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Preface 

 

 

The dynamical simulation of many particle systems is currently a 

widespread technique in many fields: e.g. nuclear and atomic physics, 

computational materials science, computational chemistry, molecular 

biology and pharmacology. Under the locution “Molecular Dynamics” 

(MD) we can regroup a variety of approaches and numerical codes, whereas 

the commonalities are: 1) the atomistic (or nuclear) resolution (i.e. particles 

are atoms or nucleons), 2) the force derivation, starting from the systems’ 

configuration, through semi-classical (also called semi-empirical) or 

quantum mechanics based theoretical frameworks, 3) the (generally explicit) 

numerical integration of the Newton-like equations of motion to simulate 

the system kinetics. Within this scheme methodology variations can be 

found in the literature, but it is undoubtedly valid to qualify the MD 

meaning in the field of the scientific computation.        

The general scope of this Thesis work is the extension of the MD 

methods to the study of the kinetics of larger particles (i.e. from mesoscopic 

dimensions and above), where effective particle-particle interactions are 

mediated by a field evolving self-consistently with the many particles 

system. This objective is mainly motivated by the applications of the 

method to control and predict the manipulation of mesoscopic (electrically) 

neutral particles by means of electromagnetic (e.m.) interactions: i.e. 

exploiting the so called dielectrophoresis (DEP) phenomena in the systems 

of electromechanical particles (EMPs). This is the specific case of study 
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here considered, but in principle the methodology can applied after suitable 

adaptation to also other systems.  

In the particular case of the DEP driven systems, which will be briefly 

introduced in the following, we believe that our modelling approach 

satisfies the requirement of the general accurate prediction of the kinetics 

evolution; whilst previous theoretical approaches have several limitations 

which limit the applicability only under particular conditions.       

Applications of DEP range from bio-structure assembling [1, 2] and 

nanostructure deposition (e.g. nanocluster, nanowires or nanotube) [3] to 

filtering systems [4]. A branch of emerging applications is related to the 

controlled manipulation of micro and nano-sized particles dispersed in 

colloidal solutions (i.e. biological particles such as cells or DNA), since the 

strong selectivity of the response depends on the particle volume, shape and 

composition [5, 6]. In fact, the forces exerted by non-uniform AC electric 

fields, due to the frequency dependent responses, can be used to move and 

manipulate polarizable microparticles (such as cells, marker particles, etc.) 

suspended in liquid media. The DEP allows manipulation of suspended 

particles without direct contact: this is also significant for many applications 

in micro Total-Analysis Systems (TAS) technology [7]. Manipulation 

includes cell partitioning/isolation [8] for the capture/separation without the 

use of biomarkers: in fact, cells can be collected, concentrated, separated 

and transported using the DEP forces arising from microelectrode structures 

having dimensions of the order of 1 to 100 μm [5]. One of the core strengths 

of DEP is therefore that the characterization of different cells depending 

only on the dielectric properties controlled by the particle’s individual 

phenotype; hence, the process does not require specific tags or involve 
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chemical reactions. The DEP based on AC electro-kinetics has recently been 

given more attention in microfluidics [9] due to the development of novel 

microfabrication techniques. In a typical device for the capture/separation of 

cells, the non-uniform field for the generation of the DEP force, responsible 

for the particle’s manipulation and control, is imposed by microelectrodes 

patterned on substrates (typically of glass) using fabrication techniques 

borrowed from Micro-Electro-Mechanical Systems (MEMS) [7]. The 

electric field is applied through the electrodes present in a microfluidic 

channel and the fluid flows through it. 

As we will discuss in detail in Chapter 1, direct and rather 

straightforward numerical solutions of EMPs’ kinetics can be obtained when 

the following approximations (which we can indicate as single particle 

approximation) are considered: a) diluted limit (i.e. negligible effective 

particle-particle interactions), b) point-like particles (i.e. neglecting steric 

interactions), c) large distance between the particles and the source of the 

electric field (electrodes).  This theory could be used to estimate roughly the 

EMPs’ [10, 11, 12]; however, in many real conditions these approximations 

are not verified and DEP is an example of field mediated force which can in 

principle induce a complex many particle behavior. Indeed, the forces acting 

on the particles depend in the general case on the overall system 

configuration since polarization alters locally the field which can be barely 

approximated by the external field generated by the sources. As a 

consequence, predictive theoretical studies of this large class of systems 

could be only possible thanks to the development of real-system models and 

numerical simulations. In order to study EMPs beyond the single particle 

approximation, computational studies of the DEP driven systems in 
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particular conditions have been recently presented in the scientific literature 

and they will be briefly presented in Chapter 2. In particular: stable 

configurations of particles dispersed in a static fluid [13] have been 

determined using Monte Carlo methods [14]; numerical models and 

simulations of the movement of cells in a moving fluid within a microfluidic 

channel introducing many-particle effects in the mean field approximation 

[15, 16] have been derived; finally, exact calculations of the forces by 

means of commercial tools [17] in the few-particles case have been 

reported.   

Our contribution [18] aims to fully overcoming the single particle 

approximation, focusing on the theoretical study (see Chapters 4, 5 and 

appendices for the formalization of the method) of the dynamics of EMPs 

suspended in a colloidal solution in the presence of a non-uniform variable 

electric field. Our numerical simulations of a three-dimensional (3D) model 

system aim at providing predictions of both stable configurations of the 

particles and their dynamics in fully three-dimensional configurations, 

minimizing the approximations usually considered in models of mutual 

interactions. As a case of study, presented in Chapter 5, a system has been 

chosen consisting of biological cells dispersed in a colloidal solution (of 

which the typical characteristics of interest are reported in the literature) that 

flows into a microfluidic channel in the presence of e.m. fields.  

3D simulations of DEP phenomena are rather rare in the literature, as they 

require large computational resources; moreover, most 3D DEP models are 

based on particles in the already discussed diluted solution limit. 

Nevertheless, in real applications, particle manipulation and characterization 

using dielectrophoresis are generally performed in a confined region close to 
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the electrodes, so that the interaction between the particles and the 

surrounding walls can be significant. Here we run a detailed study, with a 

non-approximate calculation of the forces, which are estimated by 

integrating the Maxwell Stress Tensor over the surfaces of the particles [19]. 

The dynamics are simulated by techniques borrowed from Molecular 

Dynamics (MD), which, as stated above, is a simulation method that has 

been successfully applied in the atomistic simulation field [20], whilst the 

Finite Element Method (FEM) is applied to obtain self-consistent numerical 

solutions of the partial differential equations regarding the e.m. field. The 

Coupled MD-FEM algorithm and its implementation in the FEniCS 

environment are also presented in the theoretical sections. The examples of 

the method’s application will focus on DEP induced translation of spherical 

particles (in particular a dielectric model of: MDA-MB-231 tumor cells, B-

Lymphocites and mixtures of them), however after suitable adaptation it can 

be applied in more general cases (i.e. non-spherical particles, roto-

translation, mixed DEP and conventional electrophoresis).  

After validation of the FEniCS developer team, the numerical code 

simulating EMPs kinetics by means the cited coupled MD-FEM 

methodology is distributed as an open source tool at the web page: 

 

https://bitbucket.org/barolidavide/tumor_detection_dolfin/src/master/.  

 

Open source distribution is possible thanks to the use of supporting 

frameworks (namely: FEniCS [21] for the PDE solutions, Gmsh [22] for the 

meshing and Salome for the graphical analysis) which are covered by GPL 

and/or LGPL licenses. The main modules are: a) the MD related routines, b) 

https://bitbucket.org/barolidavide/tumor_detection_dolfin/src/master/
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the interface with Gmsh for the automatic meshing of the system 

configurations, c) the FEniCS interface for the force evaluation. The 

modules have been implemented from the scratch in the Python language 

while parallelization of the code has been obtained in an MPI environment.        
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Chapter 1 

 

Electromagnetic forces on dielectric particles 

immersed in a dielectric medium 
 

 

Particles with sizes that range from sub-micrometers to about one 

millimeter and with particular electrical and/or magnetic properties 

experience mechanical forces and torques when they are subjected to 

electromagnetic (e.m.) fields. Particles of this type are called 

“electromechanical particles” (EMPs) [23]. Mutual interactions between 

EMPs could also occur when they are close enough to modify the force field 

obtained in the isolated particle limit.  

One of the phenomena that affect electromechanical (e.mec.) 

particles is the “dielectrophoresis” (DEP), which describes the force exerted 

by a non-uniform electric field on polarizable neutral particles [23]: in a 

uniform electric field, neutral particles experience the polarization (an 

electric dipole is induced) which does not cause acceleration, whereas in a 

non-uniform electric field the forces due to polarization are not balanced 

and motion occurs: the net force is directed towards areas with either a 

higher or a lower electric field intensity, depending on the polarization 

properties of the particle and the background medium. Herbert Pohl’s first 

scientific publication defines DEP as “the natural movement of neutral 

bodies caused by polarization in an uneven electric field” [24].  

In this chapter we will resume the theory of the e.m. forces deriving 

some concepts and expressions used in the next chapters.  The following 
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themes will be presented: the formulation for the electromagnetic force 

acting on an electric dipole immersed in an external electric field, the 

concept of the effective dipole moment of a polarized particle, the standard 

(approximate) dielectrophoretic force acting on a particle and the more 

accurate dielectrophoretic force calculated by the use of the Maxwell Stress 

Tensor. 

 

 

1.1 Force on an electric dipole 

 

A finite dipole consists in two-point charges +q and –q separated by 

a vector distance 𝒅. In the limit where |𝒅| → 0 and 𝑞 → ∞ such that the 𝑞𝑑 

product remains finite, the point dipole is defined. We consider in the 

following discussion a dipole with a finite spacing between the two charges, 

immersed in a non-uniform electric field 𝐄(𝒓) which includes no 

contributions due to the dipole itself. The dipole moment is defined as 

follows: 

 

𝐩 = 𝑞𝒅.         (1.1) 

 

In general, the two charges experience different values of force and the 

dipole will be subject to a net force equal to: 

 

𝐅 = 𝑞𝐄(𝒓 + 𝒅) − 𝑞𝐄(𝒓),      (1.2) 

 

where  𝒓 is the position vector of the charge –q. Figure 1 shows this case. 



11 
 

 

 

Fig. 1.1 A small dipole in a non-uniform electric field.  

 

If |𝒅| is small compared to the characteristic dimension of the electric field 

nonuniformity, 𝐄 can be expanded about position 𝒓 using the Taylor series 

expansion: 

 

𝐄(𝒓 + 𝒅) = 𝐄(𝒓) + 𝒅 ∙ ∇𝐄(𝒓) + ⋯     (1.3) 

 

By replacing Eq. (1.3) in Eq. (1.2): 

 

𝐅 = 𝑞[𝒅 ∙ ∇]𝐄(𝒓) + ⋯      (1.4) 
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In the limit |𝒅| → 0 but such that 𝐩 remains finite, neglecting terms of the 

order greater than the first and substituting the definition of Eq. (1.1) in Eq. 

(1.4), the force on a dipole results: 

 

𝐅𝑑𝑖𝑝 = [𝐩 ∙ ∇]𝐄(𝒓).       (1.5) 

 

The dipole therefore experiences a net force only if the external imposed 

electric field is non-uniform. Eq. (1.5) represents an approximation for the 

force exerted on any physical dipole, such as a polarized particle of finite 

size. The approximation used is called dielectrophoretic approximation [23].  

 

 

1.2 Effective moment of a dielectric particle 

 

In the derivation of Eq. (1.5), no reference is made to the nature of 

the dipole moment 𝐩, which can be the permanent moment of a polar 

particle or might be induced in a particle by an imposed electric field. In this 

Thesis, the latter case is considered. In general, the moment-induced field 

depends on both externally imposed and mutual field contributions (due to 

the presence of other particles).  

The moment must relate to the electric field and to the particle 

parameters so that it can be used in Eq. (1.5). It is fundamental to identify   

the correct expression for the dipole moment to be used in formulation for 

the force (Eq. (1.5)) in the case of polarized particle. It is consequently 

useful to introduce the concept of effective dipole moment, 𝑝𝑒𝑓𝑓. The 

effective dipole moment of a dielectric particle immersed in a medium is 
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defined as the moment of an equivalent, free-charge point dipole that causes 

the same dipolar electrostatic potential if it is immersed in the same medium 

and occupies the same position as the center of the particle.  

The electrical potential Φ𝑑𝑖𝑝, due to a finite dipole centered in the 

origin of a Cartesian reference system and aligned with the z axis, immersed 

in a linear dielectric medium of permittivity 𝜀𝑚, in the point with 

coordinates (𝑟, 𝜗), radial and polar respectively, assumes the following form 

(see Appendix A): 

 

Φ𝑑𝑖𝑝(𝑟, 𝜗) =
𝑞𝑑𝑐𝑜𝑠𝜗

4π𝜀𝑚𝑟2
 .       (1.6) 

 

As a consequence, the formula of the electric potential produced by 

the polarized dielectric particle will contain the effective moment instead of 

the term 𝑞𝑑: 

 

Φ(𝑟, 𝜗) =
𝑝𝑒𝑓𝑓𝑐𝑜𝑠𝜗

4π𝜀𝑚𝑟2
.       (1.7) 

 

The expression of  𝑝𝑒𝑓𝑓 for the case of a spherical particle is 

presented below. Consider an isolated homogeneous dielectric particle of 

radius R, permittivity 𝜀𝑝 and conductivity 𝜎𝑝, immersed in a dielectric fluid 

medium of permittivity 𝜀𝑚 and conductivity 𝜎𝑚. The particle and the 

medium are therefore characterised by the ohmic conductivity with no 

dielectric loss.  
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The calculated potential of the sphere can be expressed in the form of Eq. 

(1.7); and indicating with 𝐄 the electric field in which the dipole is 

immersed, the effective moment is (see Appendix B): 

𝐩𝑒𝑓𝑓 = 4π𝜀𝑚𝑓𝐶𝑀𝑅
3𝐄 ,                 (1.8) 

 

where  

 

𝑓𝐶𝑀 =
𝜀̃𝑝−𝜀̃𝑚

𝜀̃𝑝+2𝜀̃𝑚
        (1.9) 

 

is the so-called Clausius-Mossotti factor, which contains the complex 

dielectric constants of the particle and of the medium, defined as it follows 

(see Appendix B): 

 

𝜀𝑚̃ = 𝜀𝑚 − 𝑖
𝜎𝑚

𝜔
,                (1.10.a)  

𝜀𝑝̃ = 𝜀𝑝 − 𝑖
𝜎𝑝

𝜔
.                            (1.10.b)   

 

𝑓𝐶𝑀 is therefore a complex quantity, dependent on the angular frequency 𝜔.  

 

 

1.3 Standard Dielectrophoretic force 

 

The discussion carried out in the previous sections reveals 

implications for the so-called ponderomotive force exerted by a non-

uniform electric field upon dielectric materials.  
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It is assumed that the motion of EMPs is induced by a sinusoidally time-

varying and non-uniform electric field and consequently exponential 

notation can be used [25]: 

 

𝐄(𝒓, 𝑡) = Re{𝐄(𝒓)𝑒−𝑖𝜔𝑡}.      (1.11) 

 

By replacing in Eq. (1.5) 𝐩 with 𝐩𝑒𝑓𝑓 and 𝐄(𝒓) with the expression of the 

electric field of Eq. (1.11), the time dependent force acting on the dielectric 

particle, called Standard DEP force and here indicated with 𝑭𝑆𝑇𝐷, is 

obtained: 

 

𝑭𝑆𝑇𝐷 = [𝐩𝑒𝑓𝑓 ∙ ∇]𝐄(𝒓, 𝑡).      (1.12) 

 

This force consists of a constant average component and a time-varying 

term. The latter term is usually damped because of the viscosity of the 

suspension medium in the cases of particles with size in the range from 1 to 

1000 μm. Consequently, the only relevant term is the one averaged over 

time. Starting from the previous equation, this term can be written [1]: 

 

〈𝑭𝑆𝑇𝐷〉 =
1

2
Re{[𝐩𝑒𝑓𝑓 ∙ ∇]𝐄

∗(𝒓)}     (1.13) 

 

where 〈 〉 indicates the time-average and the asterisk indicates the complex 

conjugation. By inserting Eq. (1.8) in Eq. (1.13), using the vector identity:  

 

∇ ∙ (𝐀 ∙ 𝐁) = (𝐀 ∙ ∇)𝐁 + (𝐁 ∙ ∇)𝐀 + 𝐁 ∧ (∇ ∧ 𝐀) + 𝐀 ∧ (∇ ∧ 𝐁) 
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and the condition  ∇ ∧ 𝐄 = 0 (irrotationality of the field 𝐄), the force 

assumes the form: 

 

〈𝑭𝑆𝑇𝐷〉 = 2π𝜀𝑚Re{𝑓𝐶𝑀}𝑅
3∇(|𝐄𝑅𝑀𝑆|

2),    (1.14) 

 

where 𝐄𝑅𝑀𝑆 is the root mean square of electric field.  

The Eq. (1.14) predicts the fundamental phenomenology of 

dielectrophoresis relative to spherical dielectric particles. The following are 

the main characteristics of the dielectrophoretic force acting on a lossless 

dielectric spherical particle immersed in a lossless medium: 

 

 the intensity of 〈𝑭𝑆𝑇𝐷〉 is proportional to particle volume, 𝜀𝑚, 

Re{𝑓𝐶𝑀} and ∇(|𝐄𝑅𝑀𝑆|
2);  

 

 the sign of  〈𝑭𝑆𝑇𝐷〉 depends upon the sign of Re{𝑓𝐶𝑀}; 

 

 depending on Re{𝑓𝐶𝑀}, by Eq.s (1.9), (1.10a) and (1.10b) it follows 

that 〈𝑭𝑆𝑇𝐷〉 depends on the frequency; 

 

 particles experience a DEP force only when the electric field is non-

uniform; 

 

 〈𝑭𝑆𝑇𝐷〉 does not depend on the polarity of the electric field and is 

observed with AC as well as DC excitation; 
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 the 〈𝑭𝑆𝑇𝐷〉 vector is directed along ∇(|𝐄𝑅𝑀𝑆|
2) and therefore can 

have any orientation with respect to the electric field vector; 

 

 DEP is usually observed for particles with diameters ranging from 

approximately 1 to 1000 μm. 

 

 

1.3.1 Application potential of DEP 

 

〈𝐅STD〉 depends on the shape and size of the particle, the intensity and 

frequency of the oscillating electric field and the dielectric properties of the 

particle and medium. A distinction can be made between positive 

dielectrophoresis (p-DEP) and negative dielectrophoresis (n-DEP), defined 

as follows: 

 

a) p-DEP: Re{𝑓𝐶𝑀} > 0, particles are attracted toward the electric field 

intensity maxima and repelled from the minima; 

 

b) n-DEP: Re{𝑓𝐶𝑀} < 0, particles are attracted toward electric field 

intensity minima and repelled from the maxima. 

 

Re{fCM} represents the effects of the arrangement of electrical charges, 

depending on the permittivity and conductivity values of the particle and the 

medium. Phenomenology is explained as follows. When a particle is 

suspended in a medium (typically an electrolyte) in the presence of an 
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electric field, the charges inside the particle and inside the medium will be 

redistributed at the particle-medium interface depending on their 

polarizability. Two cases can be distinguished, corresponding to the 

previous definitions a) and b) respectively: 

 

A) the polarizability of the particle is higher than that of the medium: an 

excess of charge will accumulate at the particle’s side; 

 

B) the polarizability of the medium is higher than that of the particle: an 

excess of charge will accumulate at the medium’s side. 

 

In both cases, the resulting charge distribution is non-uniform and involves 

a difference in the charge density on either side of the particle. An induced 

dipole across the particle, aligned with the applied electric field, is therefore 

generated. When the particle-medium system is in the presence of a non-

uniform electric field, the particle feels different forces at each end. Figure 

1.2 shows this situation in an example where a pair of electrodes of different 

shape generates a non-uniform electric field. The difference in force at both 

ends generates a net force with direction depending on the polarizability of 

the particle and the medium.  
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Fig. 1.2 (a): Field lines of a non-uniform electric field generated by a pair of 

electrodes with different shape. (b) and (c): Dielectric particle in a medium in the presence 

of the non-uniform electric field (the field lines are not shown); the arrows indicate the 

forces acting on the charge distributions; the width of the arrows indicates the intensity of 

the forces; qualitative electric charge arrangements at the particle-medium interface are 

shown. In (b) the dielectric parameters of the particle and the medium result in Re{𝑓𝐶𝑀} >

0 and the electric charge arrangement generates p-DEP, with a net force directed towards 

the electric field intensity maxima. In the case (c) instead Re{𝑓𝐶𝑀} < 0 and n-DEP is 

generated, with a net force directed towards the electric field intensity minima. 

 

 

Due to all its characteristics, the DEP force allows the control and 

manipulation of particles of micrometric size dispersed in colloidal 

solutions. It is very remarkable, for practical applications, the ability of DEP 

to induce both negative and positive forces. Thanks to this prerogative, the 

DEP force allows the separation of particles: in sorting operation mode, 

when two types of particles are present, the frequency can be chosen for the 

capturing and separations so as one cell type experiences n-DEP moving 

away from the electrodes, and the second type experiences p-DEP, moving 

towards the electrodes, as can be seen in Eq. (1.14).  
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As will be seen in Chap. 5, the control/separation by DEP of particles 

dispersed in a liquid medium will be the subject of computational studies in 

this Thesis. 
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1.3.2 Clausius-Mossotti factor and Standard DEP force 

 

In this next section, further considerations on the link between 𝑓𝐶𝑀 

and 〈𝑭𝑆𝑇𝐷〉 are given. 

The explicit form of the Clausius-Mossotti factor is: 

 

𝑓𝐶𝑀 =
𝜀̃𝑝−𝜀̃𝑚

𝜀̃𝑝+2𝜀̃𝑚
=

𝜀𝑝−𝜀𝑚−𝑖
𝜎𝑝−𝜎𝑚

𝜔

𝜀𝑝+2𝜀𝑚 −𝑖
𝜎𝑝+2𝜎𝑚

𝜔

.     (1.15a) 

   

The real and imaginary parts are: 

 

Re{𝑓𝐶𝑀} = Re {
𝜀̃𝑝−𝜀̃𝑚

𝜀̃𝑝+2𝜀̃𝑚
} =

(𝜀𝑝−𝜀𝑚)(𝜀𝑝+2𝜀𝑚)−
1

𝜔2
(𝜎𝑚−𝜎𝑝)(𝜎𝑝+2𝜎𝑚)

(𝜀𝑝+2𝜀𝑚)
2
+
1

𝜔2
(𝜎𝑝+2𝜎𝑚)

2  ,  (1.15b) 

     

 

Im{𝑓𝐶𝑀} = Im {
𝜀̃𝑝−𝜀̃𝑚

𝜀̃𝑝+2𝜀̃𝑚
} =

(𝜎𝑚−𝜎𝑝)(𝜀𝑝+2𝜀𝑚)−
1

𝜔
(𝜀𝑝−𝜀𝑚)(𝜎𝑝+2𝜎𝑚)

(𝜀𝑝+2𝜀𝑚)
2
+

1

𝜔2
(𝜎𝑝+2𝜎𝑚)

2 .  (1.15c) 

     

It was seen by Eq. (1.14) that the sign of the time-average DEP force 

direction depends on the sign of Re{𝑓𝐶𝑀}, which contains all frequency 

dependence of the force. The frequency value at which Re{𝑓𝐶𝑀} becomes 

zero is called the crossover frequency, 𝜈𝑐. By varying the frequency and 

exceeding this value, the force changes sign and the DEP response switches 

between n-DEP and p-DEP (or between p-DEP and n-DEP). From Eq. 

(1.15b), it can be seen that its form is: 
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𝜈𝑐 =
1

2𝜋
√
(𝜎𝑚−𝜎𝑝)(𝜎𝑝+2𝜎𝑚)

(𝜀𝑝−𝜀𝑚)(𝜀𝑝+2𝜀𝑚)
.      (1.16) 

 

The high- and low-frequency limits for Re{𝑓𝐶𝑀} are: 

 

lim𝜔→∞ Re{𝑓𝐶𝑀} =
𝜀𝑝−𝜀𝑚

𝜀𝑝+2𝜀𝑚
,      (1.17a) 

 

lim𝜔→0 Re{𝑓𝐶𝑀} =
𝜎𝑝−𝜎𝑚

𝜎𝑝+2𝜎𝑚
.      (1.17b) 

 

From these expressions for the limits, it can be seen that DC conduction 

governs the low-frequency DEP behaviour, and dielectric polarization 

governs the high-frequency one. These conditions will be referred in Chap. 

2. 

 

1.3.3 Velocity field induced by the DEP force 

 

 Particles in colloidal solution in a liquid medium, which move under 

the action of the DEP force, undergo the effect of the drag force stemming 

from the viscosity of the medium. For a spherical object of radius R, in the 

case of a static fluid, the drag force is given by [26]: 

 

𝑭𝑑𝑟𝑎𝑔 = 6𝜋𝜂𝑅𝒗,       (1.18) 

 

where 𝜂 is the dynamic viscosity and 𝒗 is the instantaneous velocity of the 

particle. Eq. (1.18) is referred as the Stokes law [27].  
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Assuming the validity of the single particle approximation, which is valid 

when the particles are far away from each other and from the electric field 

sources, it is possible to obtain each particle’s velocity field induced by 

DEP, here indicated by 𝒗𝐷𝐸𝑃. The DEP force is counterbalanced by the drag 

force due to the liquid if each particle subjected to the DEP force reaches 

very quickly a steady regime of motion [28] and, as a result, the electric and 

fluid components are completely uncoupled. By replacing 𝒗  with 𝒗𝐷𝐸𝑃 in 

Eq. (1.18) and equating with the dielectrophoretic force of Eq. (1.14): 

 

2π𝜀𝑚Re{𝑓𝐶𝑀}𝑅
3∇(|𝐄𝑅𝑀𝑆|

2) = 6𝜋𝜂𝑅𝒗𝐷𝐸𝑃,      

 

the following expression for the velocity field is obtained: 

 

𝒗𝐷𝐸𝑃 =
𝜀𝑚𝑅

2Re{𝑓𝐶𝑀}

3𝜂
∇(|𝐄|2) = 𝜇𝐷𝐸𝑃∇(|𝐄|

2) ,   (1.19) 

 

where 

 

 𝜇𝐷𝐸𝑃 =
𝜀𝑚𝑅

2Re{𝑓𝐶𝑀}

3𝜂
        (1.20) 

 

is the so-called “DEP mobility”.  

In the case of a moving fluid, 𝒗 in Eq. (1.18) must be replaced with 𝒖 − 𝒗, 

being 𝒖 the local velocity of the fluid. 

