown in the

example of Fig. 1.4 (from the Ref. [28]).

. To AC1
— I N — To ground
Ly Direction
of flow
002 002Lo
[ — T T 1 ToAC2
_ To ground

4L,

Fig. 1.2 Schematic of the model system of the DEP device. (Figure taken from: F. Aldaeus,
Y. Lin, J. Roeraade, and G. Amberg, Electrophoresis 26, 2005).

S ) )

Fig. 1.3 Particle trajectories in a medium liquid in the device operating in p-DEP condition
only at the bottom of the channel. (Figure taken from: F. Aldaeus, Y. Lin, J. Roeraade, and
G. Amberg, Electrophoresis 26, 2005).
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1.4 DEP force calculated by the Maxwell Stress Tensor

The term “dielectrophoresis” is commonly used (and probably not

correctly) to indicate two types of forces [23]:

o the forces exerted upon individual noninteracting particles by an

externally imposed nonuniform electric field;

e the mutual attractive or repulsive force between two or more closely

spaced particles.

The two types are basically related but distinctively observable. The first
type of forces was the subject of the previous sections, while the second one
will be detailed below.

In the models based on particles in the diluted solution limit (isolated
particles), the first order dipole approximation, on which the Eq. (1.14) is
based, is reasonable. This limit is valid in the case where particle-particle
and particle-electrode interactions can be neglected (i.e. isolated particles).
However, particle manipulation and characterization using DEP is generally
performed in a confined region where particles accumulate and mutual
forces occur, for example close to the electrodes of a Lab-on-chip device
(See Appendix C.2). Including the mutual interactions in the definition of
dielectrophoresis is therefore very important. For these reasons, an accurate
approach for calculating the DEP forces is necessary: it is based on the
rigorous application of the Maxwell Stress Tensor (MST, here and after

indicated by 7="), that is described below.
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The momentum change of a volume V" of a dielectric inside an e.m. field can

be correctly expressed as a surface integral of T [25]:

= (Pmass + Prieia) = §, T-7da, (1.21)

where P4, 1s the momentum of the mass contained in volume V, Pfi1q is
the total e.m. momentum of the field, 2 is the surface enclosing volume V
and 7 is the unit vector normal to {2. According the e.m. field theory, the

MST is given by the following general expression [29]:

7

%[E®D+D®E+B®H+H®B—(E-D+B-H)I], (1.22)

where E is the electric field, D is the electric displacement, H is the
magnetic field, B is the magnetic induction, I is the unit tensor. Products
with dot are scalar products, whereas the symbol ® indicates a dyadic
tensor product of vectors.

In this Thesis, the interest is focused on practical dielectrophoretic
applications, where the applied external e.m. field generally has a frequency
below 100 MHz and the correspondent field wave has a wavelength of the
order of meters. This wavelength is much larger than dimensions of typical
DEP arrangements. As a consequence, the contribution of the magnetic field

can be neglected (near field approximation) and Eq. (1.22) becomes:

T =

N | =

[EQD+DQ®E— (E-D)IJ. (1.23)
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If non-ferroelectric materials compose the EMPs, a linear dependence

between D and E is valid and Eq. (1.23) becomes [30]:
T = Re{¢,,}JEQE — § (E-E)], (1.24)

where &, is the complex permittivity of the medium (see Eq. (1.10a)).

The harmonic non-uniform electric field can be written [25]:
E(r,t) = Re{E(r)e ™t} =  [E(r)e ¢ + E*(r)e'@]. (1.25)

By replacing Eq. (1.25) in Eq. (1.24) and tacking the time average:

— 1 (%7_
(T) =%j0 T d(wt) =

= ~Re{£,}[E(r) @ E*(r) + E*(r) ® E(r) — [E(D) 1]. (1.26)

By expressing in explicit form the dyadic products and the square module,

Eq. (1.26) becomes:

(T) =
E;E, — EyE; — E,E; E.E; + EXE, E E; + E;E,
iRe{ém} EyE; + EyE, EyE, — E4E; — E,E; E,E; + EJE, . (1.27)
E,Ex + E;Ey E,E; + E;E, E;E, — E,E; — E,E,

From Eq. (1.21) it is noted that by integrating the MST over a surface
external to the particle and infinitesimally close to it, we obtain the field-

induced force acting on the particle itself (as the change of the moment

L/



relative to the field is excluded). Therefore, if now we indicate with Q this
particular surface, the time-averaged electromechanical force exerted on a
particle immersed in a medium with complex permittivity &, and subject to

sinusoidal electric field E is [31, 32, 33]:
(FMST) = ¢ (T) - fd. (1.28)

To identify the normal vector 7 present in Eq. (1.28), the cosine directors

are calculated using the following formulas:

cos(7x) = =
C JaxP v+ (z-207

— Y~ Yc
cos(ry) = Tox? 0yt ez )2’

cos(7z) = ==

\/(x_xc)2+(y_YC)2+(Z_Zc)2 )

From Eq. (1.28), the time-averaged DEP force exerted on the particle can

therefore be written:

MST
(E:0)
(FMSTy = | (B*5T) | = # (T) - 7d =
MST 0
(E"°0)
E;E, — E,E; — E,E; E.E; + E;E, E.E; +ELE, cos(7%)
= %Re{gm} i E,E; + E}E, EyE, — E,E; — E,E; E,E; + E;E, | cos(@) |an
E,E; + EJE, E,E; + E;E, E;E, — E,E; — E,E; cos(72)

(1.29)
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The use of (FMST), instead of (FSTP), allows the correct description in the
proximity of the electrodes when the particle-particle e.mec. interactions
cannot be neglected due to the relatively large local density of EMPs. The
usefulness of the calculation based on the MST consists also in its better
applicability, compared with the dipole approximation method, to cases of
objects with irregular shapes, such as nanowires, nanobelts etc.

The discussion presented for the calculation of (FMST) can be
extended to the calculation of the time-averaged value of the torque, here
indicated by (T™5T). By indicating with r a vector connecting the reference

axis to the particle surface, the expression of the torque is:

MST
(TST) )
@5y = (8T | = b v x (D) =
VA
EjE, — EyE} — E,E; E(E; + EE, E.E; + ELE,
iRe{st} h, r x EyEj + EjEyx EyE, — ExE; — E,E; E,E; + ESE,
E,Ex + EzEx E,E; + E;E, E;E, — ExE; — EyE;
cos(7x)
cos(7y) |dn. (1.30)
cos(7z)

As it can be seen from Eq. (1.29) and Eq. (1.30), the calculation of
the e.mec. force and torque requires the solution of the electric field, which
in the case of practical dielectrophoretic applications derives from an
applied electrical potential to the electrodes. In order to evaluate the electric
field, the complex Laplace equation must therefore be solved. Again, the

potential applied is time-varying and harmonic:
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V(r,t) = V(r)et (1.31)
and the complex Laplace equation to be resolved is [34]:
V-[EVV(r)] =0. (1.32)

In Eq. (1.32), consider & = &, inside the liquid medium and & = &, inside
the particles.

This equation is based on some assumptions: particle neutrality (negligible
ion effect), harmonic oscillation (linear model) and negligible convection

effects [35]. Moreover, as stated, the coupling of electric and magnetic

fields can be neglected (VX E = —3—]: = 0) and in this framework we can

derive the electric field simply as a gradient of the electrical potential:

E(r) = -V V(r). (1.33)
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1.5 Remarks

In this section we resume the formalism needed to evaluate
(eventually using numerical methods) the force and torques in EMPs. We
notice that for a spherical particle, the direct use of these expressions allows
for a relatively simple derivation of the kinetics in diluted systems of EMPs.
Anyhow, beyond the single particle approximation, such derivation could be
strongly inaccurate. In the next chapter we present the state of the art (as it
emerged at the beginning of the present Thesis work) of the
theoretical/computational approaches for the study of many particle effects

in a system of EMPs.
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Chapter 2

Many-particle theories of
electromechanical systems

In this chapter we will briefly discuss the current state-of-the-art of
the theoretical approaches to the study of many-particle effects in
dielectrophoretic systems in order to discuss some limitations which we
intend to overcome with our methodology. Firstly, we present the
approaches in the continuum limit where particles are approximated as
density fields. In this case, the multiparticle effects are highlighted by means
of a medium field approach, while the formation of particle chains is
analyzed according to reaction-diffusion models. Such approaches are
independent of the calculation of the dielectrophoretic force.

The second part is dedicated to the more accurate particle-like
description of the EMPs where, in turn, the limitations are related to the
pure static configuration studied both with approximate dipole-dipole
interactions and with the use of the Maxwell Stress Tensor for the derivation

of the forces.
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2.1 Mean field approach to many e.mec. particle kinetics

In dielectrophoretic devices, many-particle effects can arise due to
the high concentration of particles in the surroundings of electrodes. This
constitutes a substantial source of indetermination on the theoretical
estimate of the trapping/separation efficiency when single particle solutions
are used (see Section 1.3). An approximated method to include many-
particle effects in the calculation of DEP trapping has been suggested [36],
which is based on the Effective Medium Approximation (EMA) for electric
parameters of the suspension [37].

As discussed in Chpt. 1, the Clausius—Mossotti factor (called also DEP

spectrum) for a particle immersed in a medium is:

fou = =2 2.1)

Ep+28,

If the local particle density is high, the dipole-dipole particle interaction can
significantly vary the DEP response [38] and consequently, the form of fy,.
The mean field method consists on the correction of fry, taking into
account the many-particle effects as alteration of the medium complex
dielectric. The correction is based on the EMA for the dielectric properties
of heterogeneous two-component composite materials [15]. This approach
allows calculating the electrical conductivity o and the permittivity € for
various shapes of composite materials as a function of the hosted material
(g€,, 0;) and the host material (&, a;) properties. It is assumed that material

2 1s included by a random formation of spherical clusters in a liquid
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medium. The subscript p instead of 2 and m instead of 1 are used. The

dielectric function is given by [15]:

e(p) = i[st —&, + J(Zep - 8;,)2 + 8ei8p |, (2.2)
with

& =1 —@len + 50, (2.3a)
& =em@ + (1 —@)ey. (2.3b)

where ¢ represents the volume fractions of cluster inclusions. The

modification of fy; (Eq. (2.1)) to include the EMA consists simply in these

substitutions:
em — &(9), (2.4)
Gm - O-((p)a (25)

In this way, the electrical properties of the mixture, composed of particles
and liquid medium, are determined as a function of the volume fraction.

The DEP mobility, defined in Eq. (1.20), becomes:

_ e(@)R*Re{fcum}

Hpep = 37 (2.6)
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Figure 2.1 shows an example of a DEP spectrum obtained from

experimental data on latex microspheres given in Ref. [39]:
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Fig. 2.1 DEP spectrum of latex microspheres obtained from data given in Ref. [4]. Straight and
dashed lines refer to the real and imaginary parts of the Clausius—Mossotti factor, respectively.
(Figure taken from: O. E. Nicotra, A. La Magna, and S. Coffa, Appl. Phys. Lett. 93, 193902
(2008)).

The effect of EMA in the DEP spectrum is clear: both real and imaginary

parts of the f), flat to zero as the volume fraction approaches to one.

2.1.1 Detrapping effects

The mean field approach allows the use of the same computational
strategy of the single particle case presented in Chpt. 1. As a consequence,
the electric potential V(r) must be computed by solving the Laplace
equation:

V- [V V()] = 0. 2.7)
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In a standard DEP simulation, the vector composition of the liquid medium
velocity field u,, with the particle’s velocity field vpgp gives all
information on the particle motion inside the DEP device, allowing to
predict particle trajectories. u,, is derived by the Navier—Stokes equation for

a steady and uncompressible fluid [40]. The total velocity field is:

Utor = Vpgp + Up. (2.8)

U, acts as a drift toward the electrodes and particles may therefore be

represented by a drift-diffusion current J, as follows:

_] = _DV(p + utot (p. (2.9)

In the diluted limit and for particles’ dimensions in the micrometer scale, D
has the meaning of a numerical diffusion, introduced to stabilize the
calculation, while for the high density case, D can also effectively include
the scattering event between particles or the limit threshold of ¢ for the
packing. In order to prevent ¢ exceeding the threshold value for the packing

fraction of 0.74, a diffusion coefficient D(¢p) was introduced:

Do

D(p) = \ (2.10)

where D, is a constant value to be fixed in order to take into account the
diffusion due to particles crowding, especially at a high particle

concentration regime.
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The equation governing the time evolution of ¢ has a flux-conservative

form;

Y=-vJ 2.11)
The set of Egs (2.1)-(2.7) and (2.11) represent the governing equations to be
solved. In this way, the local value of the volume fraction of dispersed
particles is adjusted by drift-diffusion dynamics.

In Ref. [28] simulations were performed on a model with a particular
geometry. The device modeled consists of a two-dimensional trap with an
array of parallel interdigitated electrodes present at the base of a rectangular
channel where the liquid medium flows. A schematic of the device, already

presented in Section 1.3.3, is shown in Fig. 2.2.