 In DEP applications, microfluidic devices equipped with electrodes 

are often used (see Fig. 1.3 for a schematic from Ref. [6], while additional 

details on this type of device will be presented in Chapter 5) and the 
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expressions here derived are used to numerically evaluate an approximate 

kinetics of these systems of EMPs. Indeed, the velocity field of Eq. (1.19) 

can be determined by the numerical solution of the electric field equation 

and used to derive the trajectories of suspended particles, as shown in the 

example of Fig. 1.4 (from the Ref. [28]). 

 

 

Fig. 1.2 Schematic of the model system of the DEP device. (Figure taken from: F. Aldaeus, 

Y. Lin, J. Roeraade, and G. Amberg, Electrophoresis 26, 2005). 

 

Fig. 1.3 Particle trajectories in a medium liquid in the device operating in p-DEP condition 

only at the bottom of the channel. (Figure taken from: F. Aldaeus, Y. Lin, J. Roeraade, and 

G. Amberg, Electrophoresis 26, 2005). 

 

 

 

 

 



25 
 

1.4 DEP force calculated by the Maxwell Stress Tensor  

 

The term “dielectrophoresis” is commonly used (and probably not 

correctly) to indicate two types of forces [23]: 

 

 the forces exerted upon individual noninteracting particles by an 

externally imposed nonuniform electric field; 

 

 the mutual attractive or repulsive force between two or more closely 

spaced particles. 

 

The two types are basically related but distinctively observable. The first 

type of forces was the subject of the previous sections, while the second one 

will be detailed below. 

In the models based on particles in the diluted solution limit (isolated 

particles), the first order dipole approximation, on which the Eq. (1.14) is 

based, is reasonable. This limit is valid in the case where particle-particle 

and particle-electrode interactions can be neglected (i.e. isolated particles). 

However, particle manipulation and characterization using DEP is generally 

performed in a confined region where particles accumulate and mutual 

forces occur, for example close to the electrodes of a Lab-on-chip device 

(See Appendix C.2). Including the mutual interactions in the definition of 

dielectrophoresis is therefore very important. For these reasons, an accurate 

approach for calculating the DEP forces is necessary: it is based on the 

rigorous application of the Maxwell Stress Tensor (MST, here and after 

indicated by 𝑇̿), that is described below.  
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The momentum change of a volume V of a dielectric inside an e.m. field can 

be correctly expressed as a surface integral of 𝑇̿  [25]: 

 

𝑑

𝑑𝑡
(𝑷𝑚𝑎𝑠𝑠  + 𝑷𝑓𝑖𝑒𝑙𝑑) = ∮ 𝑇̿ ∙ 𝑛̂𝑑𝛺

𝛺
,     (1.21) 

 

where 𝑷𝑚𝑎𝑠𝑠 is the momentum of the mass contained in volume V, 𝑷𝑓𝑖𝑒𝑙𝑑 is 

the total e.m. momentum of the field, 𝛺 is the surface enclosing volume V 

and  𝑛̂ is the unit vector normal to 𝛺. According the e.m. field theory, the 

MST is given by the following general expression [29]: 

 

𝑇̿ =
1

2
[𝐄 ⊗𝐃+ 𝐃⊗𝐄 + 𝐁⊗𝐇+𝐇⊗𝐁− (𝐄 ∙ 𝐃 + 𝐁 ∙ 𝐇)𝐈], (1.22) 

 

where E is the electric field, 𝐃 is the electric displacement, H is the 

magnetic field, 𝐁 is the magnetic induction, I is the unit tensor. Products 

with dot are scalar products, whereas the symbol ⊗ indicates a dyadic 

tensor product of vectors. 

In this Thesis, the interest is focused on practical dielectrophoretic 

applications, where the applied external e.m. field generally has a frequency 

below 100 MHz and the correspondent field wave has a wavelength of the 

order of meters. This wavelength is much larger than dimensions of typical 

DEP arrangements. As a consequence, the contribution of the magnetic field 

can be neglected (near field approximation) and Eq. (1.22) becomes: 

 

𝑇̿ =
1

2
[𝐄⊗ 𝐃 + 𝐃⊗ 𝐄− (𝐄 ∙ 𝐃)𝐈].     (1.23) 
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If non-ferroelectric materials compose the EMPs, a linear dependence 

between 𝐃 and 𝐄 is valid and Eq. (1.23) becomes [30]: 

 

𝑇̿ = Re{𝜀𝑚̃}[𝐄⊗ 𝐄 −
1

2
(𝐄 ∙ 𝐄)𝐈] ,     (1.24) 

 

where 𝜀𝑚̃ is the complex permittivity of the medium (see Eq. (1.10a)).  

The harmonic non-uniform electric field can be written [25]: 

 

𝐄(𝐫, 𝑡) = Re{𝐄(𝐫)𝑒−𝑖𝜔𝑡} ≡
1

2
[𝐄(𝐫)𝑒−𝑖𝜔𝑡 + 𝐄∗(𝐫)𝑒𝑖𝜔𝑡].   (1.25) 

 

By replacing Eq. (1.25) in Eq. (1.24) and tacking the time average: 

 

〈𝑇̿〉 =
1

2𝜋
∫  𝑇̿
2𝜋

0

 𝑑(𝜔𝑡) = 

=
1

4
Re{𝜀𝑚̃}[𝐄(𝐫) ⊗ 𝐄∗(𝐫) + 𝐄∗(𝐫) ⊗ 𝐄(𝐫) − |𝐄(𝐫)|2 𝐈].  (1.26) 

 

By expressing in explicit form the dyadic products and the square module, 

Eq. (1.26) becomes: 

 

〈𝑇̿〉 = 

1

4
Re{𝜀𝑚̃}(

𝐸𝑥
∗𝐸𝑥 − 𝐸𝑦𝐸𝑦

∗ − 𝐸𝑧𝐸𝑧
∗ 𝐸𝑥𝐸𝑦

∗ + 𝐸𝑥
∗𝐸𝑦 𝐸𝑥𝐸𝑧

∗ + 𝐸𝑥
∗𝐸𝑧

𝐸𝑦𝐸𝑥
∗ + 𝐸𝑦

∗𝐸𝑥 𝐸𝑦
∗𝐸𝑦 − 𝐸𝑥𝐸𝑥

∗ − 𝐸𝑧𝐸𝑧
∗ 𝐸𝑦𝐸𝑧

∗ + 𝐸𝑦
∗𝐸𝑧

𝐸𝑧𝐸𝑥
∗ + 𝐸𝑧

∗𝐸𝑥 𝐸𝑧𝐸𝑦
∗ + 𝐸𝑧

∗𝐸𝑦 𝐸𝑧
∗𝐸𝑧 − 𝐸𝑥𝐸𝑥

∗ − 𝐸𝑦𝐸𝑦
∗

).  (1.27) 

 

From Eq. (1.21) it is noted that by integrating the MST over a surface 

external to the particle and infinitesimally close to it, we obtain the field-

induced force acting on the particle itself (as the change of the moment 



28 
 

relative to the field is excluded). Therefore, if now we indicate with  this 

particular surface, the time-averaged electromechanical force exerted on a 

particle immersed in a medium with complex permittivity 𝜀𝑚̃ and subject to 

sinusoidal electric field E is [31, 32, 33]: 

 

〈𝑭𝑀𝑆𝑇〉 = ∯ 〈𝑇̿〉 ∙ 𝑛̂𝑑𝛺
𝛺

.      (1.28) 

 

To identify the normal vector 𝑛̂ present in Eq. (1.28), the cosine directors 

are calculated using the following formulas: 

cos(𝑟𝑥̂) =
𝑥−𝑥𝑐

√(𝑥−𝑥𝑐)2+(𝑦−𝑦𝑐)2+(𝑧−𝑧𝑐)2
 , 

cos(𝑟𝑦̂) =
𝑦−𝑦𝑐

√(𝑥−𝑥𝑐)2+(𝑦−𝑦𝑐)2+(𝑧−𝑧𝑐)2
 , 

cos(𝑟𝑧̂) =
𝑧−𝑧𝑐

√(𝑥−𝑥𝑐)2+(𝑦−𝑦𝑐)2+(𝑧−𝑧𝑐)2
 . 

 

From Eq. (1.28), the time-averaged DEP force exerted on the particle can 

therefore be written: 

 

〈𝑭𝑀𝑆𝑇〉 = (

〈𝐹𝑥
𝑀𝑆𝑇〉

〈𝐹𝑦
𝑀𝑆𝑇〉

〈𝐹𝑧
𝑀𝑆𝑇〉

) =∯ 〈𝑇̿〉 ∙ 𝑛̂𝑑𝛺 =
𝛺

 

=
1

4
Re{𝜀𝑚̃}∯ (

𝐸𝑥
∗𝐸𝑥 − 𝐸𝑦𝐸𝑦

∗ − 𝐸𝑧𝐸𝑧
∗ 𝐸𝑥𝐸𝑦

∗ + 𝐸𝑥
∗𝐸𝑦 𝐸𝑥𝐸𝑧

∗ + 𝐸𝑥
∗𝐸𝑧

𝐸𝑦𝐸𝑥
∗ + 𝐸𝑦

∗𝐸𝑥 𝐸𝑦
∗𝐸𝑦 − 𝐸𝑥𝐸𝑥

∗ − 𝐸𝑧𝐸𝑧
∗ 𝐸𝑦𝐸𝑧

∗ + 𝐸𝑦
∗𝐸𝑧

𝐸𝑧𝐸𝑥
∗ + 𝐸𝑧

∗𝐸𝑥 𝐸𝑧𝐸𝑦
∗ + 𝐸𝑧

∗𝐸𝑦 𝐸𝑧
∗𝐸𝑧 − 𝐸𝑥𝐸𝑥

∗ − 𝐸𝑦𝐸𝑦
∗
) ∙ (

cos(𝑟𝑥̂)

cos(𝑟𝑦̂)

cos(𝑟𝑧̂)
)𝑑𝛺

𝛺
                    

                               (1.29) 
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The use of 〈𝑭𝑀𝑆𝑇〉, instead of 〈𝑭𝑆𝑇𝐷〉, allows the correct description in the 

proximity of the electrodes when the particle-particle e.mec. interactions 

cannot be neglected due to the relatively large local density of EMPs. The 

usefulness of the calculation based on the MST consists also in its better 

applicability, compared with the dipole approximation method, to cases of 

objects with irregular shapes, such as nanowires, nanobelts etc. 

The discussion presented for the calculation of 〈𝑭𝑀𝑆𝑇〉 can be 

extended to the calculation of the time-averaged value of the torque, here 

indicated by 〈𝑻𝑀𝑆𝑇〉. By indicating with 𝒓 a vector connecting the reference 

axis to the particle surface, the expression of the torque is: 

 

〈𝑻𝑀𝑆𝑇〉 = (

〈𝑻𝑥
𝑀𝑆𝑇〉

〈𝑻𝑦
𝑀𝑆𝑇〉

〈𝑻𝑧
𝑀𝑆𝑇〉

) =∯ 𝒓 × 〈𝑇̿〉 ∙ 𝑛̂𝑑𝛺 =
𝛺

 

 

1

4
Re{𝜀𝑚̃}∯ 𝒓 × (

𝐸𝑥
∗𝐸𝑥 − 𝐸𝑦𝐸𝑦

∗ − 𝐸𝑧𝐸𝑧
∗ 𝐸𝑥𝐸𝑦

∗ + 𝐸𝑥
∗𝐸𝑦 𝐸𝑥𝐸𝑧

∗ + 𝐸𝑥
∗𝐸𝑧

𝐸𝑦𝐸𝑥
∗ + 𝐸𝑦

∗𝐸𝑥 𝐸𝑦
∗𝐸𝑦 − 𝐸𝑥𝐸𝑥

∗ − 𝐸𝑧𝐸𝑧
∗ 𝐸𝑦𝐸𝑧

∗ + 𝐸𝑦
∗𝐸𝑧

𝐸𝑧𝐸𝑥
∗ + 𝐸𝑧

∗𝐸𝑥 𝐸𝑧𝐸𝑦
∗ + 𝐸𝑧

∗𝐸𝑦 𝐸𝑧
∗𝐸𝑧 − 𝐸𝑥𝐸𝑥

∗ − 𝐸𝑦𝐸𝑦
∗

) ∙
𝛺

(

cos(𝑟𝑥̂)

cos(𝑟𝑦̂)

cos(𝑟𝑧̂)
) 𝑑𝛺.           (1.30) 

 

As it can be seen from Eq. (1.29) and Eq. (1.30), the calculation of 

the e.mec. force and torque requires the solution of the electric field, which 

in the case of practical dielectrophoretic applications derives from an 

applied electrical potential to the electrodes. In order to evaluate the electric 

field, the complex Laplace equation must therefore be solved. Again, the 

potential applied is time-varying and harmonic: 
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V(𝐫, t) = V(𝐫)𝑒𝑖𝜔𝑡          (1.31) 

 

and the complex Laplace equation to be resolved is [34]: 

 

∇ ∙ [𝜀̃ ∇ V(𝐫)] = 0.      (1.32) 

 

In Eq. (1.32), consider 𝜀̃ = 𝜀𝑚̃ inside the liquid medium and 𝜀̃ = 𝜀𝑝̃ inside 

the particles.  

This equation is based on some assumptions: particle neutrality (negligible 

ion effect), harmonic oscillation (linear model) and negligible convection 

effects [35]. Moreover, as stated, the coupling of electric and magnetic 

fields can be neglected (∇ × 𝐄 = −
𝜕𝐁

𝜕𝑡
= 0) and in this framework we can 

derive the electric field simply as a gradient of the electrical potential: 

 

𝐄(𝐫)  = −∇ V(𝐫).      (1.33) 
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1.5 Remarks 

 

In this section we resume the formalism needed to evaluate 

(eventually using numerical methods) the force and torques in EMPs. We 

notice that for a spherical particle, the direct use of these expressions allows 

for a relatively simple derivation of the kinetics in diluted systems of EMPs. 

Anyhow, beyond the single particle approximation, such derivation could be 

strongly inaccurate. In the next chapter we present the state of the art (as it 

emerged at the beginning of the present Thesis work) of the 

theoretical/computational approaches for the study of many particle effects 

in a system of EMPs.   
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Chapter 2 

 

Many-particle theories of  

electromechanical systems 

 
 

In this chapter we will briefly discuss the current state-of-the-art of 

the theoretical approaches to the study of many-particle effects in 

dielectrophoretic systems in order to discuss some limitations which we 

intend to overcome with our methodology. Firstly, we present the 

approaches in the continuum limit where particles are approximated as 

density fields. In this case, the multiparticle effects are highlighted by means 

of a medium field approach, while the formation of particle chains is 

analyzed according to reaction-diffusion models. Such approaches are 

independent of the calculation of the dielectrophoretic force.  

The second part is dedicated to the more accurate particle-like 

description of the EMPs where, in turn, the limitations are related to the 

pure static configuration studied both with approximate dipole-dipole 

interactions and with the use of the Maxwell Stress Tensor for the derivation 

of the forces.  
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2.1 Mean field approach to many e.mec. particle kinetics 

 

In dielectrophoretic devices, many-particle effects can arise due to 

the high concentration of particles in the surroundings of electrodes. This 

constitutes a substantial source of indetermination on the theoretical 

estimate of the trapping/separation efficiency when single particle solutions 

are used (see Section 1.3). An approximated method to include many-

particle effects in the calculation of DEP trapping has been suggested [36], 

which is based on the Effective Medium Approximation (EMA) for electric 

parameters of the suspension [37].  

As discussed in Chpt. 1, the Clausius–Mossotti factor (called also DEP 

spectrum) for a particle immersed in a medium is: 

 

𝑓𝐶𝑀 =
𝜀̃𝑝−𝜀̃𝑚

𝜀̃𝑝+2𝜀̃𝑚
.        (2.1) 

 

If the local particle density is high, the dipole-dipole particle interaction can 

significantly vary the DEP response [38] and consequently, the form of 𝑓𝐶𝑀. 

The mean field method consists on the correction of 𝑓𝐶𝑀, taking into 

account the many-particle effects as alteration of the medium complex 

dielectric. The correction is based on the EMA for the dielectric properties 

of heterogeneous two-component composite materials [15]. This approach 

allows calculating the electrical conductivity 𝜎 and the permittivity 𝜀 for 

various shapes of composite materials as a function of the hosted material 

(𝜀2, 𝜎2) and the host material (𝜀1, 𝜎1) properties. It is assumed that material 

2 is included by a random formation of spherical clusters in a liquid 
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medium. The subscript p instead of 2 and m instead of 1 are used. The 

dielectric function is given by [15]: 

 

𝜀(𝜑) =
1

4
[2𝜀𝑣 − 𝜀𝑣

′ +√(2𝜀𝑝 − 𝜀𝑝′ )
2
+ 8𝜀𝑚𝜀𝑝 ],   (2.2) 

 

with 

 

𝜀𝑣 = (1 − 𝜑)𝜀𝑚 + 𝜀𝑝𝜑,       (2.3a) 

 

𝜀𝑣
′ = 𝜀𝑚𝜑 + (1 − 𝜑)𝜀𝑝.      (2.3b) 

 

where 𝜑 represents the volume fractions of cluster inclusions. The 

modification of 𝑓𝐶𝑀 (Eq. (2.1)) to include the EMA consists simply in these 

substitutions: 

 

𝜀𝑚  →  𝜀(𝜑),        (2.4) 

 

𝜎𝑚  →  𝜎(𝜑),        (2.5) 

          

In this way, the electrical properties of the mixture, composed of particles 

and liquid medium, are determined as a function of the volume fraction. 

The DEP mobility, defined in Eq. (1.20), becomes: 

 

𝜇𝐷𝐸𝑃 =
𝜀(𝜑)𝑅2Re{𝑓𝐶𝑀}

3𝜂
.       (2.6) 
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Figure 2.1 shows an example of a DEP spectrum obtained from 

experimental data on latex microspheres given in Ref. [39]: 

 

 

Fig. 2.1 DEP spectrum of latex microspheres obtained from data given in Ref. [4]. Straight and 

dashed lines refer to the real and imaginary parts of the Clausius–Mossotti factor, respectively. 

(Figure taken from: O. E. Nicotra, A. La Magna, and S. Coffa, Appl. Phys. Lett. 93, 193902 

(2008)). 

 

The effect of EMA in the DEP spectrum is clear: both real and imaginary 

parts of the 𝑓𝐶𝑀 flat to zero as the volume fraction approaches to one. 

 

 

2.1.1 Detrapping effects  

 

The mean field approach allows the use of the same computational 

strategy of the single particle case presented in Chpt. 1. As a consequence, 

the electric potential V(𝐫) must be computed by solving the Laplace 

equation: 

∇ ∙ [𝜀̃ ∇ V(𝐫)] = 0.       (2.7) 
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In a standard DEP simulation, the vector composition of the liquid medium 

velocity field 𝒖𝑚 with the particle’s velocity field 𝒗𝐷𝐸𝑃 gives all 

information on the particle motion inside the DEP device, allowing to 

predict particle trajectories. 𝒖𝑚 is derived by the Navier–Stokes equation for 

a steady and uncompressible fluid [40]. The total velocity field is: 

 

𝒖𝑡𝑜𝑡 = 𝒗𝐷𝐸𝑃 + 𝒖𝑚.       (2.8) 

 

𝒖𝑡𝑜𝑡 acts as a drift toward the electrodes and particles may therefore be 

represented by a drift-diffusion current 𝑱, as follows: 

 

𝑱 = −𝐷∇𝜑 + 𝒖𝑡𝑜𝑡 𝜑.       (2.9) 

 

In the diluted limit and for particles’ dimensions in the micrometer scale, 𝐷 

has the meaning of a numerical diffusion, introduced to stabilize the 

calculation, while for the high density case, 𝐷 can also effectively include 

the scattering event between particles or the limit threshold of 𝜑 for the 

packing. In order to prevent 𝜑 exceeding the threshold value for the packing 

fraction of 0.74, a diffusion coefficient D(𝜑) was introduced: 

 

𝐷(𝜑) =
𝐷0

√1−
𝜑

0.74

,       (2.10) 

 

where 𝐷0 is a constant value to be fixed in order to take into account the 

diffusion due to particles crowding, especially at a high particle 

concentration regime. 
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The equation governing the time evolution of 𝜑 has a flux-conservative 

form: 

 

∂𝜑

∂𝑡
= −∇ ∙ 𝑱.        (2.11) 

 

The set of Eqs (2.1)-(2.7) and (2.11) represent the governing equations to be 

solved. In this way, the local value of the volume fraction of dispersed 

particles is adjusted by drift-diffusion dynamics. 

In Ref. [28] simulations were performed on a model with a particular 

geometry. The device modeled consists of a two-dimensional trap with an 

array of parallel interdigitated electrodes present at the base of a rectangular 

channel where the liquid medium flows. A schematic of the device, already 

presented in Section 1.3.3, is shown in Fig. 2.2. 

 

 

Fig. 2.2 Schematic of the model system. (Figure taken from: F. Aldaeus, Y. Lin, J. 

Roeraade, and G. Amberg, Electrophoresis 26, 2005). 

 

 

Spherical latex particles were considered, with radius R=5.87 𝜇𝑚 and the 

following dielectric constant and conductivity: 
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𝜀𝑝 = 2.4𝜀0, 

 

𝜎𝑝 = 7.0 𝑆/𝑚2. 

 

The liquid medium has the following specifications: 

 

𝜀𝑚 = 78𝜀0, 

 

𝜎𝑚 = 6.0 𝑆/𝑚2, 

 

𝜂 = 10−3 𝑃𝑎 ∙ 𝑠𝑒𝑐.  

 

The angular frequency is 10 KHz, 𝜑 = 0.3 and 𝐷0 = 9.6 10
−9 𝑚2/𝑠. 

Figure 2.3 shows some snapshots of the solution at different values of time. 

The color field represents 𝜑 while red lines represent a set of particle 

trajectories which depart from the left side of the device. Electrodes (in 

number of 10) are taken at a voltage of 0 or +5 V in an alternate sequence. 
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Fig. 2.3 Snapshots taken at times 1, 2, 3, and 4 s (from upper to lower) regarding the time 

evolution of particle volume fraction 𝜑 (color field) and particle trajectories (red lines). The 

vertical color bar provides the correspondence between colors and values of 𝜑. Particles 

and fluid enter from the left, where at the boundary 𝜑 is fixed to 0.3, with initial fluid 

velocity of 15 𝜇𝑚. In the other boundaries the condition 𝑛̂ ∙ 𝑱 = 0 for Eq. (2.11) is 

assigned. (Figure taken from: O. E. Nicotra, A. La Magna, and S. Coffa, Appl. Phys. Lett. 

93, 193902 (2008)). 

 

As visible in the topmost part of Fig. 2.3, a complete trapping of the 

particles is predicted by the calculation when many-particle effects are 

neglected. Nevertheless, the self-consistency of the solution implies the 

change of the predicted trajectories of the particles. Indeed, as observed in 

the lowermost part of the same figure, the self-consistent solution indicates 

that some particle trajectories step away from the device. It is important to 

note that the many-particle effect is described by the real part of 𝑓𝐶𝑀: in 

particular, it diminishes as 𝜑 increases. In this condition, the many-particle 

effect in trapping efficiency becomes non-negligible. Furthermore, as 

described in Fig. 2.4, showing a small region around one electrode, the 
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trapping capabilities of the device is significantly reduced when the particle 

fraction surrounding the electrodes increases. 

 

 

Fig. 2.4. An enlarged portion of snapshot at t=4 s of Fig. 2.3. The color field represents the 

particle volume fraction 𝜑 at the surroundings of an electrode where 𝜑 reaches its 

maximum value. Abscissa and ordinate are spatial coordinates. In the inner panel, the cross-

section (taken just above the red region at 𝑥 = 2.26 10−4 𝑚) of the Clausius–Mossotti 

factor as a function of the ordinate is shown. Colors of the curves refer to the same times of 

the snapshots of Fig. 2.3. (Figure taken from: O. E. Nicotra, A. La Magna, and S. Coffa, 

Appl. Phys. Lett. 93, 193902 (2008)). 

 

This aspect highlights the mutual influence between 𝜑 and the DEP 

spectrum as evidenced in the inset of the figure showing the dependence of 

𝑓𝐶𝑀 on the y-coordinate near the electrode. As highlighted by these results, 

the influence of the many-particle effects on the features of DEP-based 

devices can be suitably investigated by combining EMA and drift-diffusion. 
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As discussed by the authors in Ref. [15], the many-particle 

correction is a fundamental tool to obtain reliable simulation outcomes in 

the prediction of trapping efficiency in the case of micro- and nanosized 

particles. This methodological approach is necessary when a high density of 

particles occurs near the electrode. This situation is rather common since 

high particle concentration can be achieved in device architectures where 

tight regions are designed to properly tailor the electric field [41].  

 

 

2.1.2 Cluster formation  

 

The diffusion formalism can be easily generalized to a reaction 

diffusion, as discussed in the following. In real systems with a large number 

of particles, the main effect of the induced electric dipole is the formation of 

particle clusters, particularly in the shape of chains of very different length, 

that align with the electric field (longitudinal chaining for identical particles) 

[42]. The clusters have different dielectrophoretic properties from those of 

their constituents: this is an aspect to be considered for the accurate 

description of the dielectrophoresis. In reference [43] it has been shown that 

particle-chain formation and evolution can be quantitatively described in a 

realistic device geometry. In this discussion, chains composed of no more 

than four particles are considered, however the approach followed can be 

easily generalized to a larger number of particles. 

As seen in Chapter 1, the time-averaged force acting on a dipole in the 

presence of a non-uniform electric field 
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𝐄(𝐫, 𝑡) = 𝐄(𝐫)𝑒−𝑖𝜔𝑡  

 

is: 

 

〈𝑭𝐷𝐸𝑃(𝑡)〉 = 2π𝜀𝑚Re{𝑓𝐶𝑀}𝑅
3∇(|𝐄𝑅𝑀𝑆|

𝟐)     (2.12) 

 

where 𝐄𝑅𝑀𝑆 = 𝐄(𝐫)/√2 is the root mean square of electric field. 

For a conducting particle in a DC field, 𝑓𝐶𝑀 is a real quantity depending 

only on the electrical conductivities of the particle and the medium (see Eq. 

(1.17b)). For perfectly conducting particles in a liquid medium, namely in 

the limit:  

 

𝜎𝑝

𝜎𝑚
 → ∞,        (2.13) 

 

𝑓𝐶𝑀 tends to 1 by Eq. (1.17b). Assuming that particles are subjected only to 

DEP and drag force and quickly reach a steady motion, the induced velocity 

field has the form of Eq. (1.19). For a spherical, perfect conductor particle 

of radius R2 immersed in a liquid of dynamic viscosity 𝜂, by Eq. (1.20) the 

DEP mobility is: 

 

𝜇𝐷𝐸𝑃 =
𝜀𝑚𝑅2

2

3𝜂
. 

 

Each type of chain is characterized by a well-defined DEP mobility 𝜇𝐷𝐸𝑃
𝑖 , 

with i=1,2,3,4-particle chain. The total velocity field is: 

𝒖𝑡𝑜𝑡
𝑖 = 𝒗𝐷𝐸𝑃

𝑖 + 𝒖𝑚.       (2.14) 
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For the DEP mobility, the following relation in the steady motion is valid: 

 

𝜇𝐷𝐸𝑃
𝑖 = 𝛼𝑖𝜇𝐷𝐸𝑃

1 ,       (2.15) 

 

where 𝛼𝑖 (with i = 2,3,4) are essentially geometrical factors (𝛼2 = 6.8, 𝛼3 =

13.8, 𝛼4 = 23), also including the volume and shape enhancements of the 

effective dipole moment of the i-particles chain. The particles and the chains 

can be represented using their particle volume fraction 𝜑𝑖 and drift-diffusion 

current, defined as follows by generalizing Eq. (2.9): 

 

𝑱𝑖 = −𝐷∇𝜑𝑖 + 𝒖𝑡𝑜𝑡
𝑖  𝜑𝑖.      (2.16) 

 

Reaction terms 𝑄(𝑗)
(𝑖)

, depending on the nature of the reaction considered, can 

be introduced for the description of the particle stitching and chain 

formation. By labeling each particle or particle-chain species with 𝑃𝑖, the 

stitching reactions with the associated rates are the following form: 

 

2𝑃1  ↔  𝑃2  → 𝑄(1)
(2)
= 𝑘1[𝑃1]

2 − 𝑘2[𝑃2],    (2.17a) 

3𝑃1  ↔  𝑃3  → 𝑄(1)
(3)
= 𝑘3[𝑃1]

2 − 𝑘4[𝑃3],     (2.17b) 

𝑃1 + 𝑃2 ↔ 𝑃3  → 𝑄(2)
(3)
= 𝑘5[𝑃1][𝑃2] − 𝑘6[𝑃3],    (2.17c) 

4𝑃1  ↔  𝑃4  → 𝑄(1)
(4)
= 𝑘7[𝑃1]

4 − 𝑘8[𝑃4],     (2.17d) 

2𝑃2  ↔  𝑃4  → 𝑄(2)
(4)
= 𝑘9[𝑃2]

2 − 𝑘10[𝑃4],     (2.17e) 

𝑃1 + 𝑃3 ↔ 𝑃𝑖  → 𝑄(3)
(4)
= 𝑘11[𝑃1][𝑃3] − 𝑘12[𝑃4],   (2.17f) 
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where 𝑘𝑙  (𝑙 = 1,… , 12) are the reaction constants and [𝑃𝑖] are quantities 

proportional to the mass concentration. Providing [𝑃𝑖]  → 𝜑𝑖, all 𝑘𝑙 are in 

unit of  𝑠𝑒𝑐−1. The set of equations governing the reaction-diffusion 

dynamics for 𝜑𝑖 is: 

 

𝜕

𝜕𝑡
𝜑1 + ∇ ∙ 𝑱1 = −2𝑄(1)

(2) − 3𝑄(1)
(3) − 𝑄(2)

(3) − 4𝑄(1)
(4) − 𝑄(3)

(4)
,   (2.18a) 

 

𝜕

𝜕𝑡
𝜑2 + ∇ ∙ 𝑱2 = 𝑄(1)

(2) − 𝑄(2)
(3) − 2𝑄(2)

(4)
,     (2.18b) 

 

𝜕

𝜕𝑡
𝜑3 + ∇ ∙ 𝑱3 = 𝑄(1)

(3) + 𝑄(2)
(3) − 𝑄(3)

(4)
,     (2.18c) 

 

𝜕

𝜕𝑡
𝜑4 + ∇ ∙ 𝑱4 = 𝑄(1)

(4) + 𝑄(2)
(4) + 𝑄(3)

(4)
.     (2.18d) 

    

To consider larger chains, the corresponding equations must be added to the 

set of Eq. 2.18. Moreover, if 𝜇𝐷𝐸𝑃
𝑖  and the stitching coefficients for larger 

chains depend weakly on the number of particles in the chain, a compact set 

with a reduced number of differential equations can be used [44]. 

The overall set of governing equation to numerically simulate particle-chain 

formation is composed of Eq. (2.18), Eq. (7), 𝑬 = −∇ 𝑉 and the Navier-

Stokes equation [16]. 

Many-particle corrections can be introduced, providing that:  

 

𝜀1  →  𝜀(𝜑𝑡𝑜𝑡), 
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where 𝜑𝑡𝑜𝑡 = ∑ 𝜑𝑖4
𝑖=1  is the total volume fraction. The dependence of 𝜀 on 

𝜑𝑡𝑜𝑡 is based on the EMA used for transport simulation in DEP.  

Simulations on unstructured and perfectly conducting particles 

dispersed in a saline solution are carried out in Ref. [16].  The dielectric 

parameters used are: 

 

𝜀𝑚 = 78𝜀0, 

 

𝜎𝑚 = 6 ∙  10−4S/m.  

 

For particles and chain: R=3.5 𝜇𝑚, 𝜀 = 𝜀0, 𝐷0 = 0.82 10
−7 𝑚2/𝑠. The 

device geometry is the same as that previously considered in Fig. 2.1. In the 

initial configuration, all the four particles volume fraction 𝜑𝑖 are equal to 

zero and the reaction constants are set equal to: 𝑘1 = 2.1, 𝑘2 = 𝑘7 =

1.5,  𝑘3 = 𝑘8 = 𝑘10 = 1.5, 𝑘4 = 1, 𝑘5 = 3.1, 𝑘6 = 1.8, 𝑘9 = 2.0, 𝑘11 =

2.4, 𝑘12 = 1.3. 

𝑘𝑙 are free parameters to be adjusted in order to reproduce the real particle-

particle interaction. The choice of this simulation represents only an 

example of study in order to emphasize some typical aspects of the 

dynamics. In this sense this method needs a parameter calibration study with 

the aid of a more accurate particle-like approach.   

Figure 2.5 shows the evolution for some time steps. Four DEP mobilities are 

considered because there are four kinds of objects.  
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Fig. 2.5. Panel (a): snapshots taken at times 0.2, 0.6, and 1.0 s (from upper to lower) 

showing the time evolution of the total particle volume fraction 𝜑𝑡𝑜𝑡 (see color bar on the 

right). Particles and fluid enter from the left boundary with a fluid speed of 0.5 𝜇𝑚/𝑠𝑒𝑐, 

where 𝜑1 is fixed to 0.3 and 𝜑2 = 𝜑3 = 𝜑4 = 0. In the other boundaries the condition 

𝜑𝑖 ∙ 𝑱𝑖 = 0 is assigned. Electrodes (in number of ten) are separated from the fluid by a 

silicon layer 3 𝜇𝑚 thick and they are taken at a voltage of 0 or + 2.5 V in an alternate 

sequence. Panel (b): three-dimensional plot where both the colored surfaces and the height 

(z-axis) represent 𝜑𝑡𝑜𝑡 computed at times 0.6 and 1.0 s (from lower to upper) without 

particle stitching (𝜑𝑡𝑜𝑡 = 𝜑
1 ). Panel (c): same as in panel (b) but with particle stitching 

included. (Figure taken from: O. E. Nicotra, A. La Magna, and S. Coffa, Appl. Phys. Lett. 

95, 073702 (2009)). 

 

 

The simulation time is reduced with respect to the one of the previous 

simulation where only spherical particles are considered. In fact, the DEP 

mobilities grow with increasing chain size and consequently a stronger DEP 

drift toward the electrodes is developed. This aspect can be seen in panels 

(b) and (c) of Fig. 2.5, where a calculation of 𝜑𝑡𝑜𝑡 without chain formation 

(𝑘𝑙 = 0) is also displayed for comparison. 

In Fig. 2.6, showing the particle-chain formation, 𝜑1 and 𝜑2  are reported, 

as well as in Fig. 2.7 for 𝜑3 and 𝜑4.  
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Fig. 2.6 Three-dimensional plot where the colored surfaces and the height (z-axis) represent 

respectively 𝜑1 and 𝜑2 taken at times 0.2, 0.5 and 1.0 s (from lower to upper). (Figure 

taken from: O. E. Nicotra, A. La Magna, and S. Coffa, Appl. Phys. Lett. 95, 073702 

(2009)). 

 

 

 

Fig. 2.7 Same as in Fig. 2.6 but for 𝜑3 and 𝜑4. Results shown refer only to time 1.0 s. 

(Figure taken from: O. E. Nicotra, A. La Magna, and S. Coffa, Appl. Phys. Lett. 95, 073702 

(2009)). 
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In both Fig. 2.6 and Fig. 2.7, the volume fractions are represented by color 

field and height (z axis of the plot). Peaks are present in the colored surfaces 

at the edges of each electrode, where also the color field presents its 

maxima: this indicates that most part of the chain formation occurs in these 

regions. In fact, the rate terms in Eq. (2.17) are proportional to the volume 

fractions and particle stitching is more likely to occur in regions where 

particles accumulate. This mechanism, among others, is responsible for the 

slower kinetics of 𝜑3 and 𝜑4 with respect to 𝜑1 and 𝜑2.  

The results of this simulation show the possibility of quantitatively 

describing particle-chain formation. This description is based on the 

extension of drift-diffusion dynamics with reaction terms properly included. 

The computation of the volume fractions 𝜑𝑖 allows to predict where and 

when particle chain formation occurs in a dielectrophoretic device.  

Regarding the DEP mobility, in general EMA tends to reduce it. 

DEP mobility instead increases due to particle-chain formation. There is a 

competition between these two many-particle effects, but the present 

simulation shows that the latter is favored on the basis of the shortening of 

the evolution time. The particle stitching in DEP seems thus to completely 

dominate the entire transport dynamics. The two simulations show the 

importance of the many-particle corrections. The design of a 

dielectrophoretic device should not neglect such a phenomenon. 
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2.2 Analysis of stable configurations of e.mec. systems 

 

A different approach from that set out in the previous sections 

requires the evaluation of the external electric field. Section 2.2.1 describes 

a simulation based on the calculation, by the electric field, of the electric 

potential energy and on the use of the MC technique, whereas Section 2.2.2 

describes a simulation based on the use of MST.  

 

2.2.1 Monte Carlo study of the static configurations  
 

The method presented in Ref. [45], described below, allows the 

simulation of sufficiently large systems in terms of size and number of 

particles (i.e. within the experimental scopes). 

〈𝑭𝑆𝑇𝐷〉 is a non-conservative force which can however be calculated as the 

negative gradient of the following effective average potential energy [46]: 

 

𝑈̅𝑒𝑓𝑓(𝒓) = −
1

2
𝛼𝑒𝑓𝑓𝐸𝑅𝑀𝑆

2 (𝒓),      (2.19) 

 

where 𝛼𝑒𝑓𝑓 is the average polarizability, which has the form: 

 

𝛼𝑒𝑓𝑓 = 4π𝑅3Re{𝜀̃𝑚}Re{𝑓𝐶𝑀}. 

 

The DEP force is approximated as those generated by the total distorted 

electric field, which is equal to the sum of the external field and the 

contributions of the dipoles induced in all the particles [47]: 

 



50 
 

𝐄𝑡𝑜𝑡(𝒓𝑖) ≈ 𝐄(𝒓𝑖) + ∑ 𝐄𝑗(𝑟𝑖)
𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
𝑗 .    (2.20) 

 

By considering identical particles and neglecting multipole terms and 

mutual polarization, the effective potential energy can be derived from the 

expression that generalizes Eq. (2.19) for the case of particle-particle 

instantaneous interactions in the dipole approximation: 

 

𝑈𝑖𝑗 ≈ −
1

2
Re{𝐩𝑖(𝒓𝑖) ∙ 𝐄𝑗(𝒓𝑖)

∗} = −
1

2
Re{𝐩𝑗(𝒓𝑗) ∙ 𝐄𝑖(𝒓𝑗)

∗
},  (2.21) 

 

where 𝐄𝑗(𝒓𝑖) is the electrical field generated by the dipole in the particle 𝑗 at 

the position 𝒓𝑖, and 𝐩𝑖(𝒓𝑖) is the dipole moment induced on the i-th particle 

by the external field 𝐄(𝒓𝑖). Similar definitions apply to 𝐄𝑖(𝒓𝑗) and 𝐩𝑗(𝒓𝑗). 

The dipole electric fields in Eq. (2.21) are: 

 

𝐄𝑗(𝒓𝑖) =
1

4𝜋Re{𝜀̃𝑚}

3 𝐧 (𝐧∙𝐩𝑗)−𝐩𝑗

𝑅𝑖𝑗
3  ,     (2.22) 

 

𝐄𝑖(𝒓𝑗) =
1

4𝜋Re{𝜀̃𝑚}

3 𝐧 (𝐧∙𝐩𝑖)−𝐩𝑖

𝑅𝑖𝑗
3  ,     (2.23) 

 

where 𝐧 =
𝐑ij

Rij
. 

 

Based on the above expressions, the average effective potential energy is:  

 

𝑈̅𝑖,𝑗 ≅
1

4𝜋Re{𝜀̃𝑚}
|𝛼|2

1−3cos(𝜃𝑖𝑗
𝑖 ) cos(𝜃𝑖𝑗

𝑗
)

𝑅𝑖𝑗
3 [𝑬𝑅𝑀𝑆(𝒓𝑖) ∙  𝑬𝑅𝑀𝑆(𝒓𝑗)], (2.24) 
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where 𝜃𝑖𝑗
𝑖  and 𝜃𝑖𝑗

𝑗
 are the angles between the vectors 𝐸(𝒓𝑖), 𝐸(𝒓𝑗) and 𝐧. 

The formalism presented above is useful to carry out, by the MC approach 

[48], simulations of the equilibration of a particle system suspended in a 

static liquid medium under the action of an oscillating non-uniform electric 

field. The particles are considered as hard spheres with radius 𝑟𝑖. The energy 

of the system is: 

 

𝐸({𝐫1, … , 𝐫n}) = ∑ 𝑈̅𝑒𝑓𝑓(𝑟𝑖)𝑖 + ∑ 𝑈̅𝑖,𝑗(𝑟𝑖, 𝑟𝑗)𝑖,𝑗 ,   (2.25) 

 

where 𝑈̅𝑒𝑓𝑓 and 𝑈̅𝑖,𝑗 are calculated by Eq. (2.19) and (2.24). 

In general, in the MC simulation, the external field is simulated by a 

numerical solver of the Poisson equation for different device structures. The 

numerical values of the vector electric field are interpolated in the grid of 

the MC simulation box. Periodic, reflecting, or mixed boundary conditions 

can be imposed depending on the problem under consideration.  

The MC method is based on a stochastic sequence of single-particle 

displacement events. The application of an algorithm generates a new 

configuration by the old one. The Metropolis algorithm is used, which 

consists of the following steps: 

 

 one particle is is randomly selected; 

 

 the random displacement attempt is picked; 
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 the difference between the energies of the new and old 

configurations is calculated: 

 

∆𝐸 = 𝐸({𝒓𝑖, … , 𝒓𝑖𝑠 + ∆𝒓𝑖𝑠 , … , 𝒓𝑛}) − 𝐸({𝒓𝑖, … , 𝒓𝑖𝑠 , … , 𝒓𝑛}) 

 

 the proposed displacement is accepted, and the configuration is 

updated, if ∆𝐸 < 0 or if  𝑟𝑎𝑛𝑑(0,1) ≤ exp (−
∆𝐸

𝑘𝐵𝑇
), where T is the 

system temperature. 

 

Hard sphere behavior is reproduced considering ∆𝐸 → ∞ if the center-

center distance between two particles is smaller than the sum of their radii. 

The system considered in the simulation of Ref. [14] is a colloidal solution 

of Neurospora Crassa dispersed in a weakly conducting saline water 

solution. The effective complex dielectric constant can be approximated by 

the following expression (see Chapter 5 and Appendix C): 

 

𝜀𝑒̃𝑓𝑓 = 𝜀𝑚̃𝑒𝑚
(
𝑅

𝑅−𝑑
)
3
+ 2 

𝜀̃𝑐𝑦𝑡−𝜀̃𝑚𝑒𝑚

𝜀̃𝑐𝑦𝑡+2𝜀̃𝑚𝑒𝑚

(
𝑅

𝑅−𝑑
)
3
− 

𝜀̃𝑐𝑦𝑡−𝜀̃𝑚𝑒𝑚

𝜀̃𝑐𝑦𝑡+2𝜀̃𝑚𝑒𝑚

. 

 

Figure 2.8 shows the real part of the Clausius-Mossotti factor of the 

Neurospora Crassa. 
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Fig. 2.8. Real part of the Clausius-Mosotti factor calculated with the dielectric model of the 

Neurospora Crassa cell. (Figure taken from: A. La Magna, M. Camarda, I. Deretzis, G. 

Fisicaro, and S. Coffa, Appl. Phys. Lett. 100, 134104 (2012)). 

 

The cubic simulation box has dimensions (1000 ∙ 1000 ∙ 1000)𝜇𝑚3. All 

the borders of the simulation box are grounded. The initial configuration 

consists in a random distribution of N=2000 cells (corresponding 

approximately to a 0.01 volume fraction) subjected to a uniform oscillating 

electric field (𝐸𝑅𝑀𝑆 = 104
𝑉

𝑐𝑚
, 𝜔 = 106 𝐻𝑧). Figure 2.9 shows the results of 

a simulation after 2 ∙ 106 MC iterations. In this case, the gradient of the 

electric field is null and the dielectrophoretic force is therefore absent. The 

behaviour of the system is due only to the particle-particle interactions. The 

system assumes an orderly configuration: the cell chains are aligned along 

the electric field direction. 

In another type of simulation of the behaviour of N=2000 cells of 

Neurospora Crassa, one electrode (a single plate with width of 200 𝜇𝑚) is 

present at the center of the computational box. Figure 2.10(a) shows the 

spatial distribution of the electrical vector field and of the dielectrophoretic 

force field, as yellow and red arrows. 
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Fig. 2.9. Spatial distribution of N=2000 Neurospora Crassa cells suspended in a saline 

water solution subjected to a uniform oscillating electric field, obtained, starting from a 

random one, after 2 ∙ 106 MC iterations. (Figure taken from: A. La Magna, M. Camarda, I. 

Deretzis, G. Fisicaro, and S. Coffa, Appl. Phys. Lett. 100, 134104 (2012)). 

 

 

Fig. 2.10. (a): Spatial distribution of the electrical vector field and of the dielectrophoretic 

force field, as yellow and red arrows. (b): Spatial distribution of N=2000 Neurospora 

Crassa cells suspended in a saline water solution subjected to oscillating electric fields with 

angular frequency 𝜔 = 105 𝐻𝑧 (n-DEP). (c): Spatial distribution with angular frequency 

𝜔 = 106 𝐻𝑧 (p-DEP). (Figure taken from: A. La Magna, M. Camarda, I. Deretzis, G. 

Fisicaro, and S. Coffa, Appl. Phys. Lett. 100, 134104 (2012)). 
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Figure 2.10(b) shows the system configuration obtained after 1 ∙ 107 MC 

iterations in the case of an oscillating electric field with an angular 

frequency 𝜔 = 105 𝐻𝑧 (n-DEP). Fig. 10(c) shows the case relative to 

𝜔 = 106 𝐻𝑧 (p-DEP). Both cases are characterized by the presence of 

particle chains that are displaced along the force lines of the electric field. 

The chains are larger in the regions of more intense field. The 

configurations obtained are rather stable. The device shows a moderate 

trapping efficiency in the case of p-DEP (Fig. 10(c)), while in the presence 

of n-DEP (Fig. 10(b)) cell densifications far away from the electrode occur. 

However, the equilibration mechanism seems massively ruled by the 

aligned chain formations. 

The results clearly indicate that the particle-particle interactions compete 

with the DEP force field. Indeed, in pure p-DEP conditions, the particles 

would be massively trapped in the regions where the gradient of the electric 

field is higher. Therefore, the particle-particle interactions crucially affect 

the kinetic evolution of colloidal systems in DEP devices. The method 

presented by the authors strengthened the role of particle-particle 

interactions on the trapping capability of the device, on the arrangement of 

cells in ordered chains, and on the cell space distribution.  

 

 

2.2.2 MST calculations of forces in few-particle systems 

 

In Reference [49], an approximate theory of the DEP interaction in 

the proximity of a wall is derived for a dielectric sphere of radius R, to 

analyze the role of particle-wall interactions in the functioning of the 
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dielectrophoretic devices. Considering an infinite flat wall located at 𝑧 = 0 

of a Cartesian reference system, the result for the time averaged force on a 

particle in the presence of an electric field is: 

 

〈𝐅𝐷𝐸𝑃
𝑤𝑎𝑙𝑙〉 = 2π𝜀𝑚𝑅

3Re {𝑓
𝐶𝑀
(𝐹𝑥𝐸0𝑥𝑥̂ + 𝐹𝑦𝐸0𝑦𝑦̂ + 𝐹𝑧𝐸0𝑧 𝑧̂) ∇ (𝐹𝑥

∗𝐸0𝑥
∗ 𝑥̂ +

𝐹𝑦
∗𝐸0𝑦

∗ 𝑦̂ + 𝐹𝑧
∗𝐸0𝑧

∗ 𝑧̂)},          (2.26) 

 

where  

 

𝐹𝑥 = 𝐹𝑦 =
1

1−𝑓𝐶𝑀∆
, 

 

𝐹𝑧 =
1

1−2𝑓𝐶𝑀∆
, 

 

with ∆= (
𝑅

2𝑧
)
3
. 

 

Eq. (2.26) represents the extension of the standard DEP force for an isolated 

particle in an infinite medium given by Eq. (1.14). 

In Ref. [17], in addition to 〈𝐅𝐷𝐸𝑃
𝑤𝑎𝑙𝑙〉, 〈𝑭𝑆𝑇𝐷〉 and 〈𝑭𝑀𝑆𝑇〉 are also calculated. 

For the calculation of  〈𝑭𝑀𝑆𝑇〉, the commercial tool Comsol Multiphysics 

[50] is used. The studied system consists of a planar array of parallel 

electrodes. The electrodes have width 𝑊𝑒𝑙 = 50 𝜇𝑚 and are separated by a 

gap of 𝐺𝑒𝑙 = 50 𝜇𝑚. Voltage signals with opposing phase are applied to 

adjacent electrodes. The system is shown in Fig. 2.11. 
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〈𝑭𝑀𝑆𝑇〉, 〈𝑭𝑆𝑇𝐷〉 and 〈𝐅𝐷𝐸𝑃
𝑤𝑎𝑙𝑙〉 as a function of the particle–wall distance along a 

vertical line located at the center of the electrode (𝑥 = 75 𝜇𝑚) have been 

calculated. Fig. 2.12 shows the comparison between results of these 

different models.  

 
 

Fig. 2.11 Snapshot of the simulation box for the interdigitate electrodes system. The space 

dimensions are all in microns. The electric potential V is plotted as intensity map. A 

particle is located above the electrode centered in 𝑥 = 75 𝜇𝑚. Periodic boundary 

conditions are used on all side walls. The top and bottom boundaries are insulating, except 

above the electrodes. The black line indicates the plot region of Fig. 2.12. (Figure taken 

from: Camarda M, Scalese S, La Magna A, Electrophoresis, 36, (2015)). 

 

 

Fig. 2.12 Comparison between different model results for an interdigitate electrode system 

along a vertical line located over the center of the electrode (see Fig. 2.11). (Figure taken 

from: Camarda M, Scalese S, La Magna A, Electrophoresis, 36, (2015)). 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Camarda%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25487144
https://www.ncbi.nlm.nih.gov/pubmed/?term=Scalese%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25487144
https://www.ncbi.nlm.nih.gov/pubmed/?term=La%20Magna%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25487144
https://www.ncbi.nlm.nih.gov/pubmed/25487144
https://www.ncbi.nlm.nih.gov/pubmed/?term=Camarda%20M%5BAuthor%5D&cauthor=true&cauthor_uid=25487144
https://www.ncbi.nlm.nih.gov/pubmed/?term=Scalese%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25487144
https://www.ncbi.nlm.nih.gov/pubmed/?term=La%20Magna%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25487144
https://www.ncbi.nlm.nih.gov/pubmed/25487144
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The analysis of Fig. 2.12 shows that 〈𝐅𝐷𝐸𝑃
𝑤𝑎𝑙𝑙〉 correctly reproduced the force 

profile of the 〈𝑭𝑀𝑆𝑇〉. 

 

 

2.3 Conclusions  

 

In this section we presented the state of the art (at the beginning of 

our Thesis work) of the theoretical/computational approaches for the study 

of many-particle effects in a system of EMPs. The method based on the 

MST of Section 2.2.2, implemented with a commercial tool for the case of a 

static fluid (Ref. [17]), is of particular importance for the objectives of this 

Thesis. In chapter 5, some results of Ref. [17] for a single EMP will indeed 

be used as validation data for our original simulation method based on a 

Coupled MD-FEM algorithm.  

We wish to notice that the previous methods deal with some 

particular aspects of the complex behaviour of a system of interacting 

EMPs, whilst the kinetics of real systems is driven by many concurrent 

effects. In particular, mean field theories could in principle allow for fast 

solution considering the effects caused by the particle densification. 

Anyhow, since these theories are based on many undetermined parameters, 

the prediction which can be obtained with these methods is only qualitative: 

the parameter assessment needs more accurate particle-like approaches (like 

the one we will present in the next chapters) for the calibration in realistic 

conditions. It is probable that successful calibration can be obtained by 

fitting the results derived on fixed system geometry. Anyhow the calibration 

in principle can be also system dependent. As a consequence, the concurrent 
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use of mean field and accurate methods could be necessary for the general 

study of EMP systems.  

Accurate derivation of the forces and the correspondent particle 

configurations can be obtained in the static limit. In this case the obvious 

limit is the missing kinetic solution; moreover, the many particle 

configurations have been studied neglecting the field modifications induced 

by the particle presence, whereas the correct force derivation using the MST 

based method is presented for the case of a single spherical particle. Apart 

from these considerations, as we will discuss in the following, the correct 

dynamics of the EMPs can be simulated only including other effective 

interactions in addition to the e.mec. ones due to the medium presence and 

the steric effect (i.e. the finite volume of the particles).            