. To ACH
- R A — To ground
Ly Direction »
of flow
002l 002Ls
C_ |- | | ToAC2
_ _ To ground

Fig. 2.2 Schematic of the model system. (Figure taken from: F. Aldaeus, Y. Lin, J.
Roeraade, and G. Amberg, Electrophoresis 26, 2005).

Spherical latex particles were considered, with radius R=5.87 um and the

following dielectric constant and conductivity:
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&y = 2.4¢,

o,=70S8§ /m?.

The liquid medium has the following specifications:

&m = 78¢,

Om = 6.0S/m?,

n = 1073 Pa - sec.

The angular frequency is 10 KHz, ¢ = 0.3 and Dy = 9.6 107° m?/s.
Figure 2.3 shows some snapshots of the solution at different values of time.
The color field represents ¢ while red lines represent a set of particle

trajectories which depart from the left side of the device. Electrodes (in

number of 10) are taken at a voltage of 0 or +5 V in an alternate sequence.
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Fig. 2.3 Snapshots taken at times 1, 2, 3, and 4 s (from upper to lower) regarding the time

evolution of particle volume fraction ¢ (color field) and particle trajectories (red lines). The
vertical color bar provides the correspondence between colors and values of ¢. Particles
and fluid enter from the left, where at the boundary ¢ is fixed to 0.3, with initial fluid
velocity of 15 um. In the other boundaries the condition 7i-J =0 for Eq. (2.11) is
assigned. (Figure taken from: O. E. Nicotra, A. La Magna, and S. Coffa, Appl. Phys. Lett.
93, 193902 (2008)).

As visible in the topmost part of Fig. 2.3, a complete trapping of the
particles is predicted by the calculation when many-particle effects are
neglected. Nevertheless, the self-consistency of the solution implies the
change of the predicted trajectories of the particles. Indeed, as observed in
the lowermost part of the same figure, the self-consistent solution indicates
that some particle trajectories step away from the device. It is important to
note that the many-particle effect is described by the real part of f,: in
particular, it diminishes as ¢ increases. In this condition, the many-particle
effect in trapping efficiency becomes non-negligible. Furthermore, as

described in Fig. 2.4, showing a small region around one electrode, the
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trapping capabilities of the device is significantly reduced when the particle

fraction surrounding the electrodes increases.

0.7
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Fig. 2.4. An enlarged portion of snapshot at =4 s of Fig. 2.3. The color field represents the
particle volume fraction ¢ at the surroundings of an electrode where ¢ reaches its
maximum value. Abscissa and ordinate are spatial coordinates. In the inner panel, the cross-
section (taken just above the red region at x = 2.26 10™* m) of the Clausius—Mossotti
factor as a function of the ordinate is shown. Colors of the curves refer to the same times of
the snapshots of Fig. 2.3. (Figure taken from: O. E. Nicotra, A. La Magna, and S. Coffa,
Appl. Phys. Lett. 93, 193902 (2008)).

This aspect highlights the mutual influence between ¢ and the DEP
spectrum as evidenced in the inset of the figure showing the dependence of
fcm on the y-coordinate near the electrode. As highlighted by these results,
the influence of the many-particle effects on the features of DEP-based
devices can be suitably investigated by combining EMA and drift-diffusion.
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As discussed by the authors in Ref. [15], the many-particle
correction is a fundamental tool to obtain reliable simulation outcomes in
the prediction of trapping efficiency in the case of micro- and nanosized
particles. This methodological approach is necessary when a high density of
particles occurs near the electrode. This situation is rather common since
high particle concentration can be achieved in device architectures where

tight regions are designed to properly tailor the electric field [41].

2.1.2 Cluster formation

The diffusion formalism can be easily generalized to a reaction
diffusion, as discussed in the following. In real systems with a large number
of particles, the main effect of the induced electric dipole is the formation of
particle clusters, particularly in the shape of chains of very different length,
that align with the electric field (longitudinal chaining for identical particles)
[42]. The clusters have different dielectrophoretic properties from those of
their constituents: this is an aspect to be considered for the accurate
description of the dielectrophoresis. In reference [43] it has been shown that
particle-chain formation and evolution can be quantitatively described in a
realistic device geometry. In this discussion, chains composed of no more
than four particles are considered, however the approach followed can be
easily generalized to a larger number of particles.

As seen in Chapter 1, the time-averaged force acting on a dipole in the

presence of a non-uniform electric field
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E(r,t) = E(r)e @t

1S:

(Fpep(t)) = 2me,Re{fem}R3V(|Erus|?) (2.12)

where Egy;s = E(r)/+/2 is the root mean square of electric field.

For a conducting particle in a DC field, f;) is a real quantity depending
only on the electrical conductivities of the particle and the medium (see Eq.
(1.17b)). For perfectly conducting particles in a liquid medium, namely in

the limit:

— — o, (2.13)

fcm tends to 1 by Eq. (1.17b). Assuming that particles are subjected only to
DEP and drag force and quickly reach a steady motion, the induced velocity
field has the form of Eq. (1.19). For a spherical, perfect conductor particle
of radius R, immersed in a liquid of dynamic viscosity 1, by Eq. (1.20) the
DEP mobility is:

Each type of chain is characterized by a well-defined DEP mobility u}p,
with i=1,2,3,4-particle chain. The total velocity field is:
Uoe = Vhgp + Uy (2.14)
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For the DEP mobility, the following relation in the steady motion is valid:

Hbep = XillbEp (2.15)

where a; (with i = 2,3,4) are essentially geometrical factors (a, = 6.8, a; =
13.8, a4 = 23), also including the volume and shape enhancements of the
effective dipole moment of the i-particles chain. The particles and the chains
can be represented using their particle volume fraction ¢! and drift-diffusion

current, defined as follows by generalizing Eq. (2.9):
Ji = —DVe' +ul,, ¢'. (2.16)

Reaction terms Q((Ji%, depending on the nature of the reaction considered, can
be introduced for the description of the particle stitching and chain

formation. By labeling each particle or particle-chain species with P;, the

stitching reactions with the associated rates are the following form:

2P © P, » Q((f)) = ky[P1]* = k,[P,], (2.17a)
3P, & Py - Q) = ks[P1]? — ka[Ps], (2.17b)
Py + P, & P3 —’Qg)):ks[Pﬂ[Pz]—deg], (2.17¢)
4Py o Py = Q) = ks [Pi]* — ksl (2.17d)
2P, © Py > Q) = kolPy]? — kyo[Py], 2.17¢)
Pi+ Py o P > Q) = kyy [P[Ps] — kys [P, (2.179)
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where k; (I =1,...,12) are the reaction constants and [P;] are quantities

proportional to the mass concentration. Providing [P;] — ¢!, all k; are in

1

unit of sec™. The set of equations governing the reaction-diffusion

dynamics for ¢ is:

SOtV =200 - 30) - 0 - 408 — Q). (2.182)
S92 +V-J2 =03 - 03) - 203), (2.18b)
S0 +V P =0+ 05 - 0, (2.18¢)
SOt +VJ = Q) + 05 + 0. (2.18d)

To consider larger chains, the corresponding equations must be added to the
set of Eq. 2.18. Moreover, if ubgp and the stitching coefficients for larger
chains depend weakly on the number of particles in the chain, a compact set
with a reduced number of differential equations can be used [44].

The overall set of governing equation to numerically simulate particle-chain
formation is composed of Eq. (2.18), Eq. (7), E = =V V and the Navier-
Stokes equation [16].

Many-particle corrections can be introduced, providing that:

&1 = €(@ror),
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where @, = Yi_, @' is the total volume fraction. The dependence of & on
Qtor 18 based on the EMA used for transport simulation in DEP.

Simulations on unstructured and perfectly conducting particles
dispersed in a saline solution are carried out in Ref. [16]. The dielectric

parameters used are:

em = 78¢,

On, =6+ 107*S/m.

For particles and chain: R=3.5 um, &£ = &, Dy = 0.82 107 m?/s. The
device geometry is the same as that previously considered in Fig. 2.1. In the
initial configuration, all the four particles volume fraction @’ are equal to
zero and the reaction constants are set equal to: k; = 2.1, k, = k; =
1.5 k;=kg=ky =15, ky, =1, ks =3.1, k¢ =1.8, kg = 2.0, ky; =
2.4, ki, =1.3.

k, are free parameters to be adjusted in order to reproduce the real particle-
particle interaction. The choice of this simulation represents only an
example of study in order to emphasize some typical aspects of the
dynamics. In this sense this method needs a parameter calibration study with
the aid of a more accurate particle-like approach.

Figure 2.5 shows the evolution for some time steps. Four DEP mobilities are

considered because there are four kinds of objects.
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Fig. 2.5. Panel (a): snapshots taken at times 0.2, 0.6, and 1.0 s (from upper to lower)
showing the time evolution of the total particle volume fraction ¢;,; (see color bar on the
right). Particles and fluid enter from the left boundary with a fluid speed of 0.5 um/sec,
where ¢! is fixed to 0.3 and @? = @3 = @* = 0. In the other boundaries the condition
@'+ J' =0 is assigned. Electrodes (in number of ten) are separated from the fluid by a
silicon layer 3 wm thick and they are taken at a voltage of 0 or + 2.5 V in an alternate
sequence. Panel (b): three-dimensional plot where both the colored surfaces and the height
(z-axis) represent ¢, computed at times 0.6 and 1.0 s (from lower to upper) without
particle stitching (@, = ¢ ). Panel (c): same as in panel (b) but with particle stitching
included. (Figure taken from: O. E. Nicotra, A. La Magna, and S. Coffa, Appl. Phys. Lett.
95, 073702 (2009)).

The simulation time is reduced with respect to the one of the previous
simulation where only spherical particles are considered. In fact, the DEP
mobilities grow with increasing chain size and consequently a stronger DEP
drift toward the electrodes is developed. This aspect can be seen in panels
(b) and (c) of Fig. 2.5, where a calculation of ¢,; without chain formation
(k; = 0) is also displayed for comparison.

In Fig. 2.6, showing the particle-chain formation, ¢! and ¢? are reported,

as well as in Fig. 2.7 for 3 and ¢*.
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Fig. 2.6 Three-dimensional plot where the colored surfaces and the height (z-axis) represent
respectively ¢! and ¢@? taken at times 0.2, 0.5 and 1.0 s (from lower to upper). (Figure
taken from: O. E. Nicotra, A. La Magna, and S. Coffa, Appl. Phys. Lett. 95, 073702

(2009)).
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Fig. 2.7 Same as in Fig. 2.6 but for ¢3 and ¢*. Results shown refer only to time 1.0 s.
(Figure taken from: O. E. Nicotra, A. La Magna, and S. Coffa, Appl. Phys. Lett. 95, 073702

(2009)).
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In both Fig. 2.6 and Fig. 2.7, the volume fractions are represented by color
field and height (z axis of the plot). Peaks are present in the colored surfaces
at the edges of each electrode, where also the color field presents its
maxima: this indicates that most part of the chain formation occurs in these
regions. In fact, the rate terms in Eq. (2.17) are proportional to the volume
fractions and particle stitching is more likely to occur in regions where
particles accumulate. This mechanism, among others, is responsible for the
slower kinetics of @3 and ¢* with respect to ¢! and ¢?.
The results of this simulation show the possibility of quantitatively
describing particle-chain formation. This description is based on the
extension of drift-diffusion dynamics with reaction terms properly included.
The computation of the volume fractions ¢’ allows to predict where and
when particle chain formation occurs in a dielectrophoretic device.
Regarding the DEP mobility, in general EMA tends to reduce it.
DEP mobility instead increases due to particle-chain formation. There is a
competition between these two many-particle effects, but the present
simulation shows that the latter is favored on the basis of the shortening of
the evolution time. The particle stitching in DEP seems thus to completely
dominate the entire transport dynamics. The two simulations show the
importance of the many-particle corrections. The design of a

dielectrophoretic device should not neglect such a phenomenon.
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2.2 Analysis of stable configurations of e.mec. systems

A different approach from that set out in the previous sections
requires the evaluation of the external electric field. Section 2.2.1 describes
a simulation based on the calculation, by the electric field, of the electric
potential energy and on the use of the MC technique, whereas Section 2.2.2

describes a simulation based on the use of MST.

2.2.1 Monte Carlo study of the static configurations

The method presented in Ref. [45], described below, allows the
simulation of sufficiently large systems in terms of size and number of
particles (i.e. within the experimental scopes).

(FSTP) is a non-conservative force which can however be calculated as the

negative gradient of the following effective average potential energy [46]:

= 1
Uesp(r) = =5 terpERus(T), (2.19)
where a.f is the average polarizability, which has the form:

Qefr = 4TR3Re{E, }JRe{f ,, }-

The DEP force is approximated as those generated by the total distorted
electric field, which is equal to the sum of the external field and the

contributions of the dipoles induced in all the particles [47]:
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EL(r;) ~ E(ry) + X" PP E (). (2.20)

By considering identical particles and neglecting multipole terms and

mutual polarization, the effective potential energy can be derived from the

expression that generalizes Eq. (2.19) for the case of particle-particle

instantaneous interactions in the dipole approximation:

Uy =~ _gRe{Pi("i) ‘E(r)'} = _%Re{pj(rj) Ei(r) ), (2.21)

where E;(r;) is the electrical field generated by the dipole in the particle j at

the position r;, and p;(r;) is the dipole moment induced on the i-th particle

by the external field E(r;). Similar definitions apply to E;(r;) and p;(r;).

The dipole electric fields in Eq. (2.21) are:

__ 1t 3n(mpj)-p;

E] (ri) = 4Re(z) R?j , (222)
_ 1 3n (n'py)-p;

E() = vree— ® (2.23)

where n = —.

Based on the above expressions, the average effective potential energy is:

1-3 cos(G?,) cos(e.j)
g lal? —

U -
L T 4mRe{gn} R;

IR

[Erms(r) - Erms(r)],  (2.24)

50



where 6! and 6/ are the angles between the vectors E(r;), E(7;) and n.
l] l] J

The formalism presented above is useful to carry out, by the MC approach
[48], simulations of the equilibration of a particle system suspended in a
static liquid medium under the action of an oscillating non-uniform electric
field. The particles are considered as hard spheres with radius r;. The energy

of the system is:
E({ry, ... t0}) = X Uesr(r) + X0 U j (10,17), (2.25)

where U, ¢ and U; ; are calculated by Eq. (2.19) and (2.24).

In general, in the MC simulation, the external field is simulated by a
numerical solver of the Poisson equation for different device structures. The
numerical values of the vector electric field are interpolated in the grid of
the MC simulation box. Periodic, reflecting, or mixed boundary conditions
can be imposed depending on the problem under consideration.

The MC method is based on a stochastic sequence of single-particle
displacement events. The application of an algorithm generates a new
configuration by the old one. The Metropolis algorithm is used, which

consists of the following steps:
e one particle i is randomly selected;

e the random displacement attempt is picked;
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e the difference between the energies of the new and old

configurations is calculated:
AE =E({ry, ...ri, + Ary, .., }) —E({ri, . 7oy 70 })

e the proposed displacement is accepted, and the configuration is

updated, if AE < 0 or if rand(0,1) < exp(— IS—ET), where T is the
B

system temperature.

Hard sphere behavior is reproduced considering AE — oo if the center-
center distance between two particles is smaller than the sum of their radii.

The system considered in the simulation of Ref. [14] is a colloidal solution
of Neurospora Crassa dispersed in a weakly conducting saline water
solution. The effective complex dielectric constant can be approximated by

the following expression (see Chapter 5 and Appendix C):

( R )3 Ecyt—Emem
~ o~ R-d écyt+2§mem
Eeff = Emem ( R )3 Ecyt—Emem °

R-d

Ecyt+2&mem

Figure 2.8 shows the real part of the Clausius-Mossotti factor of the

Neurospora Crassa.
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Fig. 2.8. Real part of the Clausius-Mosotti factor calculated with the dielectric model of the
Neurospora Crassa cell. (Figure taken from: A. La Magna, M. Camarda, 1. Deretzis, G.
Fisicaro, and S. Coffa, Appl. Phys. Lett. 100, 134104 (2012)).

The cubic simulation box has dimensions (1000 - 1000 - 1000)um3. All
the borders of the simulation box are grounded. The initial configuration
consists in a random distribution of N=2000 cells (corresponding

approximately to a 0.01 volume fraction) subjected to a uniform oscillating
electric field (Egys = 10* ﬁ, w = 10° Hz). Figure 2.9 shows the results of

a simulation after 2-10% MC iterations. In this case, the gradient of the
electric field is null and the dielectrophoretic force is therefore absent. The
behaviour of the system is due only to the particle-particle interactions. The
system assumes an orderly configuration: the cell chains are aligned along
the electric field direction.

In another type of simulation of the behaviour of N=2000 cells of
Neurospora Crassa, one electrode (a single plate with width of 200 um) is
present at the center of the computational box. Figure 2.10(a) shows the
spatial distribution of the electrical vector field and of the dielectrophoretic

force field, as yellow and red arrows.
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Fig. 2.9. Spatial distribution of N=2000 Neurospora Crassa cells suspended in a saline
water solution subjected to a uniform oscillating electric field, obtained, starting from a
random one, after 2 - 10® MC iterations. (Figure taken from: A. La Magna, M. Camarda, 1.
Deretzis, G. Fisicaro, and S. Coffa, Appl. Phys. Lett. 100, 134104 (2012)).

(k)

Fig. 2.10. (a): Spatial distribution of the electrical vector field and of the dielectrophoretic
force field, as yellow and red arrows. (b): Spatial distribution of N=2000 Neurospora
Crassa cells suspended in a saline water solution subjected to oscillating electric fields with
angular frequency w = 10° Hz (n-DEP). (c): Spatial distribution with angular frequency
w = 10% Hz (p-DEP). (Figure taken from: A. La Magna, M. Camarda, 1. Deretzis, G.
Fisicaro, and S. Coffa, Appl. Phys. Lett. 100, 134104 (2012)).
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Figure 2.10(b) shows the system configuration obtained after 1-107 MC
iterations in the case of an oscillating electric field with an angular
frequency w = 10° Hz (n-DEP). Fig. 10(c) shows the case relative to
w = 10°% Hz (p-DEP). Both cases are characterized by the presence of
particle chains that are displaced along the force lines of the electric field.
The chains are larger in the regions of more intense field. The
configurations obtained are rather stable. The device shows a moderate
trapping efficiency in the case of p-DEP (Fig. 10(c)), while in the presence
of n-DEP (Fig. 10(b)) cell densifications far away from the electrode occur.
However, the equilibration mechanism seems massively ruled by the
aligned chain formations.

The results clearly indicate that the particle-particle interactions compete
with the DEP force field. Indeed, in pure p-DEP conditions, the particles
would be massively trapped in the regions where the gradient of the electric
field is higher. Therefore, the particle-particle interactions crucially affect
the kinetic evolution of colloidal systems in DEP devices. The method
presented by the authors strengthened the role of particle-particle
interactions on the trapping capability of the device, on the arrangement of

cells in ordered chains, and on the cell space distribution.

2.2.2 MST calculations of forces in few-particle systems

In Reference [49], an approximate theory of the DEP interaction in
the proximity of a wall is derived for a dielectric sphere of radius R, to

analyze the role of particle-wall interactions in the functioning of the
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dielectrophoretic devices. Considering an infinite flat wall located at z = 0
of a Cartesian reference system, the result for the time averaged force on a

particle in the presence of an electric field is:

(FY8) = 2me, R3Re {fCM (Fxona? + FyEo, 9 + FZE022) v (F;nga? +

FEy 9+ FE; 2)}. (2.26)

where

Eq. (2.26) represents the extension of the standard DEP force for an isolated
particle in an infinite medium given by Eq. (1.14).

In Ref. [17], in addition to (F}&Y), (FSTP) and (FMST) are also calculated.
For the calculation of (FMST), the commercial tool Comsol Multiphysics
[50] is used. The studied system consists of a planar array of parallel
electrodes. The electrodes have width W,; = 50 um and are separated by a
gap of G, =50 um. Voltage signals with opposing phase are applied to

adjacent electrodes. The system is shown in Fig. 2.11.
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(FMSTy (FSTPY and (FY&) as a function of the particle—wall distance along a
vertical line located at the center of the electrode (x = 75 um) have been
calculated. Fig. 2.12 shows the comparison between results of these

different models.

Fig. 2.11 Snapshot of the simulation box for the interdigitate electrodes system. The space
dimensions are all in microns. The electric potential V is plotted as intensity map. A
particle is located above the electrode centered in x = 75 um. Periodic boundary
conditions are used on all side walls. The top and bottom boundaries are insulating, except
above the electrodes. The black line indicates the plot region of Fig. 2.12. (Figure taken
from: Camarda M, Scalese S, La Magna A, Electrophoresis, 36, (2015)).
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Fig. 2.12 Comparison between different model results for an interdigitate electrode system
along a vertical line located over the center of the electrode (see Fig. 2.11). (Figure taken
from: Camarda M, Scalese S, La Magna A, Electrophoresis, 36, (2015)).
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The analysis of Fig. 2.12 shows that (F¥&') correctly reproduced the force
profile of the (FMST),

2.3 Conclusions

In this section we presented the state of the art (at the beginning of
our Thesis work) of the theoretical/computational approaches for the study
of many-particle effects in a system of EMPs. The method based on the
MST of Section 2.2.2, implemented with a commercial tool for the case of a
static fluid (Ref. [17]), is of particular importance for the objectives of this
Thesis. In chapter 5, some results of Ref. [17] for a single EMP will indeed
be used as validation data for our original simulation method based on a
Coupled MD-FEM algorithm.

We wish to notice that the previous methods deal with some
particular aspects of the complex behaviour of a system of interacting
EMPs, whilst the kinetics of real systems is driven by many concurrent
effects. In particular, mean field theories could in principle allow for fast
solution considering the effects caused by the particle densification.
Anyhow, since these theories are based on many undetermined parameters,
the prediction which can be obtained with these methods is only qualitative:
the parameter assessment needs more accurate particle-like approaches (like
the one we will present in the next chapters) for the calibration in realistic
conditions. It is probable that successful calibration can be obtained by
fitting the results derived on fixed system geometry. Anyhow the calibration
in principle can be also system dependent. As a consequence, the concurrent
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use of mean field and accurate methods could be necessary for the general
study of EMP systems.

Accurate derivation of the forces and the correspondent particle
configurations can be obtained in the static limit. In this case the obvious
limit is the missing kinetic solution; moreover, the many particle
configurations have been studied neglecting the field modifications induced
by the particle presence, whereas the correct force derivation using the MST
based method is presented for the case of a single spherical particle. Apart
from these considerations, as we will discuss in the following, the correct
dynamics of the EMPs can be simulated only including other effective
interactions in addition to the e.mec. ones due to the medium presence and
the steric effect (i.e. the finite volume of the particles).

An important technical characteristic of this Thesis work is the
application of an open source framework instead of a widely applied
commercial package as COMSOL. This aspect has a double advantage: it
permits the free distribution of the tool and it makes easier the integration
with the MD method. In the next chapter we present the variational method,
the FEM approximation and the open source platform for solving PDEs and

data post-processing.
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Chapter 3

The variational approach for the numerical
solution of Partial Differential Equations

In the method we have developed to solve field mediated
interactions, that will be described in Chapter 4, it is indispensable to solve
numerically the field equations which are formulated in terms of partial
differential equations (PDEs). In particular, as discussed at the end of
Chapter 1, the Laplace problem must be resolved. For this purpose, the
finite element method (FEM) represents a powerful approach and it is the
one applied in our tool. There are commercial tools that solve PDEs through
FEM; however, they are difficult to integrate in a more general code. In this
Thesis, the open source software FEniCS was used, which allows for a more
feasible integration and use of the PDEs solutions in a more general
framework. We note that FEniCS requires the numerical implementation of
the differential equations in the so-called weak form within the variational
method.

This Chapter, after a brief reference to the basic concepts of the
PDEs and problems with boundary values [51, 52], introduces the
variational method for solving PDEs [53], the FEM [54, 55], the FEniCS
Project software and other software useful for the meshing and results’

analysis.
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3.1 Partial Differential Equations

PDEs are differential equations containing derivatives of the
unknown function u# with respect to more than one variable. Consider a

function:
F: 0 c RV >R,

with N a sufficiently large natural number. Whether the function explicitly
depends on at least one of the partial order n derivatives of the function u, an

equation of the type:

3.1)

F (X o U u u 0mu anu) —0
1 0 Ay 'axl'""axm""'ax’f'""ax#l =

is called partial differential equation of order n. xq,..,x, are the
independent variables.

The objective of the solution of differential equations in a given domain is
to determine the unknown function u(xy, ..., x,,) that satisfies Eq. (3.1)
within certain boundary conditions. This function is called integral or
solution of the equation itself. The totality of the integrals constitutes the so-
called general integral of the equation (excluding at most some of a
particular character, called singular).

It is essential to highlight the differences between ordinary differential
equations and partial differential equations. For an ordinary differential
equation of order n, the set of its solutions (general integral) can be

represented, unless possible singular integrals, by a function of the
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independent variable, which depends on 7 integration constants cy, ..., Cj,.
Vice versa, for each family of functions with n parameters, an ordinary
differential equation of order » exists and the function satisfies it.

For PDEs the situation is more complex: a general solution can be sought,
but the arbitrary elements to be set in order to obtain a particular solution are
no longer, in general, arbitrary constants, but are arbitrary functions.

The equation is said to be in normal form if it is resolved with respect to one
of the derivatives of the maximum order with respect to a single

independent variable, i.e. if it appears in the following form:

o"u (x o u ou ou o"u 6nu)
axtt I\ X X W g e e o oy ox )

3.2 Boundary value problems

An important problem class is formed by boundary value problems. In
the case of equations of evolution (like the equation of heat or that of
waves), they are also said “initial and boundary value problems”, because in
this case it is necessary to prescribe also the data to the initial time. In this
type of problem, the domain on which the solution must be defined is
assigned a priori. In boundary value problems, it is sufficient to prescribe

only one boundary data. Three cases are distinguished:

e Dirichlet problem: the boundary data is prescribed as the value of

the unknown function u;
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e Neumann problem: the boundary data is prescribed as the value of

the normal derivative of u at the ( frontier;

e Robin problem: the boundary data is prescribed as the value of

a linear combination of the the function and of its derivative, at the Q
frontier.