An important technical characteristic of this Thesis work is the 

application of an open source framework instead of a widely applied 

commercial package as COMSOL. This aspect has a double advantage: it 

permits the free distribution of the tool and it makes easier the integration 

with the MD method. In the next chapter we present the variational method, 

the FEM approximation and the open source platform for solving PDEs and 

data post-processing.  
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Chapter 3 

 

The variational approach for the numerical 

solution of Partial Differential Equations 
 

In the method we have developed to solve field mediated 

interactions, that will be described in Chapter 4, it is indispensable to solve 

numerically the field equations which are formulated in terms of partial 

differential equations (PDEs). In particular, as discussed at the end of 

Chapter 1, the Laplace problem must be resolved. For this purpose, the 

finite element method (FEM) represents a powerful approach and it is the 

one applied in our tool. There are commercial tools that solve PDEs through 

FEM; however, they are difficult to integrate in a more general code. In this 

Thesis, the open source software FEniCS was used, which allows for a more 

feasible integration and use of the PDEs solutions in a more general 

framework. We note that FEniCS requires the numerical implementation of 

the differential equations in the so-called weak form within the variational 

method.  

This Chapter, after a brief reference to the basic concepts of the 

PDEs and problems with boundary values [51, 52], introduces the 

variational method for solving PDEs [53], the FEM [54, 55], the FEniCS 

Project software and other software useful for the meshing and results’ 

analysis. 
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3.1 Partial Differential Equations  

 

PDEs are differential equations containing derivatives of the 

unknown function u with respect to more than one variable. Consider a 

function: 

 

𝐹:  Ω ⊂  ℝ𝑁  → ℝ,  

 

with N a sufficiently large natural number. Whether the function explicitly 

depends on at least one of the partial order n derivatives of the function u, an 

equation of the type: 

 

𝐹 (𝑥1, … , 𝑥𝑚, 𝑢,
∂𝑢

∂𝑥1
, … ,

∂𝑢

∂𝑥𝑚
, … ,

∂𝑛𝑢

∂𝑥1
𝑛 , … ,

∂𝑛𝑢

∂𝑥𝑚
𝑛 ) = 0   (3.1) 

 

is called partial differential equation of order n. 𝑥1, … , 𝑥𝑚 are the 

independent variables. 

The objective of the solution of differential equations in a given domain is 

to determine the unknown function 𝑢(𝑥1, … , 𝑥𝑚) that satisfies Eq. (3.1) 

within certain boundary conditions. This function is called integral or 

solution of the equation itself. The totality of the integrals constitutes the so-

called general integral of the equation (excluding at most some of a 

particular character, called singular).  

It is essential to highlight the differences between ordinary differential 

equations and partial differential equations. For an ordinary differential 

equation of order n, the set of its solutions (general integral) can be 

represented, unless possible singular integrals, by a function of the 
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independent variable, which depends on n integration constants 𝑐1, … , 𝑐𝑛. 

Vice versa, for each family of functions with n parameters, an ordinary 

differential equation of order n exists and the function satisfies it.  

For PDEs the situation is more complex: a general solution can be sought, 

but the arbitrary elements to be set in order to obtain a particular solution are 

no longer, in general, arbitrary constants, but are arbitrary functions. 

The equation is said to be in normal form if it is resolved with respect to one 

of the derivatives of the maximum order with respect to a single 

independent variable, i.e. if it appears in the following form: 

 

∂𝑛𝑢

∂𝑥1
𝑛 = 𝑔 (𝑥1, … , 𝑥𝑚, 𝑢,

∂𝑢

∂𝑥1
, … ,

∂𝑢

∂𝑥𝑚
, … ,

∂𝑛𝑢

∂𝑥1
𝑛−1 ∂𝑥2

, … ,
∂𝑛𝑢

∂𝑥𝑚
𝑛 ). 

 

 

3.2 Boundary value problems 

 

An important problem class is formed by boundary value problems. In 

the case of equations of evolution (like the equation of heat or that of 

waves), they are also said “initial and boundary value problems”, because in 

this case it is necessary to prescribe also the data to the initial time. In this 

type of problem, the domain on which the solution must be defined is 

assigned a priori. In boundary value problems, it is sufficient to prescribe 

only one boundary data. Three cases are distinguished: 

 

 Dirichlet problem: the boundary data is prescribed as the value of 

the unknown function 𝑢; 
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 Neumann problem: the boundary data is prescribed as the value of 

the normal derivative of 𝑢 at the Ω frontier; 

 

 Robin problem: the boundary data is prescribed as the value of 

a linear combination of the the function and of its derivative, at the Ω 

frontier. 

In any case, a second information on the solution is assigned, as a restriction 

on its definition domain. Finally, it is possible to prescribe the value of the 

unknown function on a part of the domain boundary and the value of its 

normal derivative on the remaining part: these cases are called problems 

with mixed conditions. 

 

 

3.2.1 Boundary problem for the Poisson equation 

 

Consider a three-dimensional spatial domain Ω ⊂  ℝ3, limited and 

connected with regular boundary ∂Ω. The 3D Poisson’s problem is: 

   

∇2𝑢(𝒓) = 𝑓(𝒓),      𝒓 ∈  Ω,      (3.2) 

 

where 𝑢(𝒓) is the unknown function defined on Ω, ∇2 is the Laplace 

operator, 𝑓(𝒓) is a prescribed function. This expression is the so-called 

strong formulation of the Poisson’s problem. To have a single solution, 

appropriate boundary conditions should be added, as follows. 

The Dirichlet problem for the Poisson’s equation in an open limited Ω ⊂ ℝ3 

with regular boundary is: 

https://en.wikipedia.org/wiki/Linear_combination
https://en.wikipedia.org/wiki/Function_(mathematics)
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assigned the function 𝑢D : ∂Ω →  ℝ, to determine 𝑢 ∈  𝐶2 such that: 

 

{
 
 

 
 
−∇2𝑢(𝒓) = 𝑓(𝒓),   𝒓 ∈  Ω

𝑢(𝒓) = 𝑢D(𝒓),        𝒓 ∈  ∂Ω

     (3.3) 

 

If 𝑢D(𝒓) = 0, the problem is said to be homogeneous. 

The Neumann problem for the Poisson equation in an open limited 

Ω ⊂ ℝ3 with regular boundary is: 

assigned the function ℎ(𝑟): ∂Ω →  ℝ, to determine 𝑢 ∈  𝐶2 such that: 

 

{
 
 

 
 −∇2𝑢(𝒓) = 𝑓(𝒓),          𝒓 ∈  Ω

∇𝑢 ∙ 𝐧 =
∂𝑢

∂𝑛
= ℎ(𝒓),     𝒓 ∈  ∂Ω

     (3.4) 

 

where 𝐧 is the external normal to Ω. If ℎ = 0, the problem is said to be 

homogeneous. 

It is evident that if 𝑢 solves Neumann’s problem, 𝑢 + constant solves it as 

well. Therefore, there can be no uniqueness of solutions, at least in the full 

sense of the term. 

It is useful to underline what is the modelling meaning of the 

boundary conditions. The conditions of the type of Dirichlet are of 

immediate interpretation, consequent from the meaning of the unknown 𝑢. 
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For example, in problems of heat diffusion, where 𝑢 generally represents a 

temperature, the condition of Dirichlet is assigned when the domain border 

is maintained at a known temperature by contact with a thermostat. The 

conditions of the Neumann type can have the meaning of flow conditions: 

always in the case of the heat equation, it is known that the heat flow along 

x-axis in the body is (proportional to) −𝑢𝑥 (at least according to Fourier’s 

law).  

It is possible to define the mixed problem for the Poisson equation, 

in which different conditions are assigned to different portions of the 

boundary. Let be ∂Ω the boundary of the domain Ω, Γ𝐷 the portion of Ω with 

Dirichlet boundary conditions and Γ𝑁 the portion of Ω with Neumann 

boundary conditions. If ∂Ω = Γ𝐷 ∪ Γ𝑁  with Γ𝐷 ∩ Γ𝑁 equal to empty set, the 

following conditions can be imposed: 

 

{
 
 

 
 𝑢 = 𝑢D(𝒓) , 𝒓 ∈  Γ𝐷

∂𝑢

∂𝑛
= ℎ(𝒓)  ,          𝒓 ∈  Γ𝑁

      (3.5) 

 

In the case of problems posed for the evolution equations in a 

temporal range (0,T), the value of the solution and of their derivatives at 

final time T is obviously determined by the data at previous values of time, t 

< T. To prescribe data on the part of the domain boundary that lies on t = T 

therefore not needs, from the point of view of the modelling intuition (this 

intuitive consideration is in fact confirmed by the mathematical analysis of 

the problems in question). 
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3.3 Variational method 

 

In order to expose the so-called variational method for the solution 

of a PDE, let’s consider the specific case of the Poisson equation. Consider, 

as an example, a domain Ω ⊂  ℝ3 and the Dirichlet problem for the Poisson 

three-dimensional equation: 

 

{
 
 

 
 
−∇2𝑢(𝒓) = 𝑓(𝒓),         𝒓 ∈  Ω

𝑢(𝒓) = 𝑢D(𝒓),                 𝒓 ∈  ∂Ω

     (3.6) 

 

The unknown function 𝑢 to be approximated is referred to as a trial 

function. Within the variational method, a function 𝑣 (called test function) is 

introduced. Suitable function spaces are defined for the test and trial 

functions, to specify their properties: the function space of trial function, 

indicated by 𝐹, is called trial space. The function space of test function, 

indicated by 𝐹̂, is called test space.  

In applying the method, first, the Poisson equation is multiplied by the test 

function 𝑣 and integrated over Ω: 

 

−∫ (∇2𝑢)
Ω

𝑣d𝑥 = ∫ 𝑓
Ω

𝑣d𝑥.     (3.7) 

 

dx denotes the differential element for integration over the domain Ω.  
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Eq. (3.7) contains a second-order spatial derivative of 𝑢, which can be 

transformed to a first-derivative of u and 𝑣 by applying the technique of 

integration by parts. 

The formula reads: 

 

−∫ (∇2𝑢)
Ω

𝑣d𝑥 = ∫ ∇𝑢 ∙ ∇𝑣
Ω

d𝑥 − ∫
𝜕𝑢

𝜕𝑛
𝑣

∂Ω
d𝑠 ,   (3.8) 

 

where 
𝜕𝑢

𝜕𝑛
= ∇𝑢 ∙ 𝒏 is the derivative of 𝑢 in the outward normal direction 𝒏 on 

the boundary of Ω and ds denotes the differential element for integration 

over such a boundary. 

An important feature of variational formulations is that the test function 𝑣 

must vanish on the parts of the boundary where the solution 𝑢 is known. In 

the present case this means that 𝑣 = 0 on the whole boundary ∂Ω. It is thus 

required that the function is not too badly behaved so that the involved 

integrals do indeed exist. More specifically, both 𝑣 and ∇𝑣 must be square 

integrable on Ω. The trial and test spaces 𝐹 and 𝐹̂ in the present problem are 

therefore defined as: 

 

𝐹 = {𝑣 ∈ 𝐻1(Ω): 𝑣 = 𝑢D 𝑜𝑛 ∂Ω}, 

 

𝐹̂ = {𝑣 ∈ 𝐻1(Ω): 𝑣 = 0 𝑜𝑛 ∂Ω}, 

 

where 𝐻1(Ω) is the Sobolev space containing functions 𝑣 such that 𝑣2 and 

|∇𝑣|2 have finite integrals over Ω (these conditions essentially mean that the 
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functions are continuous [51]). 𝐹̂ contains infinitely many functions, and 

any of them can be used as test function 𝑣. 𝐹̂ has thus infinite dimension. 

The second term on the right-hand side of Eq. (3.8) therefore vanishes and it 

becomes: 

 

−∫ (∇2𝑢)
Ω

𝑣d𝑥) = ∫ ∇𝑢 ∙ ∇𝑣
Ω

d𝑥.     (3.9) 

  

 From Eq. (3.7) and Eq. (3.9) it follows that: 

 

∫ ∇𝑢 ∙ ∇𝑣
Ω

d𝑥 = ∫ 𝑓
Ω

𝑣d𝑥.      (3.10)  

 

Eq. (3.10) represents the weak form or variational form of the original 

boundary-value problem of Eq. (3.6). The weak formulation allows thus to 

move from a differential problem of the second order to one of the first 

order. Eq. (3.10) must hold for all test functions in some test space and it is 

therefore possible to determine the solution 𝑢 which lies in some (possibly 

different) trial space. 

The statement of variational problem now becomes as follows: 

 

find 𝑢 ∈ 𝐹 such that: 

 

∫ ∇𝑢 ∙ ∇𝑣
Ω

d𝑥 = ∫ 𝑓
Ω

𝑣d𝑥     ∀ 𝑣 ∈  𝐹̂.   (3.11) 

 

In mathematics literature the following canonical notation for variational 

problems is introduced: 
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𝑎(𝑢, 𝑣) = ∫ ∇𝑢 ∙ ∇𝑣
Ω

d𝑥,      (3.12)  

𝐿(𝑣) = ∫ 𝑓
Ω

𝑣d𝑥.       (3.13)  

 

𝑎(𝑢, 𝑣) is called bilinear form and 𝐿(𝑣) is called linear form. By introducing 

the linear and bilinear form in Eq. (3.11), the variational form is defined as it 

follows: 

 

find 𝑢 ∈ 𝐹 such that:  

 

𝑎(𝑢, 𝑣) = 𝐿(𝑣)  ∀ 𝑣 ∈  𝐹̂.     (3.14)  

 

To solve a linear problem, we have therefore to identify the terms which 

contain unknown 𝑢 and collect them in 𝑎(𝑢, 𝑣), and similarly collect all 

terms with only known functions in 𝐿(𝑣). As a consequence, in terms of the 

computational approach, the variational methods consist in integral 

weighted averages of the starting equation which act on the weak form of 

the problem. 

It is important to underline that the variational problem of Eq. (3.11) is a 

continuous problem. 
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3.3.1 Solution of Laplace’s problem by the variational method  

As mentioned at the end of Par. 1.4, since we deal with the MST 

evaluation of the e.mec. interactions, in the numerical tool at the basis of 

this Thesis it is necessary to solve the Laplace equation: 

 

∇ ∙ [𝜀̃ ∇ V(𝐫)] = 0.  

 

where V (the dependence on 𝐫 is omitted for simplicity of notation) is the 

complex electrical potential:  

 

 V = Re{V}+ 𝑖 Im{V} =  V𝑅 + 𝑖V𝐼      (3.15) 

 

and 𝜀̃ is the general expression for the complex permittivity (see Par. 1.5). 

 

𝜀̃ = Re{𝜀̃} + 𝑖 Im{𝜀̃} = 𝜀𝑅 + 𝑖 𝜀𝐼.     (3.16) 

 

The subscripts R and I indicate clearly the real part and the imaginary part 

(thereafter, this notation will be adopted for all complex quantities). 

As already seen, the complex permittivity has the following values inside 

the particles and in the medium: 
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𝜀̃ ≡

{
 
 

 
 
𝜀𝑝̃ = 𝜀𝑝 − 𝑖

𝜎𝑝

𝜔

𝜀𝑚̃ = 𝜀𝑚 − 𝑖
𝜎𝑚

𝜔

        

       

The linear and bilinear forms, Eqs (3.12) and (3.13), are complex 

themselves and can be written: 

 

𝑎̃(𝑢̃, 𝑣̃) = ∫ 𝜀̃ ∇𝑢̃ ∙ ∇𝑣̃
Ω

d𝑥 = 𝑎𝑅 + 𝑖𝑎𝐼,           (3.17) 

 

𝐿̃(𝑣̃) = ∫ 𝑓
Ω

𝑣̃d𝑥 = 𝐿𝑅 + 𝑖𝐿𝐼,            (3.18) 

 

where 

 

𝑣̃ = 𝑣𝑅 + 𝑖𝑣𝐼                    (3.19) 

 

is the complex test function and 

 

 𝑓 = 𝑓𝑅 + 𝑖𝑓𝐼          (3.20) 

 

is the complex prescribed function (which is null in the case of Laplace 

equation). 

Consistently with the variational method, the solutions of the Laplace’s 

problem for the real and imaginary part V𝐼 and V𝑅 of the electrical complex 

potential function V can be obtained and, starting from these, the real and 
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the imaginary part of the electric field can be calculated. The complex 

electric field is indeed: 

 

𝐄 = −∇V,        (3.21) 

 

and consequently: 

 

𝐄𝑅 + 𝑖𝐄𝐼 = −∇V𝑅 − 𝑖∇V𝐼.      (3.22) 

  

By the previous expression: 

 

𝐄𝑅 = −(𝑖̂
𝜕V𝑅

𝜕𝑥
+ 𝑗̂

𝜕V𝑅

𝜕𝑧
+ 𝑘̂  

𝜕V𝑅

𝜕𝑧
) ≡ (𝐸𝑥,𝑅 , 𝐸𝑦,𝑅 , 𝐸𝑧,𝑅),    (3.23) 

 

𝐄𝐼 = −(𝑖̂
𝜕V𝐼

𝜕𝑥
+ 𝑗̂

𝜕V𝐼

𝜕𝑧
+ 𝑘̂ 

𝜕V𝐼

𝜕𝑧
) ≡ (𝐸𝑥,𝐼 , 𝐸𝑦,𝐼 , 𝐸𝑧,𝐼 ),   (3.24)  

 

and finally: 

 

𝐸𝑥 = 𝐸𝑥,𝑅 + 𝑖𝐸𝑥,𝐼,        (3.24) 

  

𝐸𝑦 = 𝐸𝑦,𝑅 + 𝑖𝐸𝑦,𝐼,       (3.25) 

 

𝐸𝑧 = 𝐸𝑧,𝑅 + 𝑖𝐸𝑧,𝐼.       (3.26) 
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These values of the electric field components and their conjugate complex 

will be inserted into Eq. (1.29) to numerically calculate the force 〈𝑭𝑀𝑆𝑇〉 and 

in Eq. (1.30) to evaluate the torque 〈𝑻𝑀𝑆𝑇〉. 

 

 

3.4 FEM approximation 

 

It may be difficult or even impossible to solve analytically a PDE. 

The FEM is a general and efficient method for the numerical solution of 

PDEs. FEM involves the discretization of a large domain into small parts of 

coded form, called finite elements (typically triangles and quadrilaterals for 

2D domains, tetrahedrons and hexahedrons for 3D domains), that are 

defined by points called nodes. The grid thus formed is called mesh. A field 

quantity is approximated using polynomial interpolation over each of the 

elements and, by this formulation, a set of simultaneous algebraic equation 

results: the equations concerning the finite elements form in fact a large 

system of equations that models the total problem. In order to solve this 

system and approximate the solution, FEM use then variational methods. 

The important points are: what kind of elements should be used, how many 

elements are needed, where the mesh can be coarse and where must be fine, 

the eventual assumptions and the choice of a suitable software. 

Summarizing, the use of FEM follows usually these steps: 

 

 node and element generation: subdivide the domain into small finite 

elements, each of which is defined by a finite number of node points; 
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 application of boundary conditions; 

 

 within each element, a solution to governing equations is formulated 

and solved; 

 

 general solution for all elements results in algebraic set of 

simultaneous equations. 

 

 

3.4.1 Galerkin Method of FEM approximation 

 

The solution of the PDEs must belong to a functional space where 

the derivatives are continuous, neverthless the Sobolev space 𝐻1 allows 

functions with discontinuous derivatives. This weaker continuity 

requirement of 𝑢 in the variational form of Eq. (11) has practical 

consequences in the construction of the functional finite element spaces: 

among them, the most important is that the use of piecewise polynomial 

function spaces is permitted, i.e. function spaces built by combining 

polynomial functions on simple domains such as intervals, triangles or 

tetrahedrons.  

Application of FEM starts by rewriting the PDE as a variational 

equation. It has been seen that the variational problem (Eq. (3.11)) is a 

continuous problem: it identifies the solution 𝑢 in the infinite-dimensional 

function space 𝑉. Thanks to the FEM, it is possible to approximate 𝑢 by a 

continuous piecewise linear function 𝑢ℎ. For this purpose, it needs to 

suitably define the discrete (finite-dimensional) trial and test spaces 𝐹ℎ ⊂ 𝐹 
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and  𝐹̂ℎ ⊂ 𝐹̂ and replace the infinite-dimensional function trial space 𝐹 and 

function test spaces 𝐹̂ by them. The boundary conditions are encoded as part 

of the trial and test spaces. 

The discrete variational problem consequently is: 

 

find 𝑢ℎ ∈ 𝐹ℎ ⊂ 𝐹 such that 

 

∫ ∇𝑢ℎ ∙ ∇𝑣Ω
d𝑥 = ∫ 𝑓𝑣

Ω
d𝑥     ∀ 𝑣 ∈  𝐹̂ℎ ⊂ 𝐹̂.   (3.27) 

 

The variational problem of the previous expression uniquely defines the 

approximate numerical solution of Poisson’s problem. This type of FEM, 

based on similar trial and test spaces, is called Galerkin Method, in honour 

of the Russian physicist and mathematician who conceived it. 

 

 

3. 5 FEniCS Project, Gmsh, Salome 

 

Here we outline the characteristics of the open source tool we have 

applied to implement our code.  

 

3.5.1 FEniCS Project 

 

FEniCS Project [56] is an open source software package that 

implements a finite element method to solve partial differential equations of 

importance in engineering and Physics. The programming language used in 
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the works present in this Thesis for the code implementations by FEniCS is 

Python.  

Let us consider the discrete variational problem of Eq. (3.27). The PDE can 

be solved with the FEniCS code thanks to its abstractions relative to the 

linear and bilinear form. In fact, the formulas for a (Eq. (3.12)) and L (Eq. 

(3.13)) can be expressed directly in a FEniCS program. Moreover, the terms 

trial and test functions, used in mathematics, are also used in FEniCS. 

It should be noted that the finite element variational problem of Eq. (3.27) 

looks in FEniCS the same as the continuous variational problem of Eq. 

(3.11): in fact, while in the mathematics literature on variational problems 

𝑢ℎ indicates the solution of the discrete problem and 𝑢 indicates the solution 

of the continuous problem, in the corresponding FEniCS program 𝑢 

indicates the solution of the discrete problem. Similarly, in the mathematics 

literature 𝑉ℎ indicates the discrete finite element function space, while in the 

FEniCS programs it is denoted by 𝐹. There consequently is a one-to-one 

relationship between the mathematical formulation of a continuous problem 

and the corresponding FEniCS program. 

To solve a boundary-value problem by FEniCS, it needs to follow these 

steps: 

 

 identify the PDE, its computational domain Ω and its boundary 

conditions; 

 

 redefine the PDE as a finite element variational problem; 
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 define the finite element spaces 𝐹 and 𝐹̂ by specifying the domain, 

the mesh, the type and degree of function space; 

 

 write a Python code which includes the quantities of the first points 

by using the corresponding FEniCS abstractions; 

 

 use the appropriate FEniCS command to solve the boundary-value 

problem. 

 

For the details see the associated web page: https://fenicsproject.org/. 

 

3.5.2 Gmsh 

 

FEniCS offers the possibility of generating spatial sampling to 

obtain the calculation grid (mesh). In 3D this potentiality is limited. In the 

works presented in this Thesis, Gmsh is consequently used. Gmsh [57] is an 

open-source computer-aided engineering platform which operates on the 

basis of parametric inputs. It offers, among others, solutions for meshing 

and provides a number of mechanisms to control the accuracy of elements in 

mesh generation. The Gmsh software libraries can be used alone or together 

with external applications. An important point is that it interacts with 

external solvers, including FEniCS. 

As an example of application, several images created by Gmsh are 

reported in Fig. 3.1: panel (a) shows the edges of a box of dimensions 

(100 ∙ 50 ∙ 50) 𝜇𝑚3, panel (b) the surface mesh (namely relative to the 

https://fenicsproject.org/
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faces of the parallelepiped), panel (c) the volumetric mesh, panel (d) a 

sphere with a surface mesh.  

  

 

3.5.3 Salome 

 

Salome is a free software which consists of a generic platform for 

pre- and post-processing of numerical simulations, meshing, visualization 

and analysis of FEM results. It is released under the GNU Lesser General 

Public License and may be downloaded from its official website [58]. It is 

based on an open architecture made of several components. Its software 

libraries can be used alone or in combination with other software 

applications for the study of a CAD model. 

Salome was used to visualise the output files of the solution of the Laplace 

problem created by FEniCS. The files show the electrical potential or 

electric field, displayed according to a colour scale. The default setting 

allows to display the values of the external part of the box, with or without 

the presence of the surface mesh. In order to show the solution in spatial 

regions of interest inside the box, the “slice” function was used, which 

allows to display a section of a three-dimensional object. As an example, 

Fig. 3.2 shows the solution of the Laplace problem in the box of Fig. 3.1 

when an electric potential V=0 is applied to the top and V=5 Volt is applied 

to the bottom: panel (a) shows the surface mesh drawn with a colour scale 

relative to the values of the solution, panel (b) shows the slice passing 

through the centre of the box and parallel to the front face. 

 

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Numerical_simulation
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
https://en.wikipedia.org/wiki/Open_architecture
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Fig. 3.1 Images created by Gmsh. (a): edges of a box of dimensions (100 ∙ 50 ∙ 50) 𝜇𝑚3. 

(b): surface mesh. (c): volumetric mesh. (d): sphere with a surface mesh. 

 

 

Fig. 3.2 Images created by Salome. (a): surface mesh in color scale related to the solution. 

(b): slice passing through the centre of the box and parallel to the front face. 
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3.6 Remarks 

In this section we presented a short reference to the basic concepts of 

the PDEs, to the variational method for solving them, to the FEM and the 

usefulness of FEniCS Project to apply this method for a generic solution of 

PDEs in the weak form. In the next chapter we will deal with the second 

aspect of our coupled method: we will report a brief presentation of the 

Molecular Dynamics and relative integration method (Verlet Integration) 

and present the formalization of the MD-FEM code used for the 

simulations. 
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Chapter 4 

 

Coupled Molecular Dynamics-Finite Element 

Method algorithm 
 

 

The general objective of this Thesis work is the extension of the so-

called “simulation” approach and related techniques in different application 

fields. In theoretical Physics, a model of a system is considered, generally 

subjected to approximations and based on equations to be solved 

analytically or numerically. Numerical simulations, based on the models of 

physical systems, can play an important role in the theoretical study of the 

evolution of a system because it is possible to increase the level of 

complexity of the description with respect to the analytical models. They 

provide very accurate results (depending on the level of precision in the 

modelling of the fundamental interaction ruling the system’s behaviour) for 

problems that cannot be solved analytically. In this regard, computer 

simulation can be considered both as a test of theories and as verification 

and analysis of experimental information. Numerical simulations allow also 

performing ideal experiments (gedanken experiments) under extreme 

conditions (i.e. of temperature and pressure, of purity of materials rarely 

achievable in a real experiment etc.). Simulations can both provide 

microscopic details of a system and describe macroscopic properties of 

experimental interest (state equations, transport coefficients, structural 

parameters, etc.). Numerical results are finally analyzed and interpreted, 

with techniques similar to those used to characterize experimental data. 
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Compared to experimental methods, simulations are usually costless and 

less time consuming. 