In any case, a second information on the solution is assigned, as a restriction

on its definition domain. Finally, it is possible to prescribe the value of the

unknown function on a part of the domain boundary and the value of its

normal derivative on the remaining part: these cases are called problems

with mixed conditions.

3.2.1 Boundary problem for the Poisson equation

Consider a three-dimensional spatial domain Q c R3, limited and

connected with regular boundary Q. The 3D Poisson’s problem is:

Viu(@r) = f(r), r € Q, (3.2)

where u(r) is the unknown function defined on Q, V? is the Laplace
operator, f(r) is a prescribed function. This expression is the so-called
strong formulation of the Poisson’s problem. To have a single solution,
appropriate boundary conditions should be added, as follows.

The Dirichlet problem for the Poisson’s equation in an open limited Q c R3
with regular boundary is:
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assigned the function up: 30 — R, to determine u € C? such that:

(
—Viu(r)=f(r), r € Q
(3.3)
Lu(r) =up(r), r € 9Q

If up(r) = 0, the problem is said to be homogeneous.
The Neumann problem for the Poisson equation in an open limited
Q c R3 with regular boundary is:

assigned the function h(r): 90 — R, to determine u € C? such that:

—V2u(r) = f(r), reqQ

3.4
qu-nzg—Zzh(r), r € 0Q

where n is the external normal to (0. If h = 0, the problem is said to be
homogeneous.
It is evident that if u solves Neumann’s problem, u + constant solves it as
well. Therefore, there can be no uniqueness of solutions, at least in the full
sense of the term.

It is useful to underline what is the modelling meaning of the
boundary conditions. The conditions of the type of Dirichlet are of

immediate interpretation, consequent from the meaning of the unknown u.
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For example, in problems of heat diffusion, where u generally represents a
temperature, the condition of Dirichlet is assigned when the domain border
is maintained at a known temperature by contact with a thermostat. The
conditions of the Neumann type can have the meaning of flow conditions:
always in the case of the heat equation, it is known that the heat flow along
x-axis in the body is (proportional to) —ux (at least according to Fourier’s
law).

It is possible to define the mixed problem for the Poisson equation,
in which different conditions are assigned to different portions of the
boundary. Let be d() the boundary of the domain Q, I, the portion of Q0 with
Dirichlet boundary conditions and [y the portion of ) with Neumann
boundary conditions. If 0Q = I, U Ty with I'; N Iy equal to empty set, the

following conditions can be imposed:

u=up(r), r €Iy
s (3.5)
u
e h(r) , r € I'y

In the case of problems posed for the evolution equations in a
temporal range (0,T), the value of the solution and of their derivatives at
final time T is obviously determined by the data at previous values of time, ¢
<T. To prescribe data on the part of the domain boundary that lieson =T
therefore not needs, from the point of view of the modelling intuition (this
intuitive consideration is in fact confirmed by the mathematical analysis of

the problems in question).
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3.3 Variational method

In order to expose the so-called variational method for the solution
of a PDE, let’s consider the specific case of the Poisson equation. Consider,
as an example, a domain Q € R® and the Dirichlet problem for the Poisson

three-dimensional equation:

—V2u(r) = f(r), reQ
(3.6)
u(r) = up(r), r € 0Q

/___/\__\\

The unknown function u to be approximated is referred to as a trial
Sfunction. Within the variational method, a function v (called fest function) is
introduced. Suitable function spaces are defined for the test and trial
functions, to specify their properties: the function space of trial function,
indicated by F, is called #rial space. The function space of test function,
indicated by F, is called test space.

In applying the method, first, the Poisson equation is multiplied by the test

function v and integrated over ():

— [, VW vdx = [ fvdx. (3.7)

dx denotes the differential element for integration over the domain Q.
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Eq. (3.7) contains a second-order spatial derivative of u, which can be
transformed to a first-derivative of u and v by applying the technique of
integration by parts.

The formula reads:
— [y VW) vdx = [ Vu-Vvdx - faQZ—ZUds, (3.8)

ou . . . . . .
where P Vu - n is the derivative of u in the outward normal direction n on

the boundary of Q and ds denotes the differential element for integration
over such a boundary.

An important feature of variational formulations is that the test function v
must vanish on the parts of the boundary where the solution u is known. In
the present case this means that v = 0 on the whole boundary 9Q. It is thus
required that the function is not too badly behaved so that the involved
integrals do indeed exist. More specifically, both v and Vv must be square
integrable on Q. The trial and test spaces F and F in the present problem are

therefore defined as:
F={veHY(Q):v=upon 00},
F={veH'(Q):v=00n00},

where H1(Q) is the Sobolev space containing functions v such that v? and

|Vv|? have finite integrals over Q (these conditions essentially mean that the
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functions are continuous [51]). F contains infinitely many functions, and
any of them can be used as test function v. F has thus infinite dimension.
The second term on the right-hand side of Eq. (3.8) therefore vanishes and it

becomes:
— [, VW vdx) = [, Vu-Vvdx. (3.9)

From Eq. (3.7) and Eq. (3.9) it follows that:

Jo Vu-Vvdx = [ fvdx. (3.10)

Eq. (3.10) represents the weak form or variational form of the original
boundary-value problem of Eq. (3.6). The weak formulation allows thus to
move from a differential problem of the second order to one of the first
order. Eq. (3.10) must hold for all test functions in some test space and it is
therefore possible to determine the solution u which lies in some (possibly
different) trial space.

The statement of variational problem now becomes as follows:
find u € F such that:
Jo Vu-Vvdx = [, fvdx Vve F. (3.11)
In mathematics literature the following canonical notation for variational

problems is introduced:
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a(u,v) = [, Vu-Vvdx, (3.12)

L) = [, fvdx. (3.13)

a(u, v) is called bilinear form and L(v) is called linear form. By introducing
the linear and bilinear form in Eq. (3.11), the variational form is defined as it

follows:

find u € F such that:
a(u,v) =L(v) YvE F. (3.14)

To solve a linear problem, we have therefore to identify the terms which
contain unknown u and collect them in a(u,v), and similarly collect all
terms with only known functions in L(v). As a consequence, in terms of the
computational approach, the wvariational methods consist in integral
weighted averages of the starting equation which act on the weak form of
the problem.

It is important to underline that the variational problem of Eq. (3.11) is a

continuous problem.
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3.3.1 Solution of Laplace’s problem by the variational method

As mentioned at the end of Par. 1.4, since we deal with the MST
evaluation of the e.mec. interactions, in the numerical tool at the basis of

this Thesis it is necessary to solve the Laplace equation:

V-[EVV(r)] =0.

where V (the dependence on r is omitted for simplicity of notation) is the

complex electrical potential:

V=Re{V}+iIm{V} =V, +iV, (3.15)
and £ is the general expression for the complex permittivity (see Par. 1.5).
E=Re{e}+iIm{} =z +i¢g. (3.16)
The subscripts R and I indicate clearly the real part and the imaginary part
(thereafter, this notation will be adopted for all complex quantities).

As already seen, the complex permittivity has the following values inside

the particles and in the medium:
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The linear and bilinear forms, Eqs (3.12) and (3.13), are complex

themselves and can be written:

a(,?) = [, Vil Vidx = ag + iay, (3.17)
L(®) = [, fodx = Lg +iLy, (3.18)
where

U =wvp +iv; (3.19)

is the complex test function and

f=f+if; (3.20)

is the complex prescribed function (which is null in the case of Laplace
equation).

Consistently with the variational method, the solutions of the Laplace’s
problem for the real and imaginary part V; and Vy of the electrical complex

potential function V can be obtained and, starting from these, the real and
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the imaginary part of the electric field can be calculated. The complex

electric field is indeed:

E=-VV,

and consequently:

ER + lEI = _VVR - lVVI

By the previous expression:

dVgp

Er = — (i__l_] dVg Tk 6VR) (Ex,R'Ey,R:Ez,R),

ax

and finally:
Ey = Exr +1Ey,,
E, =E,gr+iE,,

E,=E,g +1E;,.

(3.21)

(3.22)

(3.23)

(3.24)

(3.24)

(3.25)

(3.26)
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These values of the electric field components and their conjugate complex
will be inserted into Eq. (1.29) to numerically calculate the force (FST) and

in Eq. (1.30) to evaluate the torque (TM5T).

3.4 FEM approximation

It may be difficult or even impossible to solve analytically a PDE.
The FEM is a general and efficient method for the numerical solution of
PDEs. FEM involves the discretization of a large domain into small parts of
coded form, called finite elements (typically triangles and quadrilaterals for
2D domains, tetrahedrons and hexahedrons for 3D domains), that are
defined by points called nodes. The grid thus formed is called mesh. A field
quantity is approximated using polynomial interpolation over each of the
elements and, by this formulation, a set of simultaneous algebraic equation
results: the equations concerning the finite elements form in fact a large
system of equations that models the total problem. In order to solve this
system and approximate the solution, FEM use then variational methods.
The important points are: what kind of elements should be used, how many
elements are needed, where the mesh can be coarse and where must be fine,
the eventual assumptions and the choice of a suitable software.

Summarizing, the use of FEM follows usually these steps:

e node and element generation: subdivide the domain into small finite

elements, each of which is defined by a finite number of node points;
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e application of boundary conditions;

e within each element, a solution to governing equations is formulated

and solved;

e general solution for all elements results in algebraic set of

simultaneous equations.

3.4.1 Galerkin Method of FEM approximation

The solution of the PDEs must belong to a functional space where
the derivatives are continuous, neverthless the Sobolev space H! allows
functions with discontinuous derivatives. This weaker continuity
requirement of u in the variational form of Eq. (11) has practical
consequences in the construction of the functional finite element spaces:
among them, the most important is that the use of piecewise polynomial
function spaces is permitted, i.e. function spaces built by combining
polynomial functions on simple domains such as intervals, triangles or
tetrahedrons.

Application of FEM starts by rewriting the PDE as a variational
equation. It has been seen that the variational problem (Eq. (3.11)) is a
continuous problem: it identifies the solution u in the infinite-dimensional
function space V. Thanks to the FEM, it is possible to approximate u by a
continuous piecewise linear function u,. For this purpose, it needs to

suitably define the discrete (finite-dimensional) trial and test spaces Fj, € F
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and F, c F and replace the infinite-dimensional function trial space F and
function test spaces F by them. The boundary conditions are encoded as part
of the trial and test spaces.

The discrete variational problem consequently is:

find u;, € F;, € F such that

Jo Vup-Vvdx = [, fvdx Vve F,cF. (3.27)

The variational problem of the previous expression uniquely defines the
approximate numerical solution of Poisson’s problem. This type of FEM,
based on similar trial and test spaces, is called Galerkin Method, in honour

of the Russian physicist and mathematician who conceived it.

3. 5 FEniCS Project, Gmsh, Salome

Here we outline the characteristics of the open source tool we have

applied to implement our code.

3.5.1 FEniCS Project

FEniCS Project [56] is an open source software package that
implements a finite element method to solve partial differential equations of

importance in engineering and Physics. The programming language used in
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the works present in this Thesis for the code implementations by FEniCS is
Python.

Let us consider the discrete variational problem of Eq. (3.27). The PDE can
be solved with the FEniCS code thanks to its abstractions relative to the
linear and bilinear form. In fact, the formulas for a (Eq. (3.12)) and L (Eq.
(3.13)) can be expressed directly in a FEniCS program. Moreover, the terms
trial and test functions, used in mathematics, are also used in FEniCS.

It should be noted that the finite element variational problem of Eq. (3.27)
looks in FEniCS the same as the continuous variational problem of Eq.
(3.11): in fact, while in the mathematics literature on variational problems
up, indicates the solution of the discrete problem and u indicates the solution
of the continuous problem, in the corresponding FEniCS program u
indicates the solution of the discrete problem. Similarly, in the mathematics
literature V;, indicates the discrete finite element function space, while in the
FEniCS programs it is denoted by F. There consequently is a one-to-one
relationship between the mathematical formulation of a continuous problem
and the corresponding FEniCS program.

To solve a boundary-value problem by FEniCS, it needs to follow these

steps:

e identify the PDE, its computational domain Q and its boundary

conditions;

e redefine the PDE as a finite element variational problem;

76



e define the finite element spaces F and F by specifying the domain,

the mesh, the type and degree of function space;

e write a Python code which includes the quantities of the first points

by using the corresponding FEniCS abstractions;

e use the appropriate FEniCS command to solve the boundary-value

problem.

For the details see the associated web page: https://fenicsproject.org/.

3.5.2 Gmsh

FEniCS offers the possibility of generating spatial sampling to
obtain the calculation grid (mesh). In 3D this potentiality is limited. In the
works presented in this Thesis, Gmsh is consequently used. Gmsh [57] 1s an
open-source computer-aided engineering platform which operates on the
basis of parametric inputs. It offers, among others, solutions for meshing
and provides a number of mechanisms to control the accuracy of elements in
mesh generation. The Gmsh software libraries can be used alone or together
with external applications. An important point is that it interacts with
external solvers, including FEniCS.

As an example of application, several images created by Gmsh are
reported in Fig. 3.1: panel (a) shows the edges of a box of dimensions
(100-50-50) um3, panel (b) the surface mesh (namely relative to the
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faces of the parallelepiped), panel (c) the volumetric mesh, panel (d) a

sphere with a surface mesh.

3.5.3 Salome

Salome is a free software which consists of a generic platform for
pre- and post-processing of numerical simulations, meshing, visualization
and analysis of FEM results. It is released under the GNU Lesser General
Public License and may be downloaded from its official website [58]. It is
based on an open architecture made of several components. Its software
libraries can be used alone or in combination with other software
applications for the study of a CAD model.

Salome was used to visualise the output files of the solution of the Laplace
problem created by FEniCS. The files show the electrical potential or
electric field, displayed according to a colour scale. The default setting
allows to display the values of the external part of the box, with or without
the presence of the surface mesh. In order to show the solution in spatial
regions of interest inside the box, the “slice” function was used, which
allows to display a section of a three-dimensional object. As an example,
Fig. 3.2 shows the solution of the Laplace problem in the box of Fig. 3.1
when an electric potential V=0 is applied to the top and V=5 Volt is applied
to the bottom: panel (a) shows the surface mesh drawn with a colour scale
relative to the values of the solution, panel (b) shows the slice passing

through the centre of the box and parallel to the front face.
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Fig. 3.1 Images created by Gmsh. (a): edges of a box of dimensions (100 - 50 - 50) um?3.
(b): surface mesh. (¢): volumetric mesh. (d): sphere with a surface mesh.
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Fig. 3.2 Images created by Salome. (a): surface mesh in color scale related to the solution.
(b): slice passing through the centre of the box and parallel to the front face.
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3.6 Remarks

In this section we presented a short reference to the basic concepts of
the PDEs, to the variational method for solving them, to the FEM and the
usefulness of FEniCS Project to apply this method for a generic solution of
PDEs in the weak form. In the next chapter we will deal with the second
aspect of our coupled method: we will report a brief presentation of the
Molecular Dynamics and relative integration method (Verlet Integration)
and present the formalization of the MD-FEM code used for the

simulations.
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Chapter 4

Coupled Molecular Dynamics-Finite Element
Method algorithm

The general objective of this Thesis work is the extension of the so-
called “simulation” approach and related techniques in different application
fields. In theoretical Physics, a model of a system is considered, generally
subjected to approximations and based on equations to be solved
analytically or numerically. Numerical simulations, based on the models of
physical systems, can play an important role in the theoretical study of the
evolution of a system because it is possible to increase the level of
complexity of the description with respect to the analytical models. They
provide very accurate results (depending on the level of precision in the
modelling of the fundamental interaction ruling the system’s behaviour) for
problems that cannot be solved analytically. In this regard, computer
simulation can be considered both as a test of theories and as verification
and analysis of experimental information. Numerical simulations allow also
performing ideal experiments (gedanken experiments) under extreme
conditions (i.e. of temperature and pressure, of purity of materials rarely
achievable in a real experiment etc.). Simulations can both provide
microscopic details of a system and describe macroscopic properties of
experimental interest (state equations, transport coefficients, structural
parameters, etc.). Numerical results are finally analyzed and interpreted,

with techniques similar to those used to characterize experimental data.
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Compared to experimental methods, simulations are usually costless and
less time consuming.

Molecular Dynamics (MD) is a widely used simulation technique for
the computational study of the movement of atoms and molecules, but our
aim is to extend its applicability to EMPs. This Chapter provides a
description of the MD technique [59, 60, 61] and the algorithm for coupling
the MD with the FEM method for the simulation of EMP systems. The
formalism here described has been originally implemented using the Python
API in our open source tool. For the MD part we will use the Verlet
integration technique [62, 63, 64], an algorithm diffusely used in the MD

context.

4.1 Molecular Dynamics

MD is a set of computational techniques of simulation that in general
allows to study the evolution of physical and chemical systems (i.e. sets of
N interacting particles) at atomic and molecular level. MD is based on the
step-by-step integration of the classical equations of particle motion, which
are described as interacting point masses.

The MD method was introduced by Alder and Wainwright [65] in
the 1950s for the study of systems composed of rigid spheres. It offered
excellent results in the study of simple liquids. The first MD simulation of a
realistic system (water in the liquid phase) dates back to 1971 (Rahman and
Stillinger [66]). In the following years, rigid molecules (Barojas, Levesque

and Quentrec, 1973 [67]) and flexible hydrocarbons (Ryckaert and
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Bellemans, 1975 [68]) were studied. Computer MD simulations were also
performed on phase transitions and interface behaviour of different
materials (1974-1980). An advancement of simulation techniques occurred
with the development of “dynamic stochastic” methods (Friedman, 1977
[69]) and with the introduction of methods for measuring transport
coefficients (McDonald, 1979 [70]). Recently, developments have turned to
the search for metastable states and multiscale problems [71, 72], in which
MD is integrated with other calculation techniques, in particular the Monte
Carlo method [73], allowing to overcome the main limit of MD that consists
in the short duration of the simulations (a few ns) and in the small size of
the studied systems (fractions of pm3). In general, the fields of applications
of MD are liquids, defects in solids, surfaces and interfaces of solids,
fractures, molecular clusters, biomolecules (e.g. DNA), diffusion through
membranes (e.g. H20 through graphene), heat transport [74, 75], complex
dynamic processes that take place in solid state physics, materials science,

biological systems, chemistry [76].

4.1.1 MD implementation

MD is a deterministic technique: given an initial state of positions
and velocities, the time evolution of the system is completely determined
(unlike e.g. Monte Carlo methods). Deviation of this principle is mainly due
to numerical errors and physical conservation rules are commonly used to
control the integration accuracy. Particles in general interact through a

potential which can be a semi-empirical (classical) potential or can be
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derived by a quantum mechanical approach, whilst the particle kinetics is
essentially classic (i.e. quantum theory is applied within the Born-
Oppenheimer B.O. approximation [77]).

Consider a system composed of N massive points, described by the set of
canonical coordinates {r; p;} and initialized with initial positions
r;(ty) and initial velocities v;(ty). Initial mass positions generally are
“randomly” displaced (depending on the system under consideration, they
are displaced from the ideal equilibrium positions). In general, the initial
positions can be obtained starting from experimental structures solved with
the X-ray diffraction methods on mono-crystals, by nuclear magnetic
resonance imaging (NMR) or from configurations derived from
crystallography.

The distributions of initial velocities are generally referred to a Maxwell’s
random distribution corresponding to a specific temperature, if the system is

considered as a canonical ensemble:

2
m; m;v;

v;) = ex
p(vi) 2mkgT pzchT’

where p(v;) is the probability that an atom has velocity v; at temperature T.
The initial random distribution of the speeds is chosen in such a way that the

total momentum is zero, that is:

P(vi) = Zivzo m;v; = 0.
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The MD method is based on the iterative application of Newton’s
second law. The knowledge of the resulting force on each particle of the
system allows determining its respective accelerations. For a system of N
atoms, the motion of each atom in the system is therefore determined by the
equation:

2

where F; is the resultant of the force acting on the particle of mass m; and
a; is its acceleration. The fundamental assumption in classical dynamics, in
which the forces are of empiric nature, is that they can be expressed as the

gradient of a potential energy function V (74, ... ry) independent of time:
F;=-V,V(ry, ..ry). (4.2)

From Eq. (4.1) and (4.2):

dZ
—ViV(Tl, ...TN) =m;a; =m; Fri. (43)

The trajectories of the massive points are derived by integrating the
Newtonian equations of motion.

It should be noted that the integration of equations of motion is in general a
complex procedure because the displacement of the particles modifies the
values of the potential energy of interaction and therefore of the forces

acting on them.
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By using the MD techniques, problems related to calculation times
and computational resources are encountered, as it is necessary to be able to
follow, at every step in time, all the degrees of freedom of the particles in
the system. However, the increased performance of computers and the
refinement of methods and algorithms have made possible calculations that
were prohibitive until recently. Nevertheless, MD presents in general some
limitations: it is suitable for classical and not fully quantum evolving
particles (i.e. when B.O. is not appropriate as for lightweight systems like H,
He, Ne, or low temperatures), time limitations (from pico to nanoseconds),
size limitations (from thousands to few millions of atoms).

There are several ways to solve the Eq. (4.3) in MD contexts. One of
the algorithms used in MD for constant energy simulations is the Verlet

method, which will be described below.

4.2 Verlet Integration

In MD, methods to calculate trajectories of particles integrating
Newton’s equations of motion are required. The task is to construct a
sequence of points that closely follow the masses on the trajectory of the
exact solution. Verlet integration is a numerical method frequently
applicated in MD. It was used by Carl Stermer to compute the trajectories of
particles moving in a magnetic field and was popularized in MD by the
physicist Loup Verlet in 1967. The Verlet integration offers greater stability
than the much simpler Euler method [78] and other properties that are
important in physical systems, such as time-reversibility.
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4.2.1 Basic Verlet Integration

Let us consider conservative physical systems. Newton’s equation of

motion is:
Mi#(t) = F(r(©)) = =V V(r(v), (4.4)

where t is the time, r(t) = (rl(t),...,rN(t)) is the ensemble of the
position vector of N objects, V is the scalar potential function, F is the
ensemble of forces on the particles, M is the diagonal block matrix with
mass for every particle.

The initial positions 7(0) = ry and initial velocities v(0) = 7(0) = v, of
the particles are typically given. In order to discretize and numerically solve
this initial value problem, a suitable time step At > 0 is chosen and the
sampling point sequence t,, = nAt is considered.

Verlet Integration is based on the central difference approximation to the
second derivative:

t+At)-r(t t)-r(t-A
pp(p  HEOmr@ rO-HEA0 A —2r(@+r(e-At) a

At2 At At2 (t)

(4.5)

The Verlet algorithm uses the following equation (deriving from the third

and fourth members of the previous expression):

r(t+ At) = 2r(t) — r(t — At) + a(t)At?. (4.6)
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The next position vector (with respect to the time t) is thus obtained from
the previous two. It is important to note that the velocity is not used. An
important characteristic is about the order of accuracy of the errors. The
time symmetry of this method reduces the level of errors introduced into the
integration by calculating the position at the next time step. The Taylor

expansions at time t = t,, of the position vector in different time directions

arec:
r(t+At) = 7(t) + V()AL +a(t)At? + - b(HAL® + O(At*). (4.7)
r(t — At) = r(t) — V(DAL + S a(t)At? - %b(t)At:" + 0(AtY). (4.8)

where and b is the jerk (third derivative of the position with respect to the

time). Adding these two expansions gives:

r(t + At) = 2r(t) — r(t — At) + a(t)At? + O(At?). 4.9)

The first and third-order terms from the Taylor expansion cancel out and the
Verlet integrator is therefore an order more accurate than integration by
simple Taylor expansion alone.

In the Basic Verlet equation, as seen above, only the positions are
explicitly given, but not the velocities. However, velocities are often
necessary, e.g. for the calculation of certain physical quantities like the
kinetic energy. The velocity can be estimated using the position terms and

the mean value theorem, as follows:
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r(t+At)-r(t—At)
2At

v(t) = + 0(At?). (4.10)

The calculation of velocities at time t can create technical problems in MD
simulations, because they cannot be calculated until the positions are known
at time t + At. The velocity term calculated in this way is a step behind the
position term, since this is at time ¢t and not t + At. Anyhow, the velocity is
not used to update the position. Another way to remedy this deficiency is to

use the Velocity Verlet algorithm, which is presented below.

4.2.2 Velocity Verlet algorithm

A commonly used algorithm is the Velocity Verlet, which is
obtained from the original Verlet algorithm. This method explicitly
incorporates velocity. First of all, it is useful to derive the following

expression by Eq. (4.10):
r(t + At) — r(t — At) = 2v(t)At. (4.11)

In order to obtain an equation for the position, the term r(t + At) is added

to both members of the Eq. (4.6), obtaining:
2r(t + At) = r(t + At) — r(t — At) + 2r(t) + a(t)At?. 4.12)

By Eq. (4.11) and Eq. (4.12), the following expression for the position is

obtained:
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r(t + At) = r(t) + v(D)At + %a(t)Atz.

(4.13)

In order to obtain an equation for the velocity, we consider the original

Verlet (Eq. (4.6)) for r(t) instead of r(t + At):

r(t) = 2r(t — At) — r(t — 2At) + a(t — At)At?.

By adding this last equation to Eq. (4.6):

r(t+At) —r(t — At) =
=1r(t) — r(t — 2At) + [a(t — At) + a(t)]At2.

From Eq. (4.1) and Eq. (4.15):

2v(t)At = r(t) — r(t — 2At) + [a(t — At) + a(t)]At?.

The Eq. (4.11) at the time t — At is:

r(t) — r(t — 2At) = 2v(t — At)At.