Molecular Dynamics (MD) is a widely used simulation technique for 

the computational study of the movement of atoms and molecules, but our 

aim is to extend its applicability to EMPs. This Chapter provides a 

description of the MD technique [59, 60, 61] and the algorithm for coupling 

the MD with the FEM method for the simulation of EMP systems. The 

formalism here described has been originally implemented using the Python 

API in our open source tool. For the MD part we will use the Verlet 

integration technique [62, 63, 64], an algorithm diffusely used in the MD 

context.  

 

 

4.1 Molecular Dynamics 

 

MD is a set of computational techniques of simulation that in general 

allows to study the evolution of physical and chemical systems (i.e. sets of 

N interacting particles) at atomic and molecular level. MD is based on the 

step-by-step integration of the classical equations of particle motion, which 

are described as interacting point masses.  

The MD method was introduced by Alder and Wainwright [65] in 

the 1950s for the study of systems composed of rigid spheres. It offered 

excellent results in the study of simple liquids. The first MD simulation of a 

realistic system (water in the liquid phase) dates back to 1971 (Rahman and 

Stillinger [66]). In the following years, rigid molecules (Barojas, Levesque 

and Quentrec, 1973 [67]) and flexible hydrocarbons (Ryckaert and 
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Bellemans, 1975 [68]) were studied. Computer MD simulations were also 

performed on phase transitions and interface behaviour of different 

materials (1974-1980). An advancement of simulation techniques occurred 

with the development of “dynamic stochastic” methods (Friedman, 1977 

[69]) and with the introduction of methods for measuring transport 

coefficients (McDonald, 1979 [70]). Recently, developments have turned to 

the search for metastable states and multiscale problems [71, 72], in which 

MD is integrated with other calculation techniques, in particular the Monte 

Carlo method [73], allowing to overcome the main limit of MD that consists 

in the short duration of the simulations (a few ns) and in the small size of 

the studied systems (fractions of μm3). In general, the fields of applications 

of MD are liquids, defects in solids, surfaces and interfaces of solids, 

fractures, molecular clusters, biomolecules (e.g. DNA), diffusion through 

membranes (e.g. H2O through graphene), heat transport [74, 75], complex 

dynamic processes that take place in solid state physics, materials science, 

biological systems, chemistry [76]. 

 

 

4.1.1 MD implementation 

 

MD is a deterministic technique: given an initial state of positions 

and velocities, the time evolution of the system is completely determined 

(unlike e.g. Monte Carlo methods). Deviation of this principle is mainly due 

to numerical errors and physical conservation rules are commonly used to 

control the integration accuracy. Particles in general interact through a 

potential which can be a semi-empirical (classical) potential or can be 
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derived by a quantum mechanical approach, whilst the particle kinetics is 

essentially classic (i.e. quantum theory is applied within the Born-

Oppenheimer B.O. approximation [77]).  

Consider a system composed of N massive points, described by the set of 

canonical coordinates {𝒓𝑖, 𝒑𝑖} and initialized with initial positions 

𝒓𝑖(𝑡0) and initial velocities 𝒗𝑖(𝑡0). Initial mass positions generally are 

“randomly” displaced (depending on the system under consideration, they 

are displaced from the ideal equilibrium positions). In general, the initial 

positions can be obtained starting from experimental structures solved with 

the X-ray diffraction methods on mono-crystals, by nuclear magnetic 

resonance imaging (NMR) or from configurations derived from 

crystallography. 

The distributions of initial velocities are generally referred to a Maxwell’s 

random distribution corresponding to a specific temperature, if the system is 

considered as a canonical ensemble: 

 

𝑝(𝒗𝑖) = √
𝑚𝑖

2𝜋𝑘𝐵𝑇
 𝑒𝑥𝑝

𝑚𝑖𝑣𝑖
2

2𝑘𝐵𝑇
,      

 

where 𝑝(𝒗𝑖) is the probability that an atom has velocity 𝒗𝑖 at temperature 𝑇.  

The initial random distribution of the speeds is chosen in such a way that the 

total momentum is zero, that is: 

 

 𝐏(𝒗𝑖) = ∑ 𝑚𝑖
𝑁
𝑖=0 𝒗𝑖 = 0. 
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The MD method is based on the iterative application of Newton’s 

second law. The knowledge of the resulting force on each particle of the 

system allows determining its respective accelerations. For a system of N 

atoms, the motion of each atom in the system is therefore determined by the 

equation: 

 

𝑭𝑖 = 𝑚𝑖 𝒂𝑖 = 𝑚𝑖  
𝑑2

𝑑𝑡2
𝒓𝑖  i = 1,…, N,   (4.1) 

 

where 𝑭𝑖 is the resultant of the force acting on the particle of mass 𝑚𝑖 and 

𝒂𝑖 is its acceleration. The fundamental assumption in classical dynamics, in 

which the forces are of empiric nature, is that they can be expressed as the 

gradient of a potential energy function 𝑉(𝒓1, … 𝒓𝑁) independent of time: 

 

𝑭𝑖 = −∇𝑖𝑉(𝒓1, … 𝒓𝑁).      (4.2) 

 

From Eq. (4.1) and (4.2):  

 

−∇𝑖𝑉(𝒓1, … 𝒓𝑁) = 𝑚𝑖  𝒂𝑖 = 𝑚𝑖  
𝑑2

𝑑𝑡2
𝒓𝑖.    (4.3) 

 

The trajectories of the massive points are derived by integrating the 

Newtonian equations of motion.  

It should be noted that the integration of equations of motion is in general a 

complex procedure because the displacement of the particles modifies the 

values of the potential energy of interaction and therefore of the forces 

acting on them. 
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By using the MD techniques, problems related to calculation times 

and computational resources are encountered, as it is necessary to be able to 

follow, at every step in time, all the degrees of freedom of the particles in 

the system. However, the increased performance of computers and the 

refinement of methods and algorithms have made possible calculations that 

were prohibitive until recently. Nevertheless, MD presents in general some 

limitations: it is suitable for classical and not fully quantum evolving 

particles (i.e. when B.O. is not appropriate as for lightweight systems like H, 

He, Ne, or low temperatures), time limitations (from pico to nanoseconds), 

size limitations (from thousands to few millions of atoms). 

There are several ways to solve the Eq. (4.3) in MD contexts. One of 

the algorithms used in MD for constant energy simulations is the Verlet 

method, which will be described below. 

 

 

4.2 Verlet Integration  

 

In MD, methods to calculate trajectories of particles integrating 

Newton’s equations of motion are required. The task is to construct a 

sequence of points that closely follow the masses on the trajectory of the 

exact solution. Verlet integration is a numerical method frequently 

applicated in MD. It was used by Carl Størmer to compute the trajectories of 

particles moving in a magnetic field and was popularized in MD by the 

physicist Loup Verlet in 1967. The Verlet integration offers greater stability 

than the much simpler Euler method [78] and other properties that are 

important in physical systems, such as time-reversibility.  
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4.2.1 Basic Verlet Integration 

 

Let us consider conservative physical systems. Newton’s equation of 

motion is: 

 

𝐌𝒓̈(t) = 𝐅(𝒓(𝑡)) = −∇ 𝑉(𝒓(𝑡)),     (4.4) 

 

where 𝑡 is the time, 𝒓(𝑡) = (𝒓𝟏(𝑡), … , 𝒓𝑁(𝑡)) is the ensemble of the 

position vector of N objects, V is the scalar potential function,  F is the 

ensemble of forces on the particles, M is the diagonal block matrix with 

mass for every particle. 

The initial positions 𝒓(0) = 𝒓𝟎 and initial velocities 𝒗(0) = 𝒓̇(0) = 𝒗𝟎 of 

the particles are typically given. In order to discretize and numerically solve 

this initial value problem, a suitable time step ∆𝑡 > 0 is chosen and the 

sampling point sequence 𝑡𝑛 = 𝑛∆𝑡 is considered.  

Verlet Integration is based on the central difference approximation to the 

second derivative: 

 

∆𝟐𝒓(𝑡)

∆𝑡2
=

𝒓(𝑡+∆𝑡)−𝒓(𝑡)

∆𝑡
−
𝒓(𝑡)−𝒓(𝑡−∆𝑡)

∆𝑡

∆𝑡
=

𝒓(𝑡+∆𝑡)−2𝒓(𝑡)+𝒓(𝑡−∆𝑡)

∆𝑡2
= 𝒂(𝑡). (4.5) 

 

The Verlet algorithm  uses the following equation (deriving from the third 

and fourth members of the previous expression): 

 

𝒓(𝑡 + ∆𝑡) = 2𝒓(𝑡) − 𝒓(𝑡 − ∆𝑡) + 𝒂(𝑡)∆𝑡2.     (4.6)  
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The next position vector (with respect to the time 𝑡) is thus obtained from 

the previous two. It is important to note that the velocity is not used. An 

important characteristic is about the order of accuracy of the errors. The 

time symmetry of this method reduces the level of errors introduced into the 

integration by calculating the position at the next time step. The Taylor 

expansions at time 𝑡 = 𝑡𝑛 of the position vector in different time directions 

are: 

 

𝒓(𝑡 + ∆𝑡) = 𝒓(𝑡) + 𝒗(𝑡)∆𝑡 +
1

2
𝒂(𝑡)∆𝑡2 +

1

6
𝒃(𝑡)∆𝑡3 +  𝑂(∆𝑡4). (4.7) 

 

𝒓(𝑡 − ∆𝑡) = 𝒓(𝑡) − 𝒗(𝑡)∆𝑡 +
1

2
𝒂(𝑡)∆𝑡2 −

1

6
𝒃(𝑡)∆𝑡3 +  𝑂(∆𝑡4). (4.8) 

 

where and 𝒃 is the jerk (third derivative of the position with respect to the 

time). Adding these two expansions gives: 

 

𝒓(𝑡 + ∆𝑡) = 2𝒓(𝑡) − 𝒓(𝑡 − ∆𝑡) + 𝒂(𝑡)∆𝑡2 + 𝑂(∆𝑡4).   (4.9) 

  

The first and third-order terms from the Taylor expansion cancel out and the 

Verlet integrator is therefore an order more accurate than integration by 

simple Taylor expansion alone.  

In the Basic Verlet equation, as seen above, only the positions are 

explicitly given, but not the velocities. However, velocities are often 

necessary, e.g. for the calculation of certain physical quantities like the 

kinetic energy. The velocity can be estimated using the position terms and 

the mean value theorem, as follows: 
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𝒗(𝑡) =
𝒓(𝑡+∆𝑡)−𝒓(𝑡−∆𝑡)

2∆𝑡
+ 𝑂(∆𝑡2).     (4.10)  

 

The calculation of velocities at time 𝑡 can create technical problems in MD 

simulations, because they cannot be calculated until the positions are known 

at time 𝑡 + ∆𝑡. The velocity term calculated in this way is a step behind the 

position term, since this is at time 𝑡 and not 𝑡 + ∆𝑡. Anyhow, the velocity is 

not used to update the position. Another way to remedy this deficiency is to 

use the Velocity Verlet algorithm, which is presented below. 

 

 

4.2.2 Velocity Verlet algorithm 

 

A commonly used algorithm is the Velocity Verlet, which is 

obtained from the original Verlet algorithm. This method explicitly 

incorporates velocity. First of all, it is useful to derive the following 

expression by Eq. (4.10): 

 

𝒓(𝑡 + ∆𝑡) − 𝒓(𝑡 − ∆𝑡) = 2𝒗(𝑡)∆𝑡.     (4.11)  

 

In order to obtain an equation for the position, the term 𝒓(𝑡 + ∆𝑡) is added 

to both members of the Eq. (4.6), obtaining: 

 

2𝒓(𝑡 + ∆𝑡) = 𝒓(𝑡 + ∆𝑡) − 𝒓(𝑡 − ∆𝑡) + 2𝒓(𝑡) + 𝒂(𝑡)∆𝑡2.  (4.12) 

 

By Eq. (4.11) and Eq. (4.12), the following expression for the position is 

obtained: 
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 𝒓(𝑡 + ∆𝑡) = 𝒓(𝑡) + 𝒗(𝑡)∆𝑡 +
1

2
𝒂(𝑡)∆𝑡2.    (4.13) 

 

In order to obtain an equation for the velocity, we consider the original 

Verlet (Eq. (4.6)) for 𝒓(𝑡) instead of  𝒓(𝑡 + ∆𝑡): 

 

𝒓(𝑡) = 2𝒓(𝑡 − ∆𝑡) − 𝒓(𝑡 − 2∆𝑡) + 𝒂(𝑡 − ∆𝑡)∆𝑡2.   (4.14) 

 

By adding this last equation to Eq. (4.6): 

 

𝒓(𝑡 + ∆𝑡) − 𝒓(𝑡 − ∆𝑡) = 

= 𝒓(𝑡) − 𝒓(𝑡 − 2∆𝑡) + [𝒂(𝑡 − ∆𝑡) + 𝒂(𝑡)]∆𝑡2.   (4.15) 

 

From Eq. (4.1) and Eq. (4.15):   

 

𝟐𝒗(𝑡)∆𝑡 = 𝒓(𝑡) − 𝒓(𝑡 − 2∆𝑡) + [𝒂(𝑡 − ∆𝑡) + 𝒂(𝑡)]∆𝑡2.  (4.16) 

 

The Eq. (4.11) at the time 𝑡 − ∆𝑡 is: 

 

𝒓(𝑡) − 𝒓(𝑡 − 2∆𝑡) = 2𝒗(𝑡 − ∆𝑡)∆𝑡.     (4.17) 

 

From Eq. (4.16) and Eq. (4.17): 

 

𝒗(𝑡) = 𝒗(𝑡 − ∆𝑡) +
𝒂(𝑡−∆𝑡)+𝒂(𝑡)

2
∆𝑡,     (4.18) 
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and, shifting the time step by one: 

 

𝒗(𝑡 + ∆𝑡) = 𝒗(𝑡) +
𝒂(𝑡)+𝒂(𝑡+∆𝑡)

2
∆𝑡.     (4.19) 

 

In the end, the standard implementation scheme of the Velocity Verlet 

algorithm consists in the following steps: 

 

 calculate  𝒓(𝑡 + ∆𝑡) = 𝒓(𝑡) + 𝒗(𝑡)∆𝑡 +
1

2
𝒂(𝑡)∆𝑡2; (4.20) 

 

 derive  𝒂(𝑡 + ∆𝑡) using 𝒓(𝑡 + ∆𝑡); 

 

 calculate  𝒗(𝑡 + ∆𝑡) = 𝒗(𝑡) +
𝒂(𝑡)+𝒂(𝑡+∆𝑡)

2
∆𝑡.  (4.21) 

 

One peculiarity of this method must be noted: the values 𝒓(𝑡 + ∆𝑡) is 

calculated as a function of 𝒓(𝑡), 𝒗(𝑡) and 𝒂(𝑡) (quantities relative the 

previous time step), while 𝒗(𝑡 + ∆𝑡) is calculated as a function of 𝒗(𝑡), 

𝒂(𝑡) and 𝒂(𝑡 + ∆𝑡). The velocity at the time 𝑡 + ∆𝑡 thus depends also on 

the acceleration value calculated at the same time step and not only at the 

previous.  

This formulation of the Verlet algorithm is completely equivalent to that of 

Eq. (4.3) as far as the propagation of the position is concerned. It should be 

noted, however, that this algorithm assumes that acceleration only depends 

on position and does not depend on velocity. In the case of analytic 

formulations of the dependence of 𝒂(𝑡 + ∆𝑡) on the velocity, we can 

consider Eq. (4.21) an implicit equation for the evaluation of  𝒗(𝑡 + ∆𝑡) 
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provided that a single value solution can be found. This is the case of the 

drag forces we introduce in Chap. 5 to simulate correctly the EMPs kinetics 

in a fluid medium.  

It can be shown that the error on the Velocity Verlet is of the same order as 

the Basic Verlet [62]. Stability of the technique depends heavily upon a 

uniform update rate and the ability to accurately identify positions at a small 

time ∆𝑡 into the past.  

 

 

4.3 MD-FEM  algorithm 

 

Our code aims at evaluating the evolution of a system of e.mec. 

particles by using MD techniques for the integration of the equations of 

motion. In this section we outline the implemented algorithm while some 

details and some extracts of the code are reported in the Appendix E. In the 

formulation here presented, the rotation of particles is neglected; this is a 

reliable approximation for the majority of real EMP systems. A 

generalization of the method which considers rotation is presented in Chap. 

6. The simulation of particles’ kinetics then consists of a sequence of loops 

with the following steps: system configuration preparation from the known 

positions and velocities of the particles; calculation of forces acting on the 

particles and then of the corresponding accelerations; integration of the 

equations of motion for a suitable time increment; new configuration 

setting. The calculation of the e.mec. force acting on the particles needs the 

solution of the Laplace’s problem (see Sec. 1.4) with a complex potential 

variable in a 3D geometry, i.e. the corresponding PDE needs to be solved in 
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a numerical domain reproducing the system configuration (sources, medium 

and particles). Other eventual single particle forces are instead calculated by 

means of analytic expression (see Chap. 5). 

The complex Laplace equation is solved using a Finite Element 

Method. In particular, in the code the corresponding Python methods, 

implementing calls to the FEniCS routines, are integrated. As already 

discussed in the section 3.5.1, FEniCS is an open source software package 

that offers a complete platform for solving PDE with the use of FEM. For 

the 3D computational mesh generation relative to the system configuration 

our code instead integrates Gmsh, which is an again open-source computer-

aided engineering platform which operates on the basis of parametric inputs. 

We have coded in Python an interface which transforms the system 

configuration in a Gmsh input file (i.e. .geo format, see the Gmsh manual at 

the web page [79]) driving the mesh building. This interface allows the 

interaction between the FEM part and the MD part of the code. Finally, the 

particle-like Molecular Dynamics technique extracts the forces from the 

FEM continuum solution in the so-called Coupled MD-FEM technique. The 

steps of the simulations are analyzed in the following.  

 

Computational domain. 

 

Figure 2 shows the procedure to simulate the system evolution. A 

number of particles with their initial position and velocities, at the instant t0, 

are considered. The first step of the simulations is to create, through the 

functionality of Gmsh, the mesh relative to the spheres (which represent the 

particles) embedded in the box (which represents the micro-fluidic channel) 
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including also the electrode geometries. All these portions of the numerical 

domain are merged in a single mesh, but it is necessary to identify and label 

them in a univocal way. Note that the dimensions of the particles and 

simulation box entities as well as the local resolution of the mesh in the 

different geometric elements can be defined independently.  

 

 

FEM solutions and forces’ estimates. 

 

The second step is the solution of Laplace’s problem, which is a 

prerogative of FEniCS. Dirichlet boundary conditions for the applied 

potentials on the electrodes and on the micro-channel top surface are used 

(see also Chap. 5), whereas Neumann boundary conditions are used for most 

other exterior boundaries to model their electrical insulation. Eventual 

periodic boundary conditions can be also activated if necessary. Using the 

FEM solution (i.e. the distribution of the complex potential in the space), by 

applying some FEniCS functionalities the following quantities are 

calculated:  

 

 the values of the electric field;  

 

 the MST by Eq. (1.27); 

 

 〈𝑭𝑀𝑆𝑇〉 by Eq. (1.29).  
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After this computationally intensive part, the single particle interactions are 

calculated from the analytic expressions which depend on the velocity field 

of the fluid (see also Chap. 5).  

 

Integration of the Equations of the motion and steric interactions. 

 

The accelerations of the particles from the resulting forces are calculated 

and the numerical integration of the equations of motion is performed by 

means of the Velocity Verlet method technique (Eqs (4.20) and (4.21)). 

The MD step includes control instructions on steric particle-particle and 

particle-wall interactions, which can be also considered as particular 

particle-particle interactions. Indeed, particles must never exceed the walls 

of the simulation box in their dynamics. Moreover, particles must not 

penetrate each other. For each MD step, checks are carried out: if one or 

both of these events occur, one check modifies the velocities and positions 

of the particles as explained below. The interaction between the particles 

and the walls is conceived in terms of an elastic impact: if a particle is found 

to have crossed the wall of the box in an MD step, its center is associated 

with a new value of speed (the opposite vector with respect to the one it 

had) and with the position occupied before crossing the wall. In the case of 

overlapping between particles, they are separated from each other, along the 

center-center direction, by a minimum distance so that they do not penetrate 

each other. Unlike in the case of particle-wall interaction, the check in this 

case does not change the particle speeds but only their positions. In other 

words, the problem is not treated in terms of elastic impact. This procedure 

is motivated by the presence of the drag force which depends on the speed. 
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It is assumed that the drag force strongly influences the particle-particle 

interaction modifying immediately the effects of the elastic impact. Such 

procedures avoid non-physical situations, which, among other, lead to 

conflicts in the generation of the mesh of the box and sub-domains at the 

FEM computational phase. See Appendix E for more details. 

It is evident that MD-FEM coupling implies considerable computational 

resources, since the result obtained in a calculation cycle constitutes the 

initial condition of a further cycle relative to the following time step and 

both re-meshing and FEM procedures have to be performed at each iteration 

cycle. In order to optimize simulation times, the calculation of the e.m. force 

is decoupled from the analytical calculation of other forces (which is 

significantly faster). The e.m. forces usually show appreciable variations on 

time scales larger with respect to the optimal values of the MD increment 

∆𝑡, which in turn is ruled by the other forces and steric interactions. 

Consequently, two time steps are introduced: ∆𝑡, already seen in the 

equations of the Velocity Verlet algorithm, which optimizes the calculation 

of the drag and lift forces and of steric interactions, and ∆𝑡𝐷𝐸𝑃, i.e. the time 

interval between one re-meshing and FEM calculation and the subsequent 

one. The first type of cycle is performed for  𝑡 = 𝑛∆𝑡 while the second type 

is performed for 𝑡 = 𝑛𝐷𝐸𝑃∆𝑡𝐷𝐸𝑃, where 𝑛 and 𝑛𝐷𝐸𝑃 are integers greater than 

zero, such that 𝑛/𝑛𝐷𝐸𝑃 = ∆𝑡𝐷𝐸𝑃/∆𝑡. 

This decoupled method is clearly more efficient. Figure 4.1 shows a 

block diagram of this MD-FEM algorithm. 
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Fig. 4.1 Block diagram of MD-FEM algorithm. 𝑛 and  𝑛𝐷𝐸𝑃 are  integers greater than zero 

such that 𝑛/𝑛𝐷𝐸𝑃 = ∆𝑡𝐷𝐸𝑃/∆𝑡. 

 

 

4.4 Conclusions 
 

In this section we have described the MD-FEM algorithm 

implemented in our code for the simulation of EMPs dynamics. The 

formalism here described is appropriate for the prediction of the 

translational motion of the particles. In the next chapter, we apply the 

method to realistic systems of EMPs which can be experimentally realized 

also for practical application in the field of cell sorting. We note that 

additional (minor) formalism extension (Sec. 5.1), dealing with the external 

interactions, is needed for the particular application described in the 

following; whilst the method here presented could be easily generalized for 

other EMPs’ systems. We notice that external interactions are somewhat 

typical of the given realization of the EMP system as a consequence they 

need in any case an “ad hoc” formulation.   
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Chapter 5 
 

Simulated evolution of EMPs systems 
 

 

This Chapter focuses on the theoretical study of the dynamics of 

spherical EMPs suspended in a colloidal solution in the presence of a non-

uniform variable electric field. The numerical simulations of the model 

system aim at providing predictions of both stable configurations of the 

particles and their dynamics in fully three-dimensional configurations, 

minimizing the approximations usually considered in models of mutual 

interactions.  

As cases of study that will be deeply analyzed, systems of practical 

interest have been chosen consisting of biological cells dispersed in a 

colloidal solution (of which the typical characteristics of interest are 

reported in the literature) that flow into a microfluidic channel in the 

presence of electromagnetic fields. In Chap. 1 it was seen that the 

dielectrophoretic force has the potential to manipulate micrometric particles 

according to their morphological and dielectric characteristics. This 

potential could be in principle exploited in the clinical field to 

separate/select/capture the so-called Circulating Tumor Cells (CTCs) in a 

hematological sample with high resolution and sensitivity. According the 

discussion reported in section 1.3.1 for generic particles, in sorting operation 

mode two types of cells (one of them tumoral) are suspended in a colloidal 

solution within a microfluidic device and subjected to a non-uniform 

variable electric field, and its frequency can be chosen for the capturing and 

https://www.qiagen.com/au/qdm/lbs/liquid-biopsy-ctc/
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separations in a way that the tumoral type experiences p-DEP and the 

second type experiences n-DEP. For further details, Appendix C contains: a 

more accurate definition of CTCs, a discussion on their clinical effects and 

on the role that their study can play in the diagnostic and prognostic fields, a 

qualitative discussion on microfluidic devices based on dielectrophoresis. 

The examples of the method’s application will focus on DEP induced 

translation of spherical particles (in particular a dielectric model of: MDA-

MB-231 tumor cells, B-Lymphocites and mixtures of them).  

A detailed study is carried out, with a non-approximate calculation 

of the forces, which are estimated by integrating the MST over the surfaces 

of the particles. As presented in the previous chapters, the evolution is 

simulated by techniques borrowed from MD, whilst the FEM is applied to 

obtain self-consistent numerical solutions of the partial differential 

equations regarding the e.m. field. The Coupled MD-FEM algorithm and its 

implementation in the FEniCS environment is used. 

This chapter consists of the following sections: 

 

5.1 Single particle external interactions: the forces (in addition to 

the electromagnetic forces) to which the particles are 

subjected in the microfluidic channel are defined and 

described; 

 

5.2 Particle model: a model taking into account the structural 

complexity of cells is introduced; 
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5.3 Model validation for simple configurations: simulations 

carried out on simple configurations are presented in order to 

validate the implemented model; 

 

5.4 MD-FEM simulations results in many particle systems: 

simulation results are presented and discussed. 

 

5.5 Geometry’ effects: results of simulations carried out with 

geometries different from those of section 5.4 are presented. 

 

 

5.1 Single particle external interactions  

 

For realistic simulations, other forces must also be taken into account 

in addition to the e.mec. forces. EMPs, in usual conditions induced in 

manipulation experiments, are not only subjected to e.m. fields, but also to 

hydrodynamic pressure fields and to gravity. These external interactions act 

on single particles and for spherical ones can be expressed as analytical 

expressions of their kinetic variables. We note that in general the colloidal 

solution containing the EMPs is not static, although some case studies will 

be discussed in the limit of static solutions. In the following the formulation 

of single particle forces included in the simulation method is given.  
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Drag force 

 

The viscous drag force stemming from the viscosity of the medium is 

given for a spherical object by [26, 80]: 

 

𝑭𝑑𝑟𝑎𝑔 = 6𝜋𝜇𝑅(𝒖 − 𝒗)      (5.1) 

 

where 𝜇 is the dynamic viscosity, 𝒖 is the local velocity of the fluid and 𝒗 is 

the instantaneous velocity of the particle. The Eq. (5.1) is referred as the 

Stokes’s law [81]. 