From Eq. (4.16) and Eq. (4.17):

a(t—-At)+a(t)

v(t) =v(t—At) + At,

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)
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and, shifting the time step by one:

a(t)+a(t+At)

v(t+ At) = v(t) + >

At. (4.19)

In the end, the standard implementation scheme of the Velocity Verlet

algorithm consists in the following steps:
o calculate (¢t + At) = r(t) + v(t)At + %a(t)Atz; (4.20)

e derive a(t + At) using r(t + At);

a(t)+a(t+At)

e calculate v(t + At) = v(t) + >

At. 4.21)

One peculiarity of this method must be noted: the values r(t + At) is
calculated as a function of r(t), v(t) and a(t) (quantities relative the
previous time step), while v(t + At) is calculated as a function of v(t),
a(t) and a(t + At). The velocity at the time t + At thus depends also on
the acceleration value calculated at the same time step and not only at the
previous.

This formulation of the Verlet algorithm is completely equivalent to that of
Eq. (4.3) as far as the propagation of the position is concerned. It should be
noted, however, that this algorithm assumes that acceleration only depends
on position and does not depend on velocity. In the case of analytic
formulations of the dependence of a(t + At) on the velocity, we can

consider Eq. (4.21) an implicit equation for the evaluation of v(t + At)

91



provided that a single value solution can be found. This is the case of the
drag forces we introduce in Chap. 5 to simulate correctly the EMPs kinetics
in a fluid medium.

It can be shown that the error on the Velocity Verlet is of the same order as
the Basic Verlet [62]. Stability of the technique depends heavily upon a
uniform update rate and the ability to accurately identify positions at a small

time At into the past.

4.3 MD-FEM algorithm

Our code aims at evaluating the evolution of a system of e.mec.
particles by using MD techniques for the integration of the equations of
motion. In this section we outline the implemented algorithm while some
details and some extracts of the code are reported in the Appendix E. In the
formulation here presented, the rotation of particles is neglected; this is a
reliable approximation for the majority of real EMP systems. A
generalization of the method which considers rotation is presented in Chap.
6. The simulation of particles’ kinetics then consists of a sequence of loops
with the following steps: system configuration preparation from the known
positions and velocities of the particles; calculation of forces acting on the
particles and then of the corresponding accelerations; integration of the
equations of motion for a suitable time increment; new configuration
setting. The calculation of the e.mec. force acting on the particles needs the
solution of the Laplace’s problem (see Sec. 1.4) with a complex potential

variable in a 3D geometry, i.e. the corresponding PDE needs to be solved in
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a numerical domain reproducing the system configuration (sources, medium
and particles). Other eventual single particle forces are instead calculated by
means of analytic expression (see Chap. 5).

The complex Laplace equation is solved using a Finite Element
Method. In particular, in the code the corresponding Python methods,
implementing calls to the FEniCS routines, are integrated. As already
discussed in the section 3.5.1, FEniCS is an open source software package
that offers a complete platform for solving PDE with the use of FEM. For
the 3D computational mesh generation relative to the system configuration
our code instead integrates Gmsh, which is an again open-source computer-
aided engineering platform which operates on the basis of parametric inputs.
We have coded in Python an interface which transforms the system
configuration in a Gmsh input file (i.e. .geo format, see the Gmsh manual at
the web page [79]) driving the mesh building. This interface allows the
interaction between the FEM part and the MD part of the code. Finally, the
particle-like Molecular Dynamics technique extracts the forces from the
FEM continuum solution in the so-called Coupled MD-FEM technique. The

steps of the simulations are analyzed in the following.

Computational domain.

Figure 2 shows the procedure to simulate the system evolution. A
number of particles with their initial position and velocities, at the instant ¢,
are considered. The first step of the simulations is to create, through the
functionality of Gmsh, the mesh relative to the spheres (which represent the

particles) embedded in the box (which represents the micro-fluidic channel)
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including also the electrode geometries. All these portions of the numerical
domain are merged in a single mesh, but it is necessary to identify and label
them in a univocal way. Note that the dimensions of the particles and
simulation box entities as well as the local resolution of the mesh in the

different geometric elements can be defined independently.

FEM solutions and forces’ estimates.

The second step is the solution of Laplace’s problem, which is a
prerogative of FEniCS. Dirichlet boundary conditions for the applied
potentials on the electrodes and on the micro-channel top surface are used
(see also Chap. 5), whereas Neumann boundary conditions are used for most
other exterior boundaries to model their electrical insulation. Eventual
periodic boundary conditions can be also activated if necessary. Using the
FEM solution (i.e. the distribution of the complex potential in the space), by
applying some FEniCS functionalities the following quantities are

calculated:

e the values of the electric field;

e the MST by Eq. (1.27);

e (FMST)yby Eq. (1.29).

94



After this computationally intensive part, the single particle interactions are
calculated from the analytic expressions which depend on the velocity field

of the fluid (see also Chap. 5).

Integration of the Equations of the motion and steric interactions.

The accelerations of the particles from the resulting forces are calculated
and the numerical integration of the equations of motion is performed by
means of the Velocity Verlet method technique (Eqs (4.20) and (4.21)).

The MD step includes control instructions on steric particle-particle and
particle-wall interactions, which can be also considered as particular
particle-particle interactions. Indeed, particles must never exceed the walls
of the simulation box in their dynamics. Moreover, particles must not
penetrate each other. For each MD step, checks are carried out: if one or
both of these events occur, one check modifies the velocities and positions
of the particles as explained below. The interaction between the particles
and the walls is conceived in terms of an elastic impact: if a particle is found
to have crossed the wall of the box in an MD step, its center is associated
with a new value of speed (the opposite vector with respect to the one it
had) and with the position occupied before crossing the wall. In the case of
overlapping between particles, they are separated from each other, along the
center-center direction, by a minimum distance so that they do not penetrate
each other. Unlike in the case of particle-wall interaction, the check in this
case does not change the particle speeds but only their positions. In other
words, the problem is not treated in terms of elastic impact. This procedure

is motivated by the presence of the drag force which depends on the speed.
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It is assumed that the drag force strongly influences the particle-particle
interaction modifying immediately the effects of the elastic impact. Such
procedures avoid non-physical situations, which, among other, lead to
conflicts in the generation of the mesh of the box and sub-domains at the
FEM computational phase. See Appendix E for more details.

It is evident that MD-FEM coupling implies considerable computational
resources, since the result obtained in a calculation cycle constitutes the
initial condition of a further cycle relative to the following time step and
both re-meshing and FEM procedures have to be performed at each iteration
cycle. In order to optimize simulation times, the calculation of the e.m. force
is decoupled from the analytical calculation of other forces (which is
significantly faster). The e.m. forces usually show appreciable variations on
time scales larger with respect to the optimal values of the MD increment
At, which in turn is ruled by the other forces and steric interactions.
Consequently, two time steps are introduced: At, already seen in the
equations of the Velocity Verlet algorithm, which optimizes the calculation
of the drag and lift forces and of steric interactions, and Atpgp, i.e. the time
interval between one re-meshing and FEM calculation and the subsequent
one. The first type of cycle is performed for ¢ = nAt while the second type
is performed for t = npppAtpep, where n and npgp are integers greater than
zero, such that n/nppp = Atppp /At.

This decoupled method is clearly more efficient. Figure 4.1 shows a

block diagram of this MD-FEM algorithm.
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Fig. 4.1 Block diagram of MD-FEM algorithm. n and npgp are integers greater than zero
Such that Tl/nDEp = AtDEP/At

4.4 Conclusions

In this section we have described the MD-FEM algorithm
implemented in our code for the simulation of EMPs dynamics. The
formalism here described is appropriate for the prediction of the
translational motion of the particles. In the next chapter, we apply the
method to realistic systems of EMPs which can be experimentally realized
also for practical application in the field of cell sorting. We note that
additional (minor) formalism extension (Sec. 5.1), dealing with the external
interactions, is needed for the particular application described in the
following; whilst the method here presented could be easily generalized for
other EMPs’ systems. We notice that external interactions are somewhat
typical of the given realization of the EMP system as a consequence they

need in any case an “ad hoc” formulation.
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Chapter 5

Simulated evolution of EMPs systems

This Chapter focuses on the theoretical study of the dynamics of
spherical EMPs suspended in a colloidal solution in the presence of a non-
uniform variable electric field. The numerical simulations of the model
system aim at providing predictions of both stable configurations of the
particles and their dynamics in fully three-dimensional configurations,
minimizing the approximations usually considered in models of mutual
interactions.

As cases of study that will be deeply analyzed, systems of practical
interest have been chosen consisting of biological cells dispersed in a
colloidal solution (of which the typical characteristics of interest are
reported in the literature) that flow into a microfluidic channel in the
presence of electromagnetic fields. In Chap. 1 it was seen that the
dielectrophoretic force has the potential to manipulate micrometric particles
according to their morphological and dielectric characteristics. This
potential could be in principle exploited in the clinical field to
separate/select/capture the so-called Circulating Tumor Cells (CTCs) in a
hematological sample with high resolution and sensitivity. According the
discussion reported in section 1.3.1 for generic particles, in sorting operation
mode two types of cells (one of them tumoral) are suspended in a colloidal
solution within a microfluidic device and subjected to a non-uniform

variable electric field, and its frequency can be chosen for the capturing and
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separations in a way that the tumoral type experiences p-DEP and the
second type experiences n-DEP. For further details, Appendix C contains: a
more accurate definition of CTCs, a discussion on their clinical effects and
on the role that their study can play in the diagnostic and prognostic fields, a
qualitative discussion on microfluidic devices based on dielectrophoresis.
The examples of the method’s application will focus on DEP induced
translation of spherical particles (in particular a dielectric model of: MDA -
MB-231 tumor cells, B-Lymphocites and mixtures of them).

A detailed study is carried out, with a non-approximate calculation
of the forces, which are estimated by integrating the MST over the surfaces
of the particles. As presented in the previous chapters, the evolution is
simulated by techniques borrowed from MD, whilst the FEM is applied to
obtain self-consistent numerical solutions of the partial differential
equations regarding the e.m. field. The Coupled MD-FEM algorithm and its
implementation in the FEniCS environment is used.

This chapter consists of the following sections:

5.1  Single particle external interactions: the forces (in addition to
the electromagnetic forces) to which the particles are
subjected in the microfluidic channel are defined and

described;

5.2 Particle model: a model taking into account the structural

complexity of cells is introduced;
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5.3 Model validation for simple configurations: simulations
carried out on simple configurations are presented in order to

validate the implemented model;

5.4  MD-FEM simulations results in many particle systems:

simulation results are presented and discussed.

5.5  Geometry’ effects: results of simulations carried out with

geometries different from those of section 5.4 are presented.

5.1 Single particle external interactions

For realistic simulations, other forces must also be taken into account
in addition to the e.mec. forces. EMPs, in usual conditions induced in
manipulation experiments, are not only subjected to e.m. fields, but also to
hydrodynamic pressure fields and to gravity. These external interactions act
on single particles and for spherical ones can be expressed as analytical
expressions of their kinetic variables. We note that in general the colloidal
solution containing the EMPs is not static, although some case studies will
be discussed in the limit of static solutions. In the following the formulation

of single particle forces included in the simulation method is given.
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Drag force

The viscous drag force stemming from the viscosity of the medium is

given for a spherical object by [26, 80]:
Fyrqqg = 6TUR (U — V) (5.1)

where u is the dynamic viscosity, u is the local velocity of the fluid and v is
the instantaneous velocity of the particle. The Eq. (5.1) is referred as the
Stokes’s law [81].

Lift force

The lift force, due to the non-negligible velocity gradient of the fluid
across the particle surface, is also present [82, 83] and it is particularly
important close to the sidewalls of the channel containing the solution. In
the application of MD-FEM method in this Thesis, a micro-fluidic channel
with parallel sidewalls and small dimensions will be considered, where the
fluid flow can be assumed to be laminar since the Reynolds-number is of the
order of 10", In these conditions, the shape of the flow profile in the vertical
direction of the channel depends by the chamber height h. The analytical
solution of the fluid velocity field is the parabolic flow profile [28]:

h_
u(z) =4 Umax Tza (5.2)

z
h
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where z is the distance of the particle center from the bottom of the channel

and

is the velocity of the fluid at the center of the channel, as shown in Fig. 5.1.

It is important to note that:

u(0) = u(h) =0.

The expression of Eq. (5.2) can be written also in terms of the average

velocity u [84]:

—6y 2 =z
u(z) =61u P (5.3)
In fact, by Eq. (5.3):
1 1ch,_ 7z h- _
~Jyu@dz =+ 6u% Tzdz=u. (5.4)

The lift force arises because of the fluid viscous flow on particles close to a
solid plane, causing their levitation [85] and, in this particular channel
geometry, it is perpendicular to the bottom and directed towards the center
of the channel. Its intensity is directly proportional to the gradient of the
curve describing the fluid velocity (Eq. (5.2)) and it takes the following
form [86]:
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Flife = @5 —u(z) v = hGoR) (5.5

where C=0.153 [*"].
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Fig. 5.1 Parabolic velocity profile for a fluid flowing through a microfluidic channel of
height h; w(0) = u(h) = 0; Upgy = U (")

2

Gravitational force

The summation of gravitational force acting on spherical cells and
the buoyancy force (due to the density of the surrounding fluid and the
amount of fluid displaced by the particles) is:

Fop =>R*(pp — pm)e, (5.6)

3
103



where p, and p,, are the particle and suspension medium density
respectively and g is the acceleration due to gravity.
Summarizing from the considerations of this section, the forces

acting on the particles are:

along x-axis: (FMST) and viscous drag force;
along y-axis: (F)"*T) and viscous drag force;
along z-axis: (FM5T), viscous drag force, lift force, gravity and buoyancy

force.

5.2 Particle Model

It is clear from Eq. (1.32) that it is necessary to know the complex
dielectric constant of the particles at the operational angular frequency o for
calculating the dielectrophoretic force. In the application examples of the
MD-FEM method we consider biological cells, therefore a derivation of the
dielectric parameter for such particular system is necessary. The expression
first introduced by Pohl is based on modeling the cell as a solid spherical
dielectric particle suspended in a fluid medium. CTCs are often modeled as
rigid spheres [88]. However, biological particles are complex and
heterogeneous structures with multiple layers having distinct electrical
properties [89]. The cells have in general a so-called cell wall, this is a
structure that provides rigidity and shape retention and also represents a

physical and chemical barrier. Protoplasts are particles prepared by treating
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walled cells with special enzymes to digest the wall. Their form is typically
balloon-like. They are very fragile due to the absence of cell wall. Such
protoplasts can be outlined as particles with a conductive fluid interior
(cytoplasm) enclosed by a very thin capacitive layer (membrane). Typical
mammalian cells are structurally similar to protoplasts [90, 91], although
smaller and less fragile: most of them lack indeed the cell wall, consist of a
conducting cytoplasm surrounded by an insulating membrane and exhibit a
very similar polarization response. The cell membrane is a semipermeable
phospholipidic bi-layer with the presence of some internal specific proteins.
It is very thin (about 10 nm). Biochemistry and biomedicine investigate the
vital function of the cells which is severely dependent on the activity of the
membrane cell. Indeed, the membrane promotes the two-way exchange for
(1) life-sustaining nutrients and regulatory substances required by the cell’s
metabolism and (i1) waste materials excreted from the cell. It is important to
investigate the membrane’s average dielectric properties, with the aim of
studying the behaviour of the cells when they undergo to an e.m. field. The
drop in DC electrical potential that membranes can typically withstand
without being damaged is typically about one volt, corresponding to an
effective dielectric strength of ~10® V/m, a value that is sustainable in few,
if any, dielectric insulating synthetic materials [23].
Since its phospholipidic nature, the membrane behaves like a very low loss
capacitor, blocking low frequency electric fields and electric current from
the cytoplasm, which is a quite complex aqueous ionic fluid containing the
nucleus and other several functional organules.

On the basis of the above, in biological dielectrophoresis it is

essential to adopt trusted dielectric models for protoplasts. A more realistic
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model for cells has consequently been adopted in this work: the cell is
represented by a spherical dielectric core and a spherical dielectric shell to
account specifically for the dielectric properties (conductivity and
permittivity) of the cytoplasm and of the membrane respectively. Despite
the complexity of the cytoplasm, simplified models are usually adopted to
overall describe the interior of cell system, taking into account the average
dielectric properties of the cytoplasm itself. A homogeneous model with
dielectric permittivity &.,, and ohmic conductivity oy, is adopted. As well,
the cell membranes are typically characterized by dielectric permittivity
Emem and ohmic conductivity ,,.m. This shelled model is shown in Fig.
5.2(a). The liquid medium is similarly described by ¢,, and a,,,. The complex

permittivities of the cytoplasm, membrane and liquid medium are:

Eeyt = Ecyr — lo-cyt/wa

Emem = Emem — L0mem /W,

Em = Emem — 1Oy /W.

The cell radius is R, d is the membrane thickness, the difference R-d is the
cytoplasm radius.

The “effective electrical permittivity” &,rr method is applied taking into
account the properties of these two different parts of the cell [92]: it can be

shown that the induced electrostatic potential outside the particle, that is for
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|r| >R, is indistinguishable from that of the equivalent, homogeneous

dielectric sphere of radius R with permittivity &.5f, as shown in Fig. 5.2(b).

81’1‘]’ Gm 81‘.’['13 Gm

€mem
Oimem_ (a) (b)

Fig. 5.2 (a): Spherical dielectric cell composed of the cytoplasm (inner volume) and the
membrane (light brown shell). (b) Effective equivalent homogeneous sphere model ruled
by the dielectric function €.

The particle is thus replaced by an equivalent and homogeneous sphere with
a radius equal to that of the outermost shell but with different dielectric

characteristics represented by &,¢r. The complex dielectric constant &5 has

the following form (see Appendix C):

( R )3 Ecyt—Emem
R-d

~ o Ecyt+28mem
geff = Emem ( R )3_ Ecyt—Emem ° (57)
R-d 5cyt+2§mem

In the final analysis, the quantity &, present in the equations in the preceding
chapters must be replaced by the &, (for example in the definition of the
CM factor of Eq. (1.15)).
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5.3 Model validation for simple configurations

The simulations presented in this section concern a simple device
configuration to validate our numerical approach based on the MD-FEM
technique: the parallel plate capacitor. The electric field is generated by the
two parallel electrodes separated by a distance h. The only component of
electric field different from zero is that along the direction perpendicular to

the plates and its value in module is:
E=V/h,

where V is the electric potential drop across the plates. The first system
considered is a single particle immersed in a fluid present inside the
capacitor. For this particle, the electrical parameters representative of the B-
Lymphocites cell (which has been well characterized [, **]) are used. These
and similar values for the liquid medium, typical for isotonic water

solutions, are given in the Table 1.
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Permittivity Conductivity
peitivty &y 6954 F/am) (S/m)
B- Lymphocyte Emem = 14.26 Omem = 1-107°
membrane
B- Lymphocyte Ecyt = 59 Ocye = 0.31
cytoplasm
Liquid medium Em =179 om = 0.03

Tab. 1 Electrical parameters of the cytoplasm and the membrane of B- Lymphocytes and of
the liquid medium.

The properties of B-Lymphocites are [*]:

e radius: R=33 pum;
e membrane thickness: d=10nm;
e mass density: p =1065 Kg/m’.

In the calculation, the drop of potential between the plates of the capacitor is
V=10 Volt, while the frequency of the electric field is v =1 MHz (the
angular frequency is w = 2mv) and h = 500 um.

The DEP force values calculated by the approximate formula of Eq. (1.14)
are equal to zero as the electric field is constant inside the capacitor. The
force calculated by MST has instead values different from zero due to the
alteration induced to the total electric field by the particle in the electrode

proximity (see Ref. [17] for a complete discussion).
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The results are compared with those of Ref. [17] to validate the MD-FEM
approach. In this reference the calculations are made by Comsol
Multiphisycs [50], which is a commercial solver and simulation software
based on finite element analysis. It is important to note that in Comsol it is
possible to use the function “dielectrophoretic force” present in its functions
library. Figure 5.4 shows the comparison between the values of FM*' for
several particle-electrode distance values present in Ref. [17] and the

MST .

analogous values calculated by MD-FEM approach. The value of F is

stronger close to the plate and becomes less intense as it moves away.
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Fig. 5.3 Comparison between the values of F™"

present in reference [17], obtained by
Comsol, and the values calculated in the Gmsh-FEniCS implementation of the e.mec. force

calculation.
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The results are very similar to the ones obtained by Comsol in Ref. [17],
whereas small differences are due to the different meshes and numerical
integration schemes employed.

The second check of our code is done considering two particles (B-
Lymphocites) in a capacitor like configuration of the device similar to that
of the previous case. In the presence of an electric field, the formation of
chains of particles is predicted [96]. It consists in the end-to-end attachment
of particles, which assume a formation similar to that of a chain of pearls.
The formation of particle chains is a phenomenon mainly due to the
electrostatic interactions among the particles under the effects of the electric
field. It occurs because the particles acquire induced dipole moments under
the field action: if two particles are close to each other, the positive charge
of the dipole of the first particle interacts with the negative charge of the
dipole of the second; hence, they experience an attractive force which links
them together. Pearl chains are formed only when the particles come close
to each other and this phenomenon can be neglected in the dilute solution
limit, when the particles are separated by large distances. As for elongated
single particles (including biological cells), a frequency dependent
orientation effect is expected for chains of homogeneous conducting
dielectric spheres suspended in fluids and subjected to an electric field [97]:
chains are predicted to align with the vector joining the centers parallel to
the field direction. The formation of chains is a common occurrence in DEP
experiments on biological cells. In this analysis, we consider the kinetics of
chain formation for Lymphocytes.

The drop of potential between the plates of the capacitor is V=10
Volt, the frequency of the electric field is v =1 MHz, h = 100 um. Figure
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5.4(a) shows the particles in the initial configuration, at time t=0 sec.
Figures 5.4(b), 5.4(c) and 5.4(d) show the particles in successive instants,
after application of a uniform electric field directed along the z-axis: a chain
forms, due to the polarization of the particles, and also aligns itself with the

electric field as time passes.

(a) (b)

(c) (d)

Fig. 5.4 Snapshots of a simulation of two particles in a parallel plate capacitor for t =0, 0.1,
0.15, 0.21 sec ((a), (b), (c), (d) respectively). The particles attract and form a chain that
aligns with the electric field and remains in this stable configuration for the rest of the
simulated evolution.
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5.4 MD-FEM simulation results in many particle systems

In this section some results of the application of our MD-FEM method
to many-particle systems are discussed. They reproduce the condition of real
manipulation experiments where DEP forces are induced on cells.

The non-uniform electric field used in DEP applications is typically
produced by electrodes with feature size in the scale of microns in order to
reduce suitably the value of the applied voltage [98]. Several electrode
geometries have been developed according to the particular application
scopes. Lithography techniques are typically used to pattern planar
electrodes on the bottom of the micro-channel and examples of planar
electrode designs include inter-digitated [99], castellated, spiral [100],
curved [101], oblique [102], quadrupole [103], matrix [104] and polynomial
[105] electrodes.

In particular, the prototype devices for cell capture/separation have planar

electrodes. The devices are composed of the following parts:
e amicro-fluidic channel (where the colloidal solution flows);

e clectrodes made with a geometry such as to generate a non-uniform
electric field when they are subjected to an alternating electric
signal.

In order to apply the method to a particular application example, the
geometry used in this work is the inter-digitated circuit (shown in Fig. 5.5)
which is assumed to be incorporated in one boundary of the micro-fluidic
channel.
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Fig. 5.5 Schematic of an inter-digitated circuit. An alternating signal is applied to the
electrodes in red while V=0 is imposed to electrodes in blue.

An alternating signal is applied to the odd-position electrodes (shown in red
in Fig. 5.5), while the even-position electrodes (blue in Fig. 5.5) are
potential-free (V=0). The simulated system consists of cells in colloidal
solution in a liquid medium that flows through the microfluidic channel.
The channel is represented in the simulations by a box (parallelepiped): in
its base the surface mesh region is identified, in which the electrical signal is
applied.

It is necessary to make some assumptions to perform the simulations:

e cach individual “finger” comprising the inter-digitated electrode
array is sufficiently long such that the fringe effect at the end of the

fingers is negligible;

e ohmic heating due to the applied voltage is not large enough to cause
flows or changes in the physical constants [106, 107] (an
approximate calculation shows that the temperature rise for this type
of application will be less than 0.15 °C; consequently, this is a valid

assumption [108]).
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The micro-fluidic chamber is simulated according to these assumptions.
The channel is composed by N electrodes. Electrode thickness was ignored.
Figure 5.6 shows a schematic representation of the geometry of the
simulations, which includes the substrate, channel cover and two fingers of
inter-digitated electrodes. W, is the width of the electrodes, W, is the width
of the gap between a pair of electrodes and h is the height of the micro-
channel. Appendix C (Section C.2) provides some details on the materials
typically used in the construction of such microchannels and on the typical

prototype dimensions.
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Fig. 5.6 Schematic of the computational domain (limited for simplicity to only two
electrodes whilst in the simulation N electrodes are considered). The electrodes (in blue)
have a width W, and are separated by a gap of width W,.
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The results of simulations of the dynamics of the system composed by a
colloidal solution of cells in the microfluidic system with interdigitated

electrodes are presented below. Two types of simulations are performed:
e (a)twenty MDA-MB-231 cells under p-DEP conditions;
e (b) ten MDA-MB-231 cells and ten B-Lymphocites, in p-DEP and n-

DEP respectively.

5.4.1 Case (a): MDA-MD-231 cells

In the case of simulation (a), the electrical parameters representative
of MDA-MB-231 cells ['*] are used. Table 2 shows these values and the

medium analogues.

Permittivity Conductivity
(in unit of vz;c;;r: }E;:rr:ll;lttwny g = (S/m)
MDA-MB-231 Emem = 24 Omem = 1-1077
membrane
MDA-MB-231 eyt = 50 Ocyt = 0.2
cytoplasm
Liquid medium Em =79 om = 0.03

Tab 2. Electrical parameters of the cytoplasm and the membrane of MDA-MD-231 cells
and of the liquid medium.
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The properties of MDA-MB-231 cells are [94, 109]:

e radius: R=6.2 um;
e membrane thickness: d=10nm;
e mass density: p = 1060 Kg/m’.