 

 

Lift force 

 

The lift force, due to the non-negligible velocity gradient of the fluid 

across the particle surface, is also present [82, 83] and it is particularly 

important close to the sidewalls of the channel containing the solution. In 

the application of MD-FEM method in this Thesis, a micro-fluidic channel 

with parallel sidewalls and small dimensions will be considered, where the 

fluid flow can be assumed to be laminar since the Reynolds-number is of the 

order of 10
-1

. In these conditions, the shape of the flow profile in the vertical 

direction of the channel depends by the chamber height ℎ. The analytical 

solution of the fluid velocity field is the parabolic flow profile [28]: 

 

𝑢(𝑧) = 4 𝑢𝑚𝑎𝑥  
𝑧

ℎ
  
ℎ−𝑧

ℎ
,      (5.2) 
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where z is the distance of the particle center from the bottom of the channel 

and 

 

𝑢𝑚𝑎𝑥 = 𝑢 (
ℎ

2
)  

 

is the velocity of the fluid at the center of the channel, as shown in Fig. 5.1. 

It is important to note that:  

 

𝑢(0) =  𝑢(ℎ) = 0.  

 

The expression of Eq. (5.2) can be written also in terms of the average 

velocity 𝑢̅ [84]: 

 

𝑢(𝑧) = 6 𝑢̅  
𝑧

ℎ
  
ℎ−𝑧

ℎ
.       (5.3) 

 

In fact, by Eq. (5.3): 

 

1

ℎ
∫ 𝑢(𝑧)
ℎ

0
𝑑𝑧 =

1

ℎ
∫ 6𝑢̅  

𝑧

ℎ
  
ℎ−𝑧

ℎ

ℎ

0
𝑑𝑧 = 𝑢̅.    (5.4) 

 

The lift force arises because of the fluid viscous flow on particles close to a 

solid plane, causing their levitation [85] and, in this particular channel 

geometry, it is perpendicular to the bottom and directed towards the center 

of the channel. Its intensity is directly proportional to the gradient of the 

curve describing the fluid velocity (Eq. (5.2)) and it takes the following 

form [86]: 
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𝐹𝑙𝑖𝑓𝑡 =
𝐶𝜇𝑅3

(𝑧−𝑅)
 
𝑑

𝑑𝑧
𝑢(𝑧)|

𝑧=0
=

4𝐶𝜇𝑅3𝑢𝑚𝑎𝑥

ℎ(𝑧−𝑅)
,    (5.5) 

 

where C=0.153 [
87

].  

   

 

Fig. 5.1 Parabolic velocity profile for a fluid flowing through a microfluidic channel of 

height ℎ; 𝑢(0) =  𝑢(ℎ) = 0; 𝑢𝑚𝑎𝑥 = 𝑢 (
ℎ

2
). 

 

 

Gravitational force 

  

The summation of gravitational force acting on spherical cells and 

the buoyancy force (due to the density of the surrounding fluid and the 

amount of fluid displaced by the particles) is: 

 

𝑭𝒈,𝑩 =
4

3
𝜋𝑅3(𝜌𝑝 − 𝜌𝑚)g,      (5.6) 
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where 𝜌𝑝 and 𝜌𝑚 are the particle and suspension medium density 

respectively and g is the acceleration due to gravity.  

Summarizing from the considerations of this section, the forces 

acting on the particles are: 

 

along x-axis: 〈𝐹𝑥
𝑀𝑆𝑇〉 and viscous drag force; 

along y-axis: 〈𝐹𝑦
𝑀𝑆𝑇〉 and viscous drag force; 

along z-axis: 〈𝐹𝑧
𝑀𝑆𝑇〉, viscous drag force, lift force, gravity and buoyancy 

force. 

 

 

5.2 Particle Model  

 

It is clear from Eq. (1.32) that it is necessary to know the complex 

dielectric constant of the particles at the operational angular frequency  for 

calculating the dielectrophoretic force. In the application examples of the 

MD-FEM method we consider biological cells, therefore a derivation of the 

dielectric parameter for such particular system is necessary. The expression 

first introduced by Pohl is based on modeling the cell as a solid spherical 

dielectric particle suspended in a fluid medium. CTCs are often modeled as 

rigid spheres [88]. However, biological particles are complex and 

heterogeneous structures with multiple layers having distinct electrical 

properties [89]. The cells have in general a so-called cell wall, this is a 

structure that provides rigidity and shape retention and also represents a 

physical and chemical barrier. Protoplasts are particles prepared by treating 



105 
 

walled cells with special enzymes to digest the wall. Their form is typically 

balloon-like. They are very fragile due to the absence of cell wall. Such 

protoplasts can be outlined as particles with a conductive fluid interior 

(cytoplasm) enclosed by a very thin capacitive layer (membrane). Typical 

mammalian cells are structurally similar to protoplasts [90, 91], although 

smaller and less fragile: most of them lack indeed the cell wall, consist of a 

conducting cytoplasm surrounded by an insulating membrane and exhibit a 

very similar polarization response. The cell membrane is a semipermeable 

phospholipidic bi-layer with the presence of some internal specific proteins. 

It is very thin (about 10 nm). Biochemistry and biomedicine investigate the 

vital function of the cells which is severely dependent on the activity of the 

membrane cell. Indeed, the membrane promotes the two-way exchange for 

(i) life-sustaining nutrients and regulatory substances required by the cell’s 

metabolism and (ii) waste materials excreted from the cell. It is important to 

investigate the membrane’s average dielectric properties, with the aim of 

studying the behaviour of the cells when they undergo to an e.m. field.  The 

drop in DC electrical potential that membranes can typically withstand 

without being damaged is typically about one volt, corresponding to an 

effective dielectric strength of ~10
8
 V/m, a value that is sustainable in few, 

if any, dielectric insulating synthetic materials [23]. 

Since its phospholipidic nature, the membrane behaves like a very low loss 

capacitor, blocking low frequency electric fields and electric current from 

the cytoplasm, which is a quite complex aqueous ionic fluid containing the 

nucleus and other several functional organules.  

On the basis of the above, in biological dielectrophoresis it is 

essential to adopt trusted dielectric models for protoplasts. A more realistic 
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model for cells has consequently been adopted in this work: the cell is 

represented by a spherical dielectric core and a spherical dielectric shell to 

account specifically for the dielectric properties (conductivity and 

permittivity) of the cytoplasm and of the membrane respectively. Despite 

the complexity of the cytoplasm, simplified models are usually adopted to 

overall describe the interior of cell system, taking into account the average 

dielectric properties of the cytoplasm itself. A homogeneous model with 

dielectric permittivity 𝜀𝑐𝑦𝑡  and ohmic conductivity 𝜎𝑐𝑦𝑡 is adopted. As well, 

the cell membranes are typically characterized by dielectric permittivity 

𝜀𝑚𝑒𝑚 and ohmic conductivity 𝜎𝑚𝑒𝑚. This shelled model is shown in Fig. 

5.2(a). The liquid medium is similarly described by 𝜀𝑚 and 𝜎𝑚. The complex 

permittivities of the cytoplasm, membrane and liquid medium are:  

 

𝜀𝑐̃𝑦𝑡 = 𝜀𝑐𝑦𝑡 − 𝑖𝜎𝑐𝑦𝑡/𝜔, 

 

𝜀𝑚̃𝑒𝑚 = 𝜀𝑚𝑒𝑚 − 𝑖𝜎𝑚𝑒𝑚/𝜔, 

 

𝜀𝑚̃ = 𝜀𝑚𝑒𝑚 − 𝑖𝜎𝑚/𝜔. 

 

The cell radius is R, d is the membrane thickness, the difference R-d is the 

cytoplasm radius.  

The “effective electrical permittivity” 𝜀𝑒̃𝑓𝑓 method is applied taking into 

account the properties of these two different parts of the cell [92]: it can be 

shown that the induced electrostatic potential outside the particle, that is for 
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|r| >R, is indistinguishable from that of the equivalent, homogeneous 

dielectric sphere of radius R with permittivity 𝜀𝑒̃𝑓𝑓, as shown in Fig. 5.2(b). 

 

 

Fig. 5.2 (a): Spherical dielectric cell composed of the cytoplasm (inner volume) and the 

membrane (light brown shell). (b) Effective equivalent homogeneous sphere model ruled 

by the dielectric function 𝜀𝑒̃𝑓𝑓. 

 

The particle is thus replaced by an equivalent and homogeneous sphere with 

a radius equal to that of the outermost shell but with different dielectric 

characteristics represented by 𝜀𝑒̃𝑓𝑓. The complex dielectric constant 𝜀𝑒̃𝑓𝑓 has 

the following form (see Appendix C): 

 

𝜀𝑒̃𝑓𝑓 = 𝜀𝑚̃𝑒𝑚
(
𝑅

𝑅−𝑑
)
3
+ 2 

𝜀̃𝑐𝑦𝑡−𝜀̃𝑚𝑒𝑚

𝜀̃𝑐𝑦𝑡+2𝜀̃𝑚𝑒𝑚

(
𝑅

𝑅−𝑑
)
3
− 

𝜀̃𝑐𝑦𝑡−𝜀̃𝑚𝑒𝑚

𝜀̃𝑐𝑦𝑡+2𝜀̃𝑚𝑒𝑚

.     (5.7) 

 

In the final analysis, the quantity 𝜀𝑝̃ present in the equations in the preceding 

chapters must be replaced by the 𝜀𝑒̃𝑓𝑓 (for example in the definition of the 

CM factor of Eq. (1.15)).  
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5.3 Model validation for simple configurations 
 

The simulations presented in this section concern a simple device 

configuration to validate our numerical approach based on the MD-FEM 

technique: the parallel plate capacitor. The electric field is generated by the 

two parallel electrodes separated by a distance ℎ. The only component of 

electric field different from zero is that along the direction perpendicular to 

the plates and its value in module is: 

 

E=V/h, 

 

where V is the electric potential drop across the plates. The first system 

considered is a single particle immersed in a fluid present inside the 

capacitor. For this particle, the electrical parameters representative of the B-

Lymphocites cell (which has been well characterized [
93

, 
94

]) are used. These 

and similar values for the liquid medium, typical for isotonic water 

solutions, are given in the Table 1. 

 

 

 

 

 

 

 

 



109 
 

 Permittivity 
(in unit of vacuum 

permittivity 𝜀0 = 8.854 F/m) 

Conductivity 

(S/m) 

B- Lymphocyte 

membrane 

𝜀𝑚𝑒𝑚 = 14.26 𝜎𝑚𝑒𝑚 = 1 ∙ 10−6 

B- Lymphocyte 

cytoplasm 

𝜀𝑐𝑦𝑡 = 59  𝜎𝑐𝑦𝑡 = 0.31  

Liquid medium 𝜀𝑚 = 79 𝜎𝑚 = 0.03  

 

Tab. 1 Electrical parameters of the cytoplasm and the membrane of B- Lymphocytes and of 

the liquid medium. 

 

 

The properties of  B-Lymphocites are [
95

]:  

 

 radius:    R = 3.3 μm; 

 membrane thickness:  d = 10 nm; 

 mass density:   𝜌 = 1065 Kg/m
3
. 

 

In the calculation, the drop of potential between the plates of the capacitor is 

V=10 Volt, while the frequency of the electric field is 𝜈 = 1 𝑀𝐻𝑧 (the 

angular frequency is 𝜔 = 2𝜋𝜈) and ℎ = 500 𝜇𝑚. 

The DEP force values calculated by the approximate formula of Eq. (1.14) 

are equal to zero as the electric field is constant inside the capacitor. The 

force calculated by MST has instead values different from zero due to the 

alteration induced to the total electric field by the particle in the electrode 

proximity (see Ref. [17] for a complete discussion). 
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The results are compared with those of Ref. [17] to validate the MD-FEM 

approach. In this reference the calculations are made by Comsol 

Multiphisycs [50], which is a commercial solver and simulation software 

based on finite element analysis. It is important to note that in Comsol it is 

possible to use the function “dielectrophoretic force” present in its functions 

library. Figure 5.4 shows the comparison between the values of F
MST

 for 

several particle-electrode distance values present in Ref. [17] and the 

analogous values calculated by MD-FEM approach. The value of F
MST

 is 

stronger close to the plate and becomes less intense as it moves away. 

 

Fig. 5.3 Comparison between the values of F
MST

 present in reference [17], obtained by 

Comsol, and the values calculated in the Gmsh-FEniCS implementation of the e.mec. force 

calculation.  
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The results are very similar to the ones obtained by Comsol in Ref. [17], 

whereas small differences are due to the different meshes and numerical 

integration schemes employed. 

The second check of our code is done considering two particles (B-

Lymphocites) in a capacitor like configuration of the device similar to that 

of the previous case. In the presence of an electric field, the formation of 

chains of particles is predicted [96]. It consists in the end-to-end attachment 

of particles, which assume a formation similar to that of a chain of pearls. 

The formation of particle chains is a phenomenon mainly due to the 

electrostatic interactions among the particles under the effects of the electric 

field. It occurs because the particles acquire induced dipole moments under 

the field action: if two particles are close to each other, the positive charge 

of the dipole of the first particle interacts with the negative charge of the 

dipole of the second; hence, they experience an attractive force which links 

them together. Pearl chains are formed only when the particles come close 

to each other and this phenomenon can be neglected in the dilute solution 

limit, when the particles are separated by large distances. As for elongated 

single particles (including biological cells), a frequency dependent 

orientation effect is expected for chains of homogeneous conducting 

dielectric spheres suspended in fluids and subjected to an electric field [97]: 

chains are predicted to align with the vector joining the centers parallel to 

the field direction. The formation of chains is a common occurrence in DEP 

experiments on biological cells. In this analysis, we consider the kinetics of 

chain formation for Lymphocytes. 

 The drop of potential between the plates of the capacitor is V=10 

Volt, the frequency of the electric field is 𝜈 = 1 𝑀𝐻𝑧, ℎ = 100 𝜇𝑚. Figure 



112 
 

5.4(a) shows the particles in the initial configuration, at time t=0 sec. 

Figures 5.4(b), 5.4(c) and 5.4(d) show the particles in successive instants, 

after application of a uniform electric field directed along the z-axis: a chain 

forms, due to the polarization of the particles, and also aligns itself with the 

electric field as time passes. 

 

 

Fig. 5.4 Snapshots of a simulation of two particles in a parallel plate capacitor for 𝑡 =0, 0.1, 

0.15, 0.21 sec ((a), (b), (c), (d) respectively). The particles attract and form a chain that 

aligns with the electric field and remains in this stable configuration for the rest of the 

simulated evolution. 
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5.4 MD-FEM simulation results in many particle systems  
 

In this section some results of the application of our MD-FEM method 

to many-particle systems are discussed. They reproduce the condition of real 

manipulation experiments where DEP forces are induced on cells.   

The non-uniform electric field used in DEP applications is typically 

produced by electrodes with feature size in the scale of microns in order to 

reduce suitably the value of the applied voltage [98]. Several electrode 

geometries have been developed according to the particular application 

scopes. Lithography techniques are typically used to pattern planar 

electrodes on the bottom of the micro-channel and examples of planar 

electrode designs include inter-digitated [99], castellated, spiral [100], 

curved [101], oblique [102], quadrupole [103], matrix [104] and polynomial 

[105] electrodes.  

In particular, the prototype devices for cell capture/separation have planar 

electrodes. The devices are composed of the following parts:  

 

 a micro-fluidic channel (where the colloidal solution flows); 

 

 electrodes made with a geometry such as to generate a non-uniform 

electric field when they are subjected to an alternating electric 

signal. 

In order to apply the method to a particular application example, the 

geometry used in this work is the inter-digitated circuit (shown in Fig. 5.5) 

which is assumed to be incorporated in one boundary of the micro-fluidic 

channel. 
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Fig. 5.5 Schematic of an inter-digitated circuit. An alternating signal is applied to the 

electrodes in red while V=0 is imposed to electrodes in blue. 

 

An alternating signal is applied to the odd-position electrodes (shown in red 

in Fig. 5.5), while the even-position electrodes (blue in Fig. 5.5) are 

potential-free (V=0). The simulated system consists of cells in colloidal 

solution in a liquid medium that flows through the microfluidic channel. 

The channel is represented in the simulations by a box (parallelepiped): in 

its base the surface mesh region is identified, in which the electrical signal is 

applied. 

It is necessary to make some assumptions to perform the simulations:  

 

 each individual “finger” comprising the inter-digitated electrode 

array is sufficiently long such that the fringe effect at the end of the 

fingers is negligible;  

 

 ohmic heating due to the applied voltage is not large enough to cause 

flows or changes in the physical constants [106, 107] (an 

approximate calculation shows that the temperature rise for this type 

of application will be less than 0.15 ◦C; consequently, this is a valid 

assumption [108]). 
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The micro-fluidic chamber is simulated according to these assumptions. 

The channel is composed by N electrodes. Electrode thickness was ignored. 

Figure 5.6 shows a schematic representation of the geometry of the 

simulations, which includes the substrate, channel cover and two fingers of 

inter-digitated electrodes. We is the width of the electrodes, Wg is the width 

of the gap between a pair of electrodes and h is the height of the micro-

channel. Appendix C (Section C.2) provides some details on the materials 

typically used in the construction of such microchannels and on the typical 

prototype dimensions. 

 

 

Fig. 5.6 Schematic of the computational domain (limited for simplicity to only two 

electrodes whilst in the simulation N electrodes are considered). The electrodes (in blue) 

have a width We and are separated by a gap of width Wg.  
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The results of simulations of the dynamics of the system composed by a 

colloidal solution of cells in the microfluidic system with interdigitated 

electrodes are presented below. Two types of simulations are performed: 

 

 (a) twenty MDA-MB-231 cells under p-DEP conditions; 

 

 (b) ten MDA-MB-231 cells and ten B-Lymphocites, in p-DEP and n-

DEP respectively.  

 

 

5.4.1 Case (a): MDA-MD-231 cells 

 

In the case of simulation (a), the electrical parameters representative 

of MDA-MB-231 cells [
109

] are used. Table 2 shows these values and the 

medium analogues. 

 

 Permittivity 
(in unit of vacuum permittivity 𝜀0 =

8.854 F/m) 

Conductivity 

(S/m) 

MDA-MB-231 

membrane 

𝜀𝑚𝑒𝑚 = 24 𝜎𝑚𝑒𝑚 = 1 ∙ 10−7  

MDA-MB-231 

cytoplasm 

𝜀𝑐𝑦𝑡 = 50 𝜎𝑐𝑦𝑡 = 0.2  

Liquid medium 𝜀𝑚 = 79  𝜎𝑚 = 0.03  

Tab 2. Electrical parameters of the cytoplasm and the membrane of MDA-MD-231 cells 

and of the liquid medium.  
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The properties of MDA-MB-231 cells are [94, 109]:  

 radius:    R = 6.2 μm; 

 membrane thickness:  d = 10 nm; 

 mass density:   𝜌 = 1060 Kg/m
3
. 

 

The medium liquid is characterized by: 

 dynamic viscosity:  𝜇 = 0.001 Pa sec; 

 maximum velocity:  𝑢𝑚𝑎𝑥 = 100 μm/sec; 

 mass density:   𝜌 = 1000 Kg/m
3
. 

 

The following parameters are also used for the box simulation: 

 width of the electrodes: We =  40  𝜇𝑚;  

 gap between them: Wg = 40  𝜇𝑚; 

 dimensions of the microchannel: (960x60x100)  𝜇𝑚3 (for the 

length, depht and height, respectively); 

 number of electrodes: 12.  

 

The time steps, calibrated in order to ensure stability and time accuracy to 

the explicit MD integration method (no significant improvement can be 

achieved reducing further these values), were: 

 ∆𝑡 = 3 ∙ 10−5 𝑠𝑒𝑐; 

 ∆𝑡𝐷𝐸𝑃 = 6 ∙ 10
−4 𝑠𝑒𝑐. 

The e.m. force varies as a function of the magnitude and frequency of the 

input voltage and a high voltage should be applied to generate intense DEP 

forces, but excessive loading can cause cell damage (harm cell viability) 

[110] or electro-thermal flows. For these reasons, a tradeoff between DEP 
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intensity and safe conditions for the biological system was considered in the 

experimental conditions, and usually voltages less than 10 Vp-p were applied. 

The following values have been used in the simulation: 

 

 potential applied to the set of odd electrodes: V=5 Volt; 

 potential applied to the set of odd electrodes: V = 0; 

 frequency: 𝜈 = 1 𝑀𝐻𝑧. 

 

The boundary conditions, in addition to the predefined voltages on 

the electrode surfaces, consist of insulation (Neumann-type boundary 

condition) on the channel walls, because of the large difference between the 

permittivities and the conductivities of the liquid medium and the channel 

material, which is either glass or polymer-based in the majority of the cases. 

Neumann type boundary conditions were also applied in the surface regions 

of the micro-channel base that were not covered by electrodes.  

As initial condition, the particles were arranged in a configuration 

characterized by random positions, concentrated in the left side of the 

channel, corresponding to about a third of the total volume (i.e. a local 

injection of particles was reproduced).  

During the simulation, the self-consistent FEM solutions of Eq. 

(1.32) were calculated considering the instantaneous configuration of the 

system. As an example in the Fig. 5.7 the solution of the time harmonic 

Laplace’s problem at t = 0.6 sec, relatively to four sections of the 

microfluidic channel, is shown: the first crosses the channel in x = 60 𝜇𝑚 

plane, the second in x = 220 𝜇𝑚, the third in x = 540 𝜇𝑚 and the fourth in x 

= 880 𝜇𝑚. In this instant, some particles are located at the edges of the 
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electrode centered in x = 40 𝜇𝑚 and of the second centered in x = 220 𝜇𝑚. 

The perturbations to the potential generated by the external field due to the 

particle presence (and corresponding polarization) can be seen in the 

sections. 

 

 

Fig. 5.7 Solution of Laplace’s problem at 𝑡 = 0.6 sec. Top panel, the schematic of the 

microfluidic channel in which the solution of the Laplace equation relative to the sections 

passing through x = 60, 220, 540, 880 𝜇𝑚 is visible. Bottom panel, the front views of the 

slices themselves; in the first two, variations in potential due to the presence of particles can 

be observed. 

 

As can be deduced from Fig. 5.7, the gradient of the electric field is more 

intense in the areas close to the base of the microfluidic channel, and in 

particular in the regions close to the edges of the electrodes. As a result, 
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forces are more intense in these areas. In the snapshots of planes passing 

through x = 60 𝜇𝑚 and x = 220 𝜇𝑚, it is possible to clearly identify the 

effects on the electrical potential due to the presence of particles occupying 

the regions close to the edges of two electrodes. 

An anticipation of the behavior of the cells can be given by the real 

part of the Clausius-Mossotti factor, 𝑓𝐶𝑀. It refers to the calculation of the 

standard DEP force in the approximation of isolated particles on an infinite 

medium (diluted solution limit), but can nevertheless provide a guideline in 

the most realistic cases analyzed with this simulation. Figure 5.8 shows the 

real part of 𝑓𝐶𝑀 of MDA-MB-231. 

 

 

Fig. 5.8 Re{𝑓𝐶𝑀} calculated with the dielectric model of the MDA-MB-231 cell at a 

medium conductivity 𝜎𝑚 = 0.03. 
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For the frequency used in this simulation (𝜈 = 106 Hz), Re{𝑓𝐶𝑀} = 0.643. 

This indicates that MDA-MB-231 cells will be subject to p-DEP and will 

undergo attractive forces from the zones in which the electric field is 

greater. 

Figure 5.9 shows snapshots of the simulation results at several instances of 

time, from t=0 sec to t=5.1 sec (different colours are used to identify the 

cells but, of course, they are identical in terms of dielectric properties). 
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Fig. 5.9. Snapshots of the simulated system (N=20 MDA-MD-231 cells in a flowing colloidal 

solution) for 𝑡 =0, 0.3, 0.6, 1.5, 2.4, 3.3, 4.2, 5.1 sec (from upper panel to lower panel). The 

dimensions of the microchannel are (960x60x100)  𝜇𝑚3 and the number of electrodes is 12. The 

cells are subjected to a p-DEP, i.e. they will tend to move towards high electric field regions. 
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The simulations carried out on this system show, as expected, that the 

particles experience p-DEP and, in particular, they are attracted by the edge 

of the electrode. The particles which have lower distance from the electrode 

are attracted more strongly since the gradient is greater in these regions. In 

the topmost part of the channel, the field is more uniform, so that particles 

in this region of the device will be subjected to less intense attractive forces 

and they continue to advance with minor height reduction. When their 

altitude with respect to the channel base is sufficiently small and they reach 

zones where the non-uniformity of the field is greater, the attraction 

becomes stronger and the trapping effect becomes evident. Figure 5.10 

shows a detailed analysis of the behavior of a particle that, reached a 

sufficiently low height, reverses the direction of motion along the horizontal 

axis, being attracted by the edge of an electrode. The particle is circled in 

the first snapshot of the Fig. 5.10. 
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Fig. 5.10 Snapshots for 𝑡 = 0.3, 0.36, 0.42, 0.48, 0.54 sec (from upper to lower). The 

particle that reverses the direction of motion along the horizontal axis is circled in the upper 

snapshot.  



125 
 

Particles that reach the base of the device and thicken close to the edges 

of the electrodes have small variations of their position as a result of the 

various forces acting on them; anyway it is correct to say that they remain 

trapped in these regions. 

An additional behavior that can be observed, in the case of spatial 

proximity between particles, is the chain formation in dynamical conditions 

caused by mutual polarization. Figure 5.11 shows a more detailed analysis 

of the behavior of a pair of particles that attract each other form a pair 

(chain), which moves as a single object and is attracted by the edge of an 

electrode. The pair is circled in the first snapshot of Fig. 5.11. It is possible 

to note that after the pair formation in the time evolution the two particles 

present a cohesive motion until they reach the bottom, whose influence 

could, of course, overcome particle-particle interactions. 
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Fig. 5.11. Snapshots for 𝑡 = 2.1, 2.4, 2.7, 3, 3.3, 3.6 sec (from upper to lower). The pair of 

particles that form the chain is circled in the upper snapshot.  
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5.4.2 Case (b): two-cell system MDA-MB-231 and B-

Lymphocites 
 

With respect to simulation (b), the morphological and electrical 

characteristics of both cell types have already been listed (see section 5.3 for 

B-Lymphocites and section 5.4.1 for MDA-MD-231). The specifications of 

the liquid medium, the width of the electrodes, the distance between them, 

the time steps (∆𝑡 and ∆𝑡𝐷𝐸𝑃) and the applied electric potential values are 

unchanged. The number of electrodes this time is N=10 and thus the 

dimensions of the microchannel are (800x60x100) 𝜇𝑚3 (for the length, 

depth and height, respectively).  