The medium liquid is characterized by:

e dynamic viscosity: u=0.001 Pa sec;
e maximum velocity: Umax = 100 um/sec;
e mass density: p = 1000 Kg/m’.

The following parameters are also used for the box simulation:
e width of the electrodes: We = 40 um;
e gap between them: Wg = 40 um;
e dimensions of the microchannel: (960x60x100) um3 (for the
length, depht and height, respectively);

e number of electrodes: 12.

The time steps, calibrated in order to ensure stability and time accuracy to
the explicit MD integration method (no significant improvement can be
achieved reducing further these values), were:

e At=13-10"°sec;

e Atpgp =6-107%sec.
The e.m. force varies as a function of the magnitude and frequency of the
input voltage and a high voltage should be applied to generate intense DEP
forces, but excessive loading can cause cell damage (harm cell viability)

[110] or electro-thermal flows. For these reasons, a tradeoff between DEP
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intensity and safe conditions for the biological system was considered in the
experimental conditions, and usually voltages less than 10 V., were applied.

The following values have been used in the simulation:

e potential applied to the set of odd electrodes: V=5 Volt;
e potential applied to the set of odd electrodes: V =0;
e frequency: v =1MHz.

The boundary conditions, in addition to the predefined voltages on
the electrode surfaces, consist of insulation (Neumann-type boundary
condition) on the channel walls, because of the large difference between the
permittivities and the conductivities of the liquid medium and the channel
material, which is either glass or polymer-based in the majority of the cases.
Neumann type boundary conditions were also applied in the surface regions
of the micro-channel base that were not covered by electrodes.

As initial condition, the particles were arranged in a configuration
characterized by random positions, concentrated in the left side of the
channel, corresponding to about a third of the total volume (i.e. a local
injection of particles was reproduced).

During the simulation, the self-consistent FEM solutions of Egq.
(1.32) were calculated considering the instantaneous configuration of the
system. As an example in the Fig. 5.7 the solution of the time harmonic
Laplace’s problem at ¢ = 0.6 sec, relatively to four sections of the
microfluidic channel, is shown: the first crosses the channel in x = 60 um
plane, the second in x = 220 um, the third in x = 540 wm and the fourth in x

= 880 pum. In this instant, some particles are located at the edges of the
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electrode centered in x = 40 um and of the second centered in x = 220 um.
The perturbations to the potential generated by the external field due to the
particle presence (and corresponding polarization) can be seen in the

sections.
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Fig. 5.7 Solution of Laplace’s problem at t = 0.6 sec. Top panel, the schematic of the
microfluidic channel in which the solution of the Laplace equation relative to the sections
passing through x = 60, 220, 540, 880 um is visible. Bottom panel, the front views of the
slices themselves; in the first two, variations in potential due to the presence of particles can
be observed.

As can be deduced from Fig. 5.7, the gradient of the electric field is more
intense in the areas close to the base of the microfluidic channel, and in

particular in the regions close to the edges of the electrodes. As a result,
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forces are more intense in these areas. In the snapshots of planes passing
through x = 60 um and x = 220 um, it is possible to clearly identify the
effects on the electrical potential due to the presence of particles occupying
the regions close to the edges of two electrodes.

An anticipation of the behavior of the cells can be given by the real
part of the Clausius-Mossotti factor, fqp. It refers to the calculation of the
standard DEP force in the approximation of isolated particles on an infinite
medium (diluted solution limit), but can nevertheless provide a guideline in
the most realistic cases analyzed with this simulation. Figure 5.8 shows the

real part of fr of MDA-MB-231.
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Fig. 5.8 Re{fyy} calculated with the dielectric model of the MDA-MB-231 cell at a
medium conductivity a,, = 0.03.
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For the frequency used in this simulation (v = 10° Hz), Re{f¢),} = 0.643.
This indicates that MDA-MB-231 cells will be subject to p-DEP and will
undergo attractive forces from the zones in which the electric field is
greater.

Figure 5.9 shows snapshots of the simulation results at several instances of
time, from t=0 sec to t=5.1 sec (different colours are used to identify the

cells but, of course, they are identical in terms of dielectric properties).
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Fig. 5.9. Snapshots of the simulated system (N=20 MDA-MD-231 cells in a flowing colloidal
solution) for t =0, 0.3, 0.6, 1.5, 2.4, 3.3, 4.2, 5.1 sec (from upper panel to lower panel). The
dimensions of the microchannel are (960x60x100) wm3 and the number of electrodes is 12. The
cells are subjected to a p-DEP, i.e. they will tend to move towards high electric field regions.
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The simulations carried out on this system show, as expected, that the
particles experience p-DEP and, in particular, they are attracted by the edge
of the electrode. The particles which have lower distance from the electrode
are attracted more strongly since the gradient is greater in these regions. In
the topmost part of the channel, the field is more uniform, so that particles
in this region of the device will be subjected to less intense attractive forces
and they continue to advance with minor height reduction. When their
altitude with respect to the channel base is sufficiently small and they reach
zones where the non-uniformity of the field is greater, the attraction
becomes stronger and the trapping effect becomes evident. Figure 5.10
shows a detailed analysis of the behavior of a particle that, reached a
sufficiently low height, reverses the direction of motion along the horizontal
axis, being attracted by the edge of an electrode. The particle is circled in

the first snapshot of the Fig. 5.10.
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Fig. 5.10 Snapshots for t = 0.3, 0.36, 0.42, 0.48, 0.54 sec (from upper to lower). The
particle that reverses the direction of motion along the horizontal axis is circled in the upper

snapshot.
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Particles that reach the base of the device and thicken close to the edges
of the electrodes have small variations of their position as a result of the
various forces acting on them; anyway it is correct to say that they remain
trapped in these regions.

An additional behavior that can be observed, in the case of spatial
proximity between particles, is the chain formation in dynamical conditions
caused by mutual polarization. Figure 5.11 shows a more detailed analysis
of the behavior of a pair of particles that attract each other form a pair
(chain), which moves as a single object and is attracted by the edge of an
electrode. The pair is circled in the first snapshot of Fig. 5.11. It is possible
to note that after the pair formation in the time evolution the two particles
present a cohesive motion until they reach the bottom, whose influence

could, of course, overcome particle-particle interactions.
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Fig. 5.11. Snapshots for t = 2.1, 2.4, 2.7, 3, 3.3, 3.6 sec (from upper to lower). The pair of
particles that form the chain is circled in the upper snapshot.
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5.4.2 Case (b): two-cell system MDA-MB-231 and B-
Lymphocites

With respect to simulation (b), the morphological and electrical
characteristics of both cell types have already been listed (see section 5.3 for
B-Lymphocites and section 5.4.1 for MDA-MD-231). The specifications of
the liquid medium, the width of the electrodes, the distance between them,
the time steps (At and Atpgp) and the applied electric potential values are
unchanged. The number of electrodes this time is N=10 and thus the
dimensions of the microchannel are (800x60x100) um3 (for the length,
depth and height, respectively).

A relevant parameter that has been modified with respect to the
previous study of twenty identical particles is the oscillation frequency of
the electric field: in this second simulation, it has been set to v = 10° Hz.

Figure 5.12 shows Re{f,),} of both cell types (see Appendix F for details).
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Fig. 5.12 Re{f-y} of the MDA-MB-231 and B-Lymphocites at a medium conductivity
a,, = 0.03.

For the frequency used in this simulation, v = 10° Hz, Re{f,)} has the

following values for the two cell types:

MDA-MB-231: Re{f:} = 0.378;

B-Lymphocytes: Re{fem} = —0.225.

They indicate that MDA-MB-231 cells will be subject to p-DEP and
attracted to areas where the electrical field intensity is higher (that is from
the region near the electrodes and especially from their edges), while B-
Lymphocytes will be subject to n-DEP and rejected from this regions.

Figure 5.13 shows the simulation results at several instances of time, from

t=0 sec to t=5.1 sec.
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Fig. 5.13 Snapshots of the simulated system (ten MDA-MD-231 cells and ten B-
Lymphocites in a flowing colloidal solution) for t =0, 0.6, 1.2, 2.4, 3.3, 4.2, 5.1 sec (from
upper to lower). Dimensions of the microchannel: (800x60x100) um3; number of
electrodes: 10.
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The simulation follows qualitatively the behaviour predicted for the two
values of Re{f)}. The MDA-MB-231 cells are attracted to the electrodes
as in the case of simulation (a), while B-Lymphocites are rejected and do
not reach the base of the device. This behavior confirms the
separation/capture potential of this type of electrophoretic device.

It is interesting to note that, due to the difference in frequency value,
the Re{f;)} value relative to MDA-MB-231 cells in this second simulation
(equal to 0.378) is lower than in the first simulation (equal to 0.643), so the
standard DEP forces are on the average less intense this time.

In simulation (a), in which only MDA-MB-231 cells are present, all
cells reduce monotonically their altitude over time, due to gravity and e.m.
forces (p-DEP). It is important to note that in this second simulation two
MDA-MB-231 cells, precisely the ones that have higher positions, do not
reduce their elevation monotonically. Analysing the numerical values of the
z-coordinate for each time cycle, we notice that in some time periods (for
example around t=3.5 sec) the height of these two particles increases
slightly. This behaviour is due to particle-particle interactions involving
these two MDA-MB-231 cells and some B-Lymphocytes that are in their
spatial proximity. The B-Lymphocytes are rejected by the bottom of the
device (n-DEP) and they in turn push away from the electrodes the MDA -
MB-231 cells. In order to quantify this effect, we analyse in detail the
motion of the particle with the highest altitude during the entire simulation.
Figure 5.14 shows the z-coordinate of this particle as a function of the time
in one of the time intervals in which a non-monotonic variation of its height
is provoked by the interaction with the n-DEP type cells. The graph shows

values taken at regular intervals of 0.06 seconds.

130



7.40x10° |

7 36x10°

7,32x10° -

z-coordinate (m)

7.28x10° -

28 32 36 40 44

Time (sec)

Fig. 5.14 z-coordinates of the particle with the highest altitude during the entire simulation,
in a time interval where it presents a non-monotonic change in altitude.

To highlight this phenomenon, we carried out an additional simulation
similar to that of the Fig. 5.4 (relative to a pair of B-Lymphocytes), in which
there are one MDA-MB-231cell and one B-Lymphocyte. The frequency is
10° Hz (MDA-MB-231 in p-DEP, B-Limphocyte in n-DEP), as the previous
simulation. The results are shown in Fig. 5.15, for time values equal to those
of Fig. 5.4. We note that the particles repel each other, contrary to the case
of Fig. 5.4, where two identical particles in p-DEP conditions attract

forming a chain.
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Fig. 5.15 Snapshots of the simulation of one MDA-MD-231 cell and one B-Lymphocyte in
a parallel flat face capacitor for ¢ =0, 0.1, 0.15, 0.21 sec ((a), (b), (c), (d) respectively).
Contrary to the case of the Fig. 5.4, the particles repel each other.

The behaviour of the two cells can be qualitatively explained by
considerations regarding the charge densities due to polarization. For the
used values of permittivity and conductivity of the cells and the medium and
for the considered frequency value, the qualitative arrangements of the

charge at the particle-medium interfaces are shown in Fig. 5.16.
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Fig. 5.16 Qualitative electric charge arrangements at the particle-medium interface for the
MDA-MD-231 cell and B-Lymphocite. The negative charge densities at the top of the B-
Lymphocite and at the bottom of MDA-MD-231 cause the repulsive force between them.

It is important to note that also in this case particle-particle interactions are
appreciable thanks to the use of the MST. A calculation of the
dielectrophoretic force carried out using the Standard DEP force (Eq. (1.14))
would not have detected this effect and therefore the two MDA-MB-231
higher positioned would have the same “qualitative” behaviour as the
others. Standard DEP force utilization could therefore overestimate the

capture/separation efficiency of real devices.
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5.5 Geometry’s effects

Numerical simulations can be used to optimize the microfluidic
device geometry and other physical properties, to improve their
performance. For example, it can be useful to compare different
arrangements of electrode arrays. Two simulations, indicated by (c) and (d),
were carried out relating to simulations (a) and (b) respectively, halving the

values of the width of electrodes and of the gap between them.

5.5.1 Case (c): MDA-MD-231 cells

The simulation box of the case (c) differs from the (a) one since the
following values relative to inter-digitated electrodes are used:

e width of the electrodes: We = 20 um;

e gap between them: Wg = 20 um;

e number of electrodes: 24.
Figure 5.17 shows snapshots of the simulation (c) results at the same times

as in the Figure 5.9, from t=0 sec to t=5.1 sec. The initial configuration is

equal to that of simulation (a).

134



Fig. 5.17 Snapshots for t =0, 0.3, 0.6, 1.5, 2.4, 3.3, 4.2, 5.1 sec (from upper panel to lower
panel) of simulation (c). Number of electrodes: 24. The cells are subjected to a p-DEP.
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In simulation (c), at the instant 5.1 seconds, 14 of 20 parti