A relevant parameter that has been modified with respect to the 

previous study of twenty identical particles is the oscillation frequency of 

the electric field: in this second simulation, it has been set to 𝜈 = 105 Hz.  

Figure 5.12 shows Re{𝑓𝐶𝑀} of both cell types (see Appendix F for details). 
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Fig. 5.12 Re{𝑓𝐶𝑀} of the MDA-MB-231 and B-Lymphocites at a medium conductivity 

𝜎𝑚 = 0.03. 

 

For the frequency used in this simulation, 𝜈 = 105 Hz, Re{𝑓𝐶𝑀} has the 

following values for the two cell types: 

  

MDA-MB-231: Re{𝑓𝐶𝑀} = 0.378; 

 

B-Lymphocytes: Re{𝑓𝐶𝑀} = −0.225. 

 

They indicate that MDA-MB-231 cells will be subject to p-DEP and 

attracted to areas where the electrical field intensity is higher (that is from 

the region near the electrodes and especially from their edges), while B-

Lymphocytes will be subject to n-DEP and rejected from this regions. 

Figure 5.13 shows the simulation results at several instances of time, from 

t=0 sec to t=5.1 sec. 
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Fig. 5.13 Snapshots of the simulated system (ten MDA-MD-231 cells and ten B-

Lymphocites in a flowing colloidal solution) for t =0, 0.6, 1.2, 2.4, 3.3, 4.2, 5.1 sec (from 

upper to lower). Dimensions of the microchannel: (800x60x100)  𝜇𝑚3; number of 

electrodes: 10. 
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The simulation follows qualitatively the behaviour predicted for the two 

values of Re{𝑓𝐶𝑀}. The MDA-MB-231 cells are attracted to the electrodes 

as in the case of simulation (a), while B-Lymphocites are rejected and do 

not reach the base of the device. This behavior confirms the 

separation/capture potential of this type of electrophoretic device.  

It is interesting to note that, due to the difference in frequency value, 

the Re{𝑓𝐶𝑀} value relative to MDA-MB-231 cells in this second simulation 

(equal to 0.378)  is lower than in the first simulation (equal to 0.643), so the 

standard DEP forces are on the average less intense this time. 

In simulation (a), in which only MDA-MB-231 cells are present, all 

cells reduce monotonically their altitude over time, due to gravity and e.m. 

forces (p-DEP). It is important to note that in this second simulation two 

MDA-MB-231 cells, precisely the ones that have higher positions, do not 

reduce their elevation monotonically. Analysing the numerical values of the 

z-coordinate for each time cycle, we notice that in some time periods (for 

example around t=3.5 sec) the height of these two particles increases 

slightly. This behaviour is due to particle-particle interactions involving 

these two MDA-MB-231 cells and some B-Lymphocytes that are in their 

spatial proximity. The B-Lymphocytes are rejected by the bottom of the 

device (n-DEP) and they in turn push away from the electrodes the MDA-

MB-231 cells. In order to quantify this effect, we analyse in detail the 

motion of the particle with the highest altitude during the entire simulation. 

Figure 5.14 shows the z-coordinate of this particle as a function of the time 

in one of the time intervals in which a non-monotonic variation of its height 

is provoked by the interaction with the n-DEP type cells. The graph shows 

values taken at regular intervals of 0.06 seconds. 
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Fig. 5.14 z-coordinates of the particle with the highest altitude during the entire simulation, 

in a time interval where it presents a non-monotonic change in altitude. 

 

To highlight this phenomenon, we carried out an additional simulation 

similar to that of the Fig. 5.4 (relative to a pair of B-Lymphocytes), in which 

there are one MDA-MB-231cell and one B-Lymphocyte. The frequency is 

10
5
 Hz (MDA-MB-231 in p-DEP, B-Limphocyte in n-DEP), as the previous 

simulation. The results are shown in Fig. 5.15, for time values equal to those 

of Fig. 5.4. We note that the particles repel each other, contrary to the case 

of Fig. 5.4, where two identical particles in p-DEP conditions attract 

forming a chain. 
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Fig. 5.15 Snapshots of the simulation of one MDA-MD-231 cell and one B-Lymphocyte in 

a parallel flat face capacitor for t =0, 0.1, 0.15, 0.21 sec ((a), (b), (c), (d) respectively). 

Contrary to the case of the Fig. 5.4, the particles repel each other. 

 

 

The behaviour of the two cells can be qualitatively explained by 

considerations regarding the charge densities due to polarization. For the 

used values of permittivity and conductivity of the cells and the medium and 

for the considered frequency value, the qualitative arrangements of the 

charge at the particle-medium interfaces are shown in Fig. 5.16. 
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Fig. 5.16 Qualitative electric charge arrangements at the particle-medium interface for the 

MDA-MD-231 cell and B-Lymphocite. The negative charge densities at the top of the B-

Lymphocite and at the bottom of MDA-MD-231 cause the repulsive force between them. 

 

 

It is important to note that also in this case particle-particle interactions are 

appreciable thanks to the use of the MST. A calculation of the 

dielectrophoretic force carried out using the Standard DEP force (Eq. (1.14)) 

would not have detected this effect and therefore the two MDA-MB-231 

higher positioned would have the same “qualitative” behaviour as the 

others. Standard DEP force utilization could therefore overestimate the 

capture/separation efficiency of real devices. 

 

 

 

 

 



134 
 

5.5 Geometry’s effects 

 

Numerical simulations can be used to optimize the microfluidic 

device geometry and other physical properties, to improve their 

performance. For example, it can be useful to compare different 

arrangements of electrode arrays. Two simulations, indicated by (c) and (d), 

were carried out relating to simulations (a) and (b) respectively, halving the 

values of the width of electrodes and of the gap between them. 

 

 

5.5.1 Case (c): MDA-MD-231 cells 

 

The simulation box of the case (c) differs from the (a) one since the 

following values relative to inter-digitated electrodes are used: 

 width of the electrodes: We =  20  𝜇𝑚;  

 gap between them: Wg = 20  𝜇𝑚; 

 number of electrodes: 24.  

 

Figure 5.17 shows snapshots of the simulation (c) results at the same times 

as in the Figure 5.9, from t=0 sec to t=5.1 sec. The initial configuration is 

equal to that of simulation (a). 
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Fig. 5.17 Snapshots for 𝑡 =0, 0.3, 0.6, 1.5, 2.4, 3.3, 4.2, 5.1 sec (from upper panel to lower 

panel) of simulation (c). Number of electrodes: 24. The cells are subjected to a p-DEP. 
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In simulation (c), at the instant 5.1 seconds, 14 of 20 particles are captured, 

whereas in simulation (a) 16 of 20 particles were captured with the same 

initial configuration (see Fig. 5.9). This result shows the implications of the 

choice of electrode-related parameters on capture efficiency. The 

arrangement of the electrodes in case (c) generates a field with less 

unevenness and therefore the dielectrophoretic forces are less intense. 

 

 

5.5.2 Case (d): two-cell systems: MDA-MD-231 and B-

Lymphocites 

 

The simulation box of case (d) differs from the (b) one since the following 

values relative to inter-digitated electrodes are used: 

 

 width of the electrodes: We =  20  𝜇𝑚;  

 gap between them: Wg = 20  𝜇𝑚; 

 number of electrodes: 20.  

 

Figure 5.18 shows snapshots of the simulation (d) results (from t=0 sec to 

t=5.1 sec). 
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Fig. 5.18 Snapshots for 𝑡 = 0, 0.6, 1.2, 2.4, 3.3, 4.2, 5.1 sec (from upper to lower) of the 

simulation (d). The number of electrodes is 20. 
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From the analysis of the numerical values of the particle altitudes, it can be 

seen that, for each instant, the MDA-MB-231 cells (which are in p-DEP 

condition) are higher than the analogous particles of simulation (b) at the 

same time, while the lymphocytes have lower altitudes compared to their 

counterparts of case (b). This  behaviour is mostly due to the lower 

intensity, compared to case (b), of the dielectrophoretic forces: the MDA-

MD-231 are attracted, and the lymphocytes are rejected, towards the region 

with higher intensity of electric field, but  forces manipulating the cell and 

driving their movement are less intense. We note that in this case, no 

inversion of the vertical movement for MDA-MD-231 cells, discussed in the 

previous section, has been observed.  

     

 

5.6 Conclusions 

 
In this section we have presented the results of MD-FEM simulations of 

the kinetics of realistic systems of EMPs which can be experimentally 

realized. The field-mediated interactions are DEP forces generated by 

electrodes loaded with AC currents and calculated using the Maxwell Stress 

Tensor formalism.  In particular, two types of colloidal solutions that flow 

through micro-fluidic channels with different geometries of the electrode set 

are considered: a solution of MDA-MD-231 tumour cells in p-DEP 

condition and a mixture of MDA-MB-231 cells and B-Lymphocites in p-

DEP and n-DEP conditions, respectively (due to the particular value of the 

AC frequency chosen). These systems are used for practical applications in 

the field of cell sorting. In the case of p-DEP only (i.e. a colloidal solution 
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of the MFA-MB-231 cells only), the results show that the cells experience 

an attractive force that traps them close to the electrodes’ edges. However, 

the particle-particle interactions strongly affect the trapping efficiency and, 

in general, the overall system evolution, leading also to the dynamical 

formation of complexes of cells (chains) moving as a single object after the 

cells merge due to attractive dipole-dipole interactions. The results of the 

simulation of the colloidal solution composed of MDA-MB-231 and B-

Lymphocites shows that the first cell type experienced p-DEP while the 

second n-DEP, allowing to study the cell capture/separation capability of the 

simulated device. Some effects, which can be reproduced only by using 

non-approximate methods for the calculation of e.mec. forces, are also 

evidenced. 

We focused our study on spherical particles (good approximation of 

the real cells’ systems). For non spherical particles or for particular 

conditions where couples of forces act on particles with spherical symmetry 

the method should be extended considering generic rotations, as well as 

translations, due to the presence of torques. The next chapter presents a 

prospective discussion of the formalism generalization, based on the use of 

quaternions, useful for describing the rotational motion of rigid-bodies. 
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Chapter 6 

 

Generalization of the MD-FEM formalism for 

particles of generic shape  
 

 

The method presented in chapters 4 and 5 focuses only on systems 

consisting of spherical particles and on the pure translational motion of the 

particles. In this chapter, we discuss the steps needed to generalize the 

coupled MD-FEM method to the case of particles modelled as rigid body of 

generic shape. The purpose of the chapter is to demonstrate that this 

generalization is feasible using a similar numerical context, which considers 

also the integration of the roto-translational dynamics of the particles.   

 

 

6.1  Rigid-body dynamics 

 

 In the dynamics of the rigid-body, the rotational motion around the 

center of mass must be considered in addition to the translational motion of 

the center of mass. The quantities similar to position, velocity, moment, 

force and mass are, in rotational motion, the orientation 𝝑, the angular 

velocity 𝝎, the angular momentum 𝐋, the torque 𝐓 and the inertia tensor 𝐈, 

respectively.  

For the i-th (i=1…N) rigid-body of a system of N bodies, the angular 

momentum is: 

 

𝐋𝑖(𝑡) = 𝐈𝑖(𝑡)𝝎𝑖(𝑡).       (6.1) 
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and the equations of rotational motion are: 

 

𝐋̇𝑖(𝑡) = 𝐓𝑖(𝑡);        (6.2) 

 

𝝑̇𝑖(𝑡) = 𝑓[ 𝐈𝑖
−1(𝑡)𝐋𝑖(𝑡)] = 𝑓[𝝎𝑖(𝑡)].    (6.3) 

 

Let’s consider a rigid-body and its fixed reference coordinate system 

consistent with the body (not inertial) where its geometry is referred. 

Hereafter, such a system is indicated by the letter B. The orientational 

dynamic variable represents the rotation of the reference system B into the 

world (or laboratory) frame coordinate system W. The orientation, which is 

in general a functional of the angular velocity (Eq. 6.3), can be represented 

by a set of Euler angles [111, 112] or a rotational matrix [113], but the use 

of the mathematical entity called “rotational quaternion” can be more 

appropriate and efficient for the MD implementation [114]. The simulations 

can be carried out by using the integration method called “Rotational 

Velocity Verlet”, which derives from rotational leap-frog method and acts on 

quaternions [115]. 

The definition and the main characteristics of the quaternions, the 

advantages of their use for the study of the rotational motion and their 

utilization in the Rotational Velocity Verlet will be described in the next 

sections.  
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6.2  Quaternions 

 

The rotational quaternion is a formal mathematical entity which 

consists of a tuple of four real numbers, which can be considered as the sum 

(in the acceptation of the group theory) of an ordered pair formed by a scalar 

𝑎 and a three-dimensional vector 𝐯 [116]: 

 

𝐪 = (𝑎, 𝐯) = 𝑎 + 𝐯.       (6.4) 

 

The set of quaternions is indicated by 𝐇. A quaternion 𝐪 ∈ 𝐇 can be written 

as it follows: 

 

𝐪 = 𝑎 + 𝒊𝑥 + 𝒋𝑦 + 𝒌𝑧 = 𝑎 + 𝐯,     (6.5) 

 

where (𝑥, 𝑦, 𝑧) are the real components of the verctor 𝐯. 

𝒊, 𝒋 and 𝒌 have the mathematical characteristics of the imaginary unit of 

complex numbers. They satisfy the following properties: 

 

 𝒊𝟐 = 𝒋𝟐 = 𝒌𝟐 = −1; 

 𝒊𝒋 = −𝒋𝒊 = 𝒌; 

 𝒋𝒌 = −𝒌𝒋 = 𝒊; 

 𝒌𝒊 = −𝒊𝒌 = 𝒋; 

 𝒊𝒋𝒌 = −1. 
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The rules of multiplication between 𝒊, 𝒋 and 𝒌 have the same properties as 

the vectorial product between the unit vectors of a right-handed Cartesian 

coordinate system. 

In analogy with complex numbers, of which an element can be represented 

by a pair of real numbers, the generic quaternion 𝐪 is also representable by 

means of a four-tuple of real numbers: 

 

 𝐪 = (𝑎, 𝑥, 𝑦, 𝑧). 

 

Ultimately, a quaternion q can be denoted in three different ways: as the sum 

of a scalar part and a vector part, as a hypercomplex number defined on a 

basis composed of one real part and three imaginary parts, like a quadruple 

of reals.  

A scalar can be considered as a quaternion with zero vector: 

 

𝑎 →  𝐪(𝑎) = (𝑎, 0,0,0) = (𝑎 + 𝟎),     (6.6) 

 

and a vector can be seen as a quaternion with zero scalar: 

 

𝐯 → 𝐪(𝐯) = (0 + 𝐯).       (6.7) 
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6.2.1  Algebra of the quaternions 

 

The summation of two quaternions is defined as:  

 

𝐪1 + 𝐪2 = (𝑎1 + 𝐯1) + (𝑎2 + 𝐯2) = (𝑎1 + 𝑎2) + (𝐯1 + 𝐯2). (6.8) 

 

The quaternion (0, 0, 0, 0) = (0, 0) is the neutral element of the summation. 

The algebraic structure (𝐇,+) is an abelian group.  

The dot product of two quaternions is defined as it follows: 

 

𝐪1 ∙ 𝐪2 = 𝑎1𝑎2 + 𝐯1 ∙ 𝐯2.      (6.9) 

 

The quaternion product is: 

 

𝐪1𝐪2 = (𝑎1 + 𝐯1)(𝑎2 + 𝐯2) = (𝑎1𝑎2 − 𝐯1 ∙ 𝐯2) + (𝑎1𝐯2 + 𝑎2𝐯1 + 𝐯1 × 𝐯2); (6.10) 

 

The product satisfies the following properties: 

 

 it is associative: 𝐪1(𝐪2𝐪3) = (𝐪1𝐪2)𝐪3; 

 it is not commutative: 𝐪1𝐪2 ≠ 𝐪2𝐪1; 

 it is distributive. 

 

The quaternion (1, 0, 0, 0) = (1, 0) is the neutral element of the 

multiplication. 

The product between a scalar 𝑠 ∈ ℝ and a quaternion 𝐪 = 𝑎 + 𝐯 is also 

defined: 
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𝑠𝐪 = 𝑠𝑎 + 𝑠𝐯. 

 

The conjugation, the inversion and the norm of a quaternion are: 

 

𝐪∗ = (𝑎 − 𝐯);        (6.11) 

 

𝐪−1 =
𝐪

𝐪∙𝐪∗
;        (6.12) 

 

𝑞 = |𝐪| = √𝐪 ∙ 𝐪∗ = √𝑎2 + 𝑣2 = √𝑎2 + 𝑥2 + 𝑦2 + 𝑧2.  (6.13) 

 

The algebra of quaternions, with summation and product operations 

between quaternions, is a skew-field: division is defined in it and the 

quaternion inverse to a quaternion 𝐪 is defined by Eq. (6.12). The skew-

field of quaternions is the unique finite-dimensional real associative non-

commutative with respect to the product algebra without divisors of zero 

[117, 118].  The set of quaternions with the operations of summation 

between quaternions and multiplication by a scalar form a real vectorial 

space of size four, of which one basis is given by  (1, 𝒊, 𝒋, 𝒌) [119].  

 

6.2.2  Unit quaternions and rotations 

 

“Unit quaternions” are quaternions with norm equal to 1. Hereafter, 

all unit quantities will be represented with the symbol hat above the 

variables. The set of unit quaternions forms a sphere in a 4-dimensional 

space. The unit quaternions form a multiplicative non abelian group with 

https://www.encyclopediaofmath.org/index.php/Skew-field
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respect to the product. By means of Eq. (6.11) and Eq. (6.12) it can be seen 

that the conjugate and the inverse of a unit quaternion are equal. 

A rotation can be conveniently represented by unit quaternions. A 

quaternion can indeed contain in its four components information about the 

angle and the axis [120]. Consider a unit vector axis 𝒔̂, passing through the 

origin of the right-hand reference system, and an initial vector 𝐯0: a rotation 

of 𝐯0 by an angle 𝛼 around the 𝒔̂ axis, which results in the vector 𝐯1, is 

performed by means of the following unit quaternion: 

 

𝐪̂𝛼,𝒔̂ = (𝑐𝑜𝑠
𝛼

𝟐
+ 𝑠𝑖𝑛

𝛼

𝟐
𝒔̂)      (6.14) 

 

by applying the formula: 

 

𝐯1 = 𝐪̂𝛼,𝒔̂𝐯0𝐪̂𝛼,𝒔̂
−1  .       (6.15) 

 

Each map defined as in Eq. (6.15) is actually a rotation since it preserves the 

norm. The combination of two consecutive rotations 𝐪̂1 and 𝐪̂2 is obtained 

by their quaternion product: 

 

𝐪̂1,2 = 𝐪̂1𝐪̂2.        (6.16) 

 

A backward rotation, relative to a previous rotation represented by 

quaternion 𝐪̂1, is performed by the conjugate or the inverse of 𝐪̂1.  

The use of quaternions offers several advantages [121]: for example, four 

parameters are considered instead of the nine parameters of a rotational 

matrix [122].  
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6.3 Rotational Velocity Verlet 

 

A reliable method of studying the temporal evolution in a rotational 

motion consists in the direct integration of the angular momentum and the 

quaternion. The equations of motion are (see Ref. [123] for the derivation): 

 

𝐋̇𝑖
𝑊(𝑡) = 𝐓𝑖

𝑊(𝑡),       (6.17) 

 

𝐪̇𝑖(𝑡) =
1

2
𝐪̂𝑖(𝑡) 𝝎𝑖

𝐵(𝑡),      (6.18) 

 

where 𝐪̂𝑖(𝑡) is the quaternion which describes the body orientation at time 𝑡, 

𝐪̇𝑖(𝑡) is its time derivative, 𝝎𝑖
𝐵(𝑡) is the body’s angular velocity in the body 

frame.  

In the right hand side of the Eq. (6.18), there is a product of the quaternion 

𝐪̂𝑖(𝑡) and the vector  𝝎𝑖
𝐵(𝑡): it is a quaternion product of 𝐪̂𝑖(𝑡) and the 

quaternion obtained by the angular velocity vector by Eq. (6.7). 

It should be noted that in Eq. (6.18) the quaternion time derivative depends 

on the uknown quaternion itself at the same time t and therefore a self-

consistent iterative search is necessary. 

The initial time of the first half-step is t=0. The orientation quaternion, the 

angular momentum and the torque (in the world frame W) are considered at 

this time as initial states. The algorithm consists of the following steps. 

 

1) The angular momentum and the torque are converted from the world 

frame W to the body reference B by backward rotations: 
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𝐋𝑖
𝐵(0) = 𝐪̂𝑖

∗(0)𝐋𝑖
𝑊(0)𝐪̂𝑖(0),      (6.19) 

 

𝐓𝑖
𝐵(0) = 𝐪̂𝑖

∗(0)𝐓𝑖
𝑊(0)𝐪̂𝑖(0).      (6.20) 

 

2) 𝐋𝑖
𝐵 at time 

Δ𝑡

2
 are evaluated by Euler’s equation [120] for the B frame 

torque: 

           

 𝝎𝑖
𝐵(0) = [𝐈𝑖

𝐵]−1𝐋𝑖
𝐵(0),      (6.21) 

        

𝐋̇𝑖
𝐵(0) = 𝐓𝑖

𝐵(0) −  𝝎𝑖
𝐵(0) × 𝐋𝑖

𝐵(0),     (6.22) 

 

𝐋𝑖
𝐵 (

Δ𝑡

2
) = 𝐋𝑖

𝐵(0) +
Δ𝑡

2
𝐋̇𝑖
𝐵(0).      (6.23) 

 

where 𝐈𝑖
𝐵 is the diagonal inertia tensor of the body in the reference frame B 

(it is therefore a diagonal matrix if B is suitably chosen). 

 

3)  The known quaternion 𝐪̂𝑖(0) and the angular velocity at proper time 
Δ𝑡

2
 

are used to estimate the zeroth approximate time derivative at time 
Δ𝑡

2
 of 

quaternion, indicated by 𝐪̇𝑖
0 (

Δ𝑡

2
): 

  

𝐪̇𝑖
0 (

Δ𝑡

2
) =

1

2
𝐪̂𝑖(0) 𝝎𝑖

𝐵 (
Δ𝑡

2
) =

1

2
𝐪̂𝑖(0) {[𝐈𝑖

𝐵]−1𝐋𝑖
𝐵 (

Δ𝑡

2
)}.  (6.24) 
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4) The zeroth approximate quaternion at time 
Δ𝑡

2
 is calculated by the 

following approximation: 

 

𝐪̂𝑖 (
Δ𝑡

2
) =0 𝐪̂𝑖(0) +

Δ𝑡

2
 𝐪̇𝑖
0 (

Δ𝑡

2
).     (6.25) 

 

5) The angular momentum at time 
Δ𝑡

2
 is calculated as follows: 

 

𝐋𝑖
𝑊 (

Δ𝑡

2
) = 𝐋𝑖

𝑊(0) +
Δ𝑡

2
𝐓𝑖
𝑊(0).     (6.26) 

 

6)  An index k is introduced to denote the approximation number and a 

tolerance ϵ is defined. The following system of constraining equations is 

solved self-consistently for 𝐪̇𝑖 (
Δ𝑡

2
) until the difference | 𝐪̂𝑖

(𝑘+1)
(
Δ𝑡

2
) −

𝐪̂𝑖
𝑘 (

Δ𝑡

2
)| is less than ϵ: 

 

𝐋𝑖
𝑀(𝑘+1)
(
Δ𝑡

2
) = 𝐪̂𝑖

∗𝑘 (
Δ𝑡

2
) 𝐋𝑖

𝑊(0) 𝐪̂𝑖
𝑘 (

Δ𝑡

2
),    (6.27a) 

 

𝝎𝑖
(𝑘+1)

(
Δ𝑡

2
) = [𝐈𝑖

𝑀]−1 𝐋𝑖
𝑀(𝑘+1)
(
Δ𝑡

2
) ,    (6.27b) 

 

𝐪̇𝑖
(𝑘+1)

(
Δ𝑡

2
) =

1

2
𝐪̂𝑖 (

Δ𝑡

2
)𝑘 𝝎𝑖
(𝑘+1)

,     (6.27c) 

 

𝐪̂𝑖
(𝑘+1)

(
Δ𝑡

2
) = 𝐪̂𝑖(0) +

Δ𝑡

2
𝐪̇𝑖

(𝑘+1)
(
Δ𝑡

2
).    (6.27d) 
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7) The time derivative found in the point 6) is used to calculate the 

quaternion at time 𝑡 = Δ𝑡: 

𝐪̂𝑖(Δ𝑡) = 𝐪̂𝑖(0) + Δ𝑡𝐪̇𝑖 (
Δ𝑡

2
).      (6.28) 

The first half-step is concluded. The new orientation 𝐪̂𝑖(Δ𝑡) can be used to 

calculate the new torque with a force evaluation: 

𝐓𝑖
𝑊(Δ𝑡) = 𝐓𝑖

𝑊[𝐪̂𝑖(Δ𝑡)].      (6.29) 

8) The velocity Verlet integration step is completed by using 𝐪̂𝑖(Δ𝑡), 

𝐋𝑖
𝑊 (

Δ𝑡

2
) and 𝐓𝑖

𝑊(Δ𝑡) to execute the second half-step which consists in the 

propagation of angular momentum to the time instant 𝑡 = Δ𝑡: 

 𝐋𝑖
𝑊(Δ𝑡) = 𝐋𝑖

𝑊 (
Δ𝑡

2
) +

Δ𝑡

2
𝐓𝑖
𝑊(Δ𝑡).     (6.30) 

At this point the full integration step is complete: 𝐪̂𝑖(Δ𝑡), 𝐓𝑖
𝑊(Δ𝑡) and 

𝐋𝑖
𝑊(Δ𝑡) can be used for a new step. 

 

 

6.4  Control instructions in simulations of rotational 

motion of non-spherical particles 
 

The control instructions on particle-wall and steric particle-particle 

interactions used in the case of colloidal solution of spherical particles, 

described in section 4.3 and Appendix E.5.2, are not applicable to the case 
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of general non-spherical particles. It is necessary to develop more complex 

instructions that take into account the shape of the particles in the checks. 

 

 

6.4.1 Overlap between particles 

 

Steric forces are modelled as an infinite barrier for the overlapping 

between particles, as a consequence the check must act so that penetration is 

prevented. For a particle of arbitrary shape and orientation, the minimum 

distance has to be evaluated as a minimum of the distance for the surface 

points of the two bodies. Then when this distance is below a certain 

threshold value a displacement rule must be applied which generalizes the 

centers’ displacement used in the case of spherical particles (see Chap. 4). 

The FEM representation of the particles in the mesh allows for a numerical 

approximate evaluation of this minimum distance since the vertices of the 

mesh cells at the boundary between two domains (i.e. the particle and the 

medium) can be selected. The distance function implemented in python and 

integrated in the Gmsh+FEniCS framework is: 
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This function also extracts the two eventual “contact” points at the 

two surfaces (more properly the two points which will be in contact if the 

distance further decreases). We note the distance evaluation needs a double 

loop over the surface points, which for meshes with good resolution could 

be about 1000. The approximatelly 1000000 operations may not be efficient 

if distances are evaluated for all the N particles in the system. Moreover, the 

check could be redundant for definitively distant particles. An optimization 

is also considered introducing a pre-check of “distant” particles. The first 

step is to build a sphere around each particle, whose diameter is the pre-

evaluated maximum distance between surface points of the particles (fixed 

for identical particles). Considering these spheres, the same control check 

seen in the previous chapters is performed. In the case of overlapping 

between spheres, the second check acts by calculating the numerical 

distance with the Python function reported above. 
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For the displacement rule in the case of convex non-spherical particles, both 

the positions and the orientation can be properly changed. In this case, the 

displacement is a composition of a translation of the center of mass along 

the normal at the surface in the contact point and a rotation around the axis 

given by the vector product between this normal and the vector joining the 

centre of mass and the contact points. For non convex particles, the rotation 

must be considered with caution since they could generate further overlap in 

other points of the surface. In this case, the single translation is more 

efficient although it is a rough approximation of the real steric interactions.  
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Conclusions 
 

In this Thesis, we proposed a coupled Molecular Dynamics – Finite 

Element Method technique as a tool for the study of the kinetics of systems 

where many body particle-particle interactions are mediated by continuum 

fields that evolve self-consistently with the system configuration. The 

presence of field-mediated forces cannot be exclusive: indeed, in the 

systems we have specifically analyzed, the particles are also subjected to 

forces which can be rightly described using the particle-like formulation of 

the usual Monte Carlo [14] or MD approach. In this work we have also 

considered, in addition to the field mediated forces, both single-particle 

interactions (drag, lift, gravity) and two-particle interactions (steric 

interactions). In the MD-FEM implementation of this research work, 

consolidated open source solvers (Gmsh and FEniCS), applying the Finite 

Element Method technique for the Partial Differential Equations numerical 

solutions, are integrated in the MD algorithm for the explicit integration of 

the particle equations of motion 
i
 [18].   

As an explicit application of the method, we have carried out 

simulations of the kinetics of cells (MDA-MB-231 tumor cells, B-

Lymphocites and mixtures of them) in a colloidal solution that flows 

through a micro-fluidic channel in the presence of a non-uniform electric 

field 
ii
, 

iii
 [5, 6]. In this case, the MD method finds application away from 

                                                           
i Michele Cascio, Davide Baroli, Stephane Bordas, Ioannis Deretzis, Giuseppe Falci, 

Antonino Magliano and Antonino La Magna, submitted to Physical Review E. 
 
ii
 A. Magliano, M. Camarda, S. F. Lombardo, R. Di Martino, M. Cascio, A. Romano, L. 

Minafra, G. Russo, M. C. Gilardi, F. Di Raimondo, S. Scalese and A. La Magna, Sensing 

and Bio-Sensing Research 8, 59-64 (2016). 
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the atomistic simulation area, which is the one where the MD is typically 

applied. The field-mediated interactions are dielectrophoretic forces 

generated by electrodes loaded with AC currents and calculated using the 

Maxwell Stress Tensor formalism. Using conventional concepts of p-

DEP/n-DEP (DEP attraction/repulsion of cells towards the electrodes) we 

demonstrated that quantitative estimates and qualitative phenomenology of 

the system evolution can be correctly addressed only with our accurate 

methodology. In the case of p-DEP only (i.e. a colloidal solution of the 

MFA-MB-231 cells only), the cells experience an attractive force that traps 

them close to the electrodes’ edges. However, the particle-particle 

interactions strongly affect the trapping efficiency and, in general, the 

overall system evolution, leading also to the formation of complexes of cells 

(chains) moving as single objects after the cells merge due to attractive 

dipole-dipole interactions.  

A simulation of a colloidal solution composed of MDA-MB-231 and B-

Lymphocites was also presented. Due to the particular value of AC 

frequency chosen, the first cell type experienced p-DEP while the second n-

DEP, allowing to study the cell capture/separation capability of the 

simulated device. In the discussion of this particular simulation, we 

evidenced some effects which can be reproduced only by using non-

approximate methods for the calculation of e.m. forces, such as repulsion 

between different types of particles, stressing the importance of applying 
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such a method to accurately estimate the capture/separation efficiency of a 

real device. 

The two simulations described have been repeated by changing the size 

of the electrodes and the gap between them, to demonstrate the ability of 

simulations to optimize the electrode geometry in a design study aiming at 

the improvement of the device efficiency. 

An extension of our method in the DEP field could be implemented 

using a similar framework in order to generalize the particle shape, as the 

spherical approximation could be too stringent to simulate inner motion of 

e.mec. particles due to torques. To this end, the appropriate formalism, 

based on the use of quaternions, was presented in the last chapter to describe 

the rotational motion of rigid-bodies. Moreover, the method can be easily 

adapted for the numerical evaluation of the medium kinetics, solving self 

consistently a Navier-Stokes type equation. 

In general, we note that a similar continuum/particle approach can be 

also formulated and implemented to other problems where the conventional 

force evaluation method used in MD is not applicable or its application is 

not computationally efficient (e.g. evolution of clusters of bonded particles, 

interaction between extended defects mediated by the strain field, 

mesoscopic systems, multiscale simulations etc.). 
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Appendix A 
 

Electric potential due to a finite dipole. 
 

This appendix shows the calculation of the electric potential 

generated by a finite dipole [23]. Consider the electrical potential Φ due to a 

finite dipole immersed in a linear dielectric medium of permittivity 𝜀𝑚 and 

aligned along the z axis of a Cartesian reference system; the positive charge 

has z coordinate equal to 𝑑/2, the negative equal to −𝑑/2. Let 𝑟+ and 𝑟− the 

distances between the point considered and the positive and negative charge 

respectively. Figure A.1 shows this system.  

 

 

Fig. A.1 Small physical dipole aligned with z axis showing 𝑟+ and 𝑟− defined at an arbitrary 

point (𝑟, 𝜗). 

 

Consider the point with coordinates (𝑟, 𝜗), radial and polar 

respectively. The charge distribution is axisymmetric with respect to point P, 
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so that Φ ≡ Φ(𝑟, 𝜗). Because of the superposition principle, the potential 

has the following form: 

 

Φ(𝑟, 𝜗) =
𝑞

4π𝜀𝑚𝑟+
−

𝑞

4π𝜀𝑚𝑟−
.      (A.1) 

 

It is possible to show that the 𝑟+ and 𝑟− are related to d and to couple (𝑟, 𝜗) 

by the following relations: 

𝑟

𝑟+
= [1 + (

𝑑

2𝑟
)
2

−
𝑑

𝑟
𝑐𝑜𝑠𝜗]

−
1

2

, 

 

𝑟

𝑟−
= [1 + (

𝑑

2𝑟
)
2

+
𝑑

𝑟
𝑐𝑜𝑠𝜗]

−
1

2

. 

 

By using the McLaurin series: 

 

(1 + 𝑥)−
1
2 = 1 −

𝑥

2
+
3

8
𝑥2 −

5

16
𝑥3… 

 

it is possible to derive the following expressions: 

 

𝑟

𝑟+
= 𝑃0 +

𝑑

2𝑟
𝑃1 + (

𝑑

2𝑟
)
2

𝑃2 + (
𝑑

2𝑟
)
3

𝑃3+…    (A.2) 

 

𝑟

𝑟−
= 𝑃0 −

𝑑

2𝑟
𝑃1 + (

𝑑

2𝑟
)
2

𝑃2 − (
𝑑

2𝑟
)
3

𝑃3+…    (A.3) 

where 𝑃1, 𝑃2, 𝑃3… are the Legendre polynomials, where the first terms are 

as follows: 
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𝑃1 =  𝑐𝑜𝑠𝜗,  𝑃2 =  
3𝑐𝑜𝑠2𝜗−1

2
, 𝑃3 = 

5𝑐𝑜𝑠3𝜗−3𝑐𝑜𝑠𝜗

2
. 

 

By Eq. (A.1), (A.2) and (A.3), the expression for the electrostatic potential 

assumes this form: 

 

Φ(𝑟, 𝜗) =
𝑞𝑑𝑃1

4π𝜀𝑚𝑟2
+

𝑞𝑑3𝑃3

16π𝜀𝑚𝑟4
+⋯     (A.4) 

 

The quantity 
𝑞𝑑𝑃1

4π𝜀𝑚𝑟2
 is the dipole term; the second term refers to n=3 (where 

n is the subscript of the polynomial of Legendre), this is an octupolar 

correction; all addition high-order terms are of odd order (n=5,7…). 

Stopping the expansion at the first order and considering the expression for 

the first Legendre polynomial, the potential assumes the following form: 

 

Φ(𝑟, 𝜗) =
𝑞𝑑𝑐𝑜𝑠𝜗

4π𝜀𝑚𝑟2
 .       (A.5) 
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Appendix B 
 

Effective dipole moment of a dielectric particle. 
 

 

The effective dipole moment of a particle suspended in a dielectric 

medium, indicated with 𝑝𝑒𝑓𝑓, is defined as the moment of an equivalent, 

free-charge point dipole that causes the same dipolar electrostatic potential 

if it is immersed in the same dielectric medium and occupies the same 

position as the center of the particle. The expression for the electric potential 

generated by a polarized dielectric particle will contain the effective 

moment 𝑝𝑒𝑓𝑓. To determine 𝑝𝑒𝑓𝑓, one needs to solve the relative boundary 

problem and to compare the result relative to the term of the electrostatic 

potential solution to the equation [23]: 

 

Φ(𝑟, 𝜗) =
𝑝𝑒𝑓𝑓𝑐𝑜𝑠𝜗

4π𝜀𝑚𝑟2
.       (B.1) 

 

Let’s consider an isolated homogeneous dielectric sphere of radius R, 

permittivity 𝜀𝑝 and conductivity 𝜎𝑝, immersed in a dielectric fluid medium 

of permittivity 𝜀𝑚 and conductivity 𝜎𝑚, subjected to a uniform z-directed 

electric field of magnitude E0. 

Here, the electric potential outside the sphere is called Φ1(𝑟, 𝜗) while the 

one inside the sphere is called Φ2(𝑟, 𝜗). The electrostatic potential satisfies 

Laplace’s equation everywhere. Φ1(𝑟, 𝜗) will be composed by two terms, 

the first due to the imposed electric field and the second one due to the 

induced dipole relative to the particle. Φ2(𝑟, 𝜗) will be composed only by 
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the first type of term. We assume that the solutions for Φ1(𝑟, 𝜗) and 

Φ2(𝑟, 𝜗) take the form: 

 

Φ1(𝑟, 𝜗) = −E0 𝑟 𝑐𝑜𝑠𝜗 +
𝑎̃ 𝑐𝑜𝑠𝜗

𝑟2
,  𝑟 > 𝑅    (B.2) 

 

Φ2(𝑟, 𝜗) = −𝑏̃ 𝑟 𝑐𝑜𝑠𝜗,   𝑟 < 𝑅    (B.3) 

 

The boundary conditions allow to determine the unknown complex 

coefficients 𝑎̃ and 𝑏̃. They are applied on the surface of the particle, this is 

for 𝑟 = 𝑅. In this case there are two type of BC: the first refers to the 

continuity of the electric potential across the particle-fluid boundary: 

 

Φ1(𝑟 = 𝑅, 𝜗) = Φ2(𝑟 = 𝑅, 𝜗);     (B.4) 

 

the second one refers to a charge continuity conditions because of the finite 

conductivity results in the time dependent accumulation of free electrical 

charge on the particle surface (𝑟 = 𝑅). The instantaneous charge 

conservation condition is: 

 

𝜎𝑚
𝜕Φ1

𝜕𝑟
− 𝜎𝑝

𝜕Φ2

𝜕𝑟
+

𝜕

𝜕𝑡
[𝜀𝑚

𝜕Φ1

𝜕𝑟
− 𝜀𝑝

𝜕Φ2

𝜕𝑟
] = 0,   (B.5)  

 

where 𝜎𝑚
𝜕Φ1

𝜕𝑟
 and 𝜎𝑝

𝜕Φ2

𝜕𝑟
 are respectively the normal components of the 

ohmic current outside and inside the dielectric sphere, and 𝜀𝑚
𝜕Φ1

𝜕𝑟
− 𝜀𝑝

𝜕Φ2

𝜕𝑟
 

is the free unpaired electric charge on the particle suface. It is assumed that 
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all variable have an exponential dependence, the time derivative results then 

to a factor 𝑖𝜔 and the Eq. (B.5) becomes: 

 

𝜎𝑚
𝜕Φ1

𝜕𝑟
+  𝑖𝜔𝜀𝑚

𝜕Φ1

𝜕𝑟
= 𝜎𝑝

𝜕Φ2

𝜕𝑟
+  𝑖𝜔

𝜕Φ2

𝜕𝑟
.    (B.6)  

 

From the previous equation the following boundary condition on the normal 

electric field component can be derived: 

 

𝜀𝑚̃
𝜕Φ1

𝜕𝑟
= 𝜀𝑝̃

𝜕Φ2

𝜕𝑟
,       (B.7) 

 

where the complex dielectric constants appear defined as follows: 

 

𝜀𝑚̃ = 𝜀𝑚 − 𝑖
𝜎𝑚

𝜔
,        (B.8) 

        

𝜀𝑝̃ = 𝜀𝑝 − 𝑖
𝜎𝑝

𝜔
.       (B.9)  

 

Combining Eq. (B.2), (B.3), (B.4) and (B.7), 𝑎̃ and 𝑏̃ assume the following 

form:  

   

𝑎̃ =
𝜀̃𝑝−𝜀̃𝑚

𝜀̃𝑝+2𝜀̃𝑚
𝑅3𝐸0,       (B.10) 

 

𝑏̃ =
3𝜀̃𝑚

𝜀̃𝑝+2𝜀̃𝑚
𝐸0.       (B.11) 

 

By replacing Eq. (B.10) in Eq. (B.2) and comparing with Eq. (B.1): 
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𝑝𝑒𝑓𝑓 = 4π𝜀𝑚𝑎̃ = 4π𝜀𝑚𝑓𝐶𝑀𝑅
3𝐸0     (B.12) 

 

where the so-called Clausius-Mossotti factor 𝑓𝐶𝑀 is introducted: 

 

𝑓𝐶𝑀 =
𝜀̃𝑝−𝜀̃𝑚

𝜀̃𝑝+2𝜀̃𝑚
.        (B.13) 
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Appendix C 
 

Circulating tumor cells and microfluidic 

technology 
 

 

C.1 Circulating tumor cells 

 

 In recent years it has been shown that the peripheral blood of 

individuals with solid tumours (such as breast, colorectal, prostatic, ovarian, 

lung cancer, etc.) contains the so-called circulating tumour  cells (CTCs), 

namely tumor cells that enter the bloodstream, shed from the primary tumor, 

spontaneously circulating in the peripheral blood or spreading  into blood 

vessels [124, 125] . 

The presence of a high number of CTCs in the peripheral blood of 

patients with epithelial neoplasms (carcinomas) may be related to an 

unfavourable prognosis, while a reduction in their number is related to a 

good therapeutic response [126]. Numerous studies also show that there is a 

close correlation between the amount of CTCs and positivity at radio-

diagnostic examinations during therapy’s follow-up. The detection of the 

presence of CTCs therefore allows for an assessment of the prognosis of the 

tumour and consequently a more focused and effective management of the 

patient.  
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C.1.1 Metastasis 

 

The metastatic cascade is not a very clear process, but it was however 

understood that this is a process related to cell migration and intravasation 

into the circulation [127, 128]: the cells consequently could spread to distant 

organs where they may reside and ultimately begin to form metastasis [129]. 

Solid neoplasms, disseminating CTCs in peripheral blood, can then cause 

metastases even after complete resection of the neoplasm. Clinical studies 

have demonstrated a significant correlation between the presence of CTCs 

and the onset of metastases [130]. Early detection of CTCs, if possible, 

could bring forward the onset of metastases by several months. In addition, 

several clinical and molecular studies on disease course and growth rates, as 

well as genetic analyses of both primary and CTCs cancer, are changing the 

“serial” evolutionary model describing neoplasia and metastases in favour 

of a parallel progression model [131], which allows explaining why, for 

example, 5-10% of patients present with metastases without any signs of 

primary cancer. This model suggests that cancer cells spread earlier than 

previously thought and that the metastatic diffusion capacity may be the 

direct effect of circulating cells. This may indicate that the lymphatic and 

circulatory system, and not the primary tumour, may be the environment in 

which tumour cells evolve to more aggressive and proliferating stages. 

The parallel progression of diffusion is due to the so-called “tumour 

dormancy”, a phase of tumour progression in which the disease is present in 

minimal residual disease (MRD) forms, and remains asymptomatic even for 

long periods. 
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This underlines the need of a deeper understanding of the role of the 

CTCs.  Several studies are aimed at the characterization of the molecular 

profile and the identification of genetic-molecular factors able to describe 

the physiology of CTCs [132]. The genotypic and phenotypic analysis of 

these cells aims to correlate their molecular characteristics with those of the 

primary tumour: this last aspect allows to verify whether the alterations of 

the primary tumour are the same or different from those found in CTCs. 

Much effort is also currently devoted to the research of correlations 

between the phenotypic and biomolecular aspects of CTCs and the response 

to different therapeutic protocols administered to patients according to the 

clinical stage of the disease, in order to highlight some subclasses of patients 

who can benefit from specific treatments depending not only on the 

characteristics of the primary tumour but also on CTCs. If the results of 

these studies were to reveal the discriminating value in prognostic and 

predictive terms of CTCs, research and characterisation of these cells could 

prove to be a powerful tool for identifying individuals at risk for metastases 

at a very early stage. 

It is worth noting that CTCs analysis has identified patients with sub-

millimetric tumours that cannot be identified by current imaging techniques 

(CTCs generated by dormant tumours) [133]. The synergistic use of cell 

analysis and imaging would allow for better prognostic capability. 

Effective and sensitive instruments capable of anticipating the onset 

of metastases, particularly in the case of solid tumours, are not yet available 

in the field of clinical laboratory diagnostics. The use of so-called “tumour 

markers” is a therapy monitoring tool that is often ineffective because some 

tumours may not express such markers. It therefore is important that modern 
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biotechnology aims to build new CTCs capture systems, in order to simplify 

and standardise the test for CTCs in peripheral blood. Patients suffering 

from solid neoplasms could find in this type of evaluation a very useful tool 

for customizing the therapy.  

 

 

C.1.2  CTCs analysis as a “liquid biopsy” 

 

Diagnosis and monitoring of cancer cells can be currently performed 

by using different standard methods. Among them, the biopsy is one of the 

most valid techniques for measuring the presence and the extent of tumors. 

However, since the biopsy procedure is quite invasive, the tests cannot be 

repeated several times on the same patient. Other diagnostic methods, such 

as those related to CTCs, can result in a much less invasive examination, 

thanks to the fact that it is performed on peripheral blood samples. CTCs 

analysis can be seen as a form of “liquid biopsy”. CTCs detection relies, in 

fact, on venipuncture (only 5–10 mL of patient blood), rather than solid 

tissue biopsy or bone marrow aspiration and it can be performed repeatedly 

with low risk of side effects [134, 135]. The low volume requirement is 

advantageous in general but could become decisive for some applications 

such as pediatric clinical care. 

CTCs analysis can effectively monitor the progression of the tumors, 

enabling a dynamic measurement of cancer and giving an indication on the 

response to therapy [136, 137, 138] and, as well, on the possible treatments 

to be applied [139, 140].  The number of CTCs in the patient blood can 

represent, in fact, a promising and valid indicator in terms of their survival 
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rates, the outcomes of the applied medical treatments, the monitoring of its 

progression and for the choice of the correct therapeutic intervention 

[141].  The interest of the scientific community in the recognition and 

analysis field of tumoral cells has grown in the last years, achieving 

important results. For instance, it had observed that the presence of tumoral 

cells in peripheral blood of patients was related to their clinical progress, 

and the cancer cells were found in venous blood draining the tumor as well 

as in peripheral blood [142]. Furthermore, CTCs can provide predictive and 

prognostic information, in terms of disease relapse, overall survival, and 

tumor response to therapy in patients with metastatic colorectal [143, 144], 

breast [145, 146], prostate [147, 148], lung and ovarian cancers [149]. 

As demonstrated by the literature in the field [150, 151, 152], isolation 

and detection of the tumoral cells represent a stimulating technological 

challenge, especially in the cases of procedure based on the biological 

characterization.  

The problem in the use of CTCs for diagnostic and prognostic purposes 

is linked to the standardisation of CTCs research methodologies, which are 

very heterogeneous and constantly evolving due to the difficulties 

encountered in isolating them in peripheral blood, i.e. separating them from 

healthy cells. The difficulty in separating the CTCs in the bloodstream 

arises from their low concentration (a few to hundreds per mL of whole 

blood) among the background population of other hematopoietic 

components (erythrocytes: ~109 per mL of whole blood, leukocytes: ~106 

per mL of whole blood) [153, 154, 155].   CTCs are a small fraction of the 

circulating mononuclear cells. In patients with advanced solid cancers, 

concentration of CTCs often is very low, on the order of about 1 per ten 
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million withe blood cells (WBCs) in a 7.5 mL sample of blood [156, 157, 

158]. The extremely low concentration of CTCs poses a challenge for their 

detection and characterization. In recent years, several methods have been 

developed for the isolation and detection of CTCs. 

The techniques currently used to detect the presence of CTC in blood use 

marker antibodies (magnetic or fluorescent) to perform separation. It is very 

difficult accurately identify cells as CTCs using only epithelial biomarkers. 

These techniques are expensive, slow, used in research and not intended for 

systematic clinical use. In addition, no markers are known for about 15% of 

solid tumours, most soft tumours, and all lymphomas [159]. 

Recently, a possible solution is represented by the use of microfluidics-

based technology. Such alternative approach for capturing cancer cells from 

complex cellular fluids can offer an accessible source for detection, 

characterization, and monitoring of tumors with high efficiency, sensitivity, 

and throughput. 

 

 

C.1.3  CTCs in breast cancer patients. MDA-MB – 231 cell line 

 

Solid breast neoplasms are the most common cause of death for 

women in developed countries. In recent years, early diagnosis, 

development of surgery and adjuvant therapy have improved the prognosis 

of these diseases, but relapses are frequent, with fatal results in the case of 

metastatic disease. There are statistical studies on the frequency of relapses, 

whose predictive capacity is ineffective. No other instrument is able to 

monitor the effect of adjuvant therapy in this type of carcinoma.  
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Solid neoplasms can disseminate CTCs in peripheral blood and can cause 

metastases even after complete resection of the neoplasm. The identification 

of CTCs in patients with localized or metastatic breast neoplasia is the 

subject of numerous studies in the literature. Studies have shown that the 

presence of cancer cells can be related to the pre-malignant stages of breast 

cancer, suggesting early spread to distant organs [160]. 

Clinical studies have demonstrated a significant correlation between the 

presence of CTCs and the onset of metastases [161] and have shown that in 

metastatic breast cancer a high number of CTCs in the blood is related to a 

worse prognosis [162, 163].  

The MDA-MB-231 cell line is an epithelial, human, highly invasive 

breast cancer cell line. It is one of the most commonly used breast cancer 

cell lines in medical research laboratories. Understanding the molecular 

basis of breast cancer is crucial for effective new drug development, and 

many studies on potentially active agents for this particular type of cancer 

have been conducted using the MDA -231 cell line, which is well 

established as a tool for bone metastasis research [164].  In this Thesis, 

simulations carried out on systems with MDA-MB-231 cell line are 

presented. 

 

 

C.1.4  Techniques of CTCs isolation 

 

The importance of CTCs as functional biomarkers of solid cancers is 

evidenced by the several techniques, strategies and methods that have been 

developed for their detection and isolation.  
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The microfluidic devices have applied for CTCs detection [165]. They 

are designed typically based on the morphological and electrical differences 

of the CTC properties. Microfluidics-based technologies show an ability to 

capture a significant percentage of rare cells enabling efficient processing of 

complex cellular fluids, with minimal damage to cell populations and 

minimal blood volume. The advantages of microfluidics include its capacity 

for automatic programming, flexibility in performing a large number of 

samples [166, 167]. However, currently available technologies still suffer 

from low purity of the captured cells [168].  

The methods rely on differing properties and characteristics of CTCs 

within the blood [169]. Current CTCs isolation technologies could be 

classified relating on biological or physical properties of the cells, or on the 

combination of both. They can be grouped into three main categories [170]:  

 

 physical properties: make it possible distinguish CTCs from normal 

WBCs; permit CTCs isolation without biomarker labelling; 

 

 biological markers: make it possible distinguish CTCs from normal 

WBCs and can be used to identify cells selected by other methods; 

 

 functional properties: can be used for downstream characterization 

of isolated CTCs. 

 

The interest of this Thesis is on physical properties. CTCs generally have 

several physical characteristics that differ from those of nucleated blood 

cells, including size, density, deformability or electric behaviour. The 
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methods of isolation based on physical properties are related to 

centrifugation, membrane- or filtration-based systems, and DEP. A brief 

description of isolation methods based on physical properties is given 

below. 

 

Size exclusion:  

 

epithelial-derived cancer cells are larger than the majority of other normal 

constituent blood cells. Filters can therefore be used to remove the majority 

of peripheral blood cells and so to separate CTCs from whole blood [171, 

172, 173]. Filters generally consist on parylene membrane layers. The 

advantage of this technology is in its label-free isolation of CTCs, while the 

greatest limitation is its sensitivity to size [174, 175].  

 

Deformability:  

 

Metastatic cells are often more deformable than normal blood cells [176, 

177, 178]. The data of several studies [179] suggest that differential 

deformability could be used to separate cancer cells from WBCs.  

 

Density:  

 

Density differences are on the basis of gradient centrifugation to isolate 

CTCs from other hematopoietic components. The mononuclear cells and 

CTCs have a density <1.077 g/mL, while the granulocytes and the other 

blood cells and have a density greater than such value [180]. The gradient 
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centrifugation generates a layered separation of different cell types based on 

their cellular density. This method offers a quick and simple way to isolate 

CTCs, but has a poor sensitivity because of the loss of some CTCs 

migrating to the plasma layer or the formation of CTCs aggregates. 

 

Electric properties:  

 

By using DEP, the manipulation of cells depends only on dielectric 

properties of any individual phenotype. DEP separation techniques can 

reach a single-cell-level purification. They combine synergistically a 

microsystem that integrates a microelectronic chip with a microfluidics 

chamber in an automatic platform to select and isolate individual cells with 

high accuracy and precision [181].  

 

 

C.2 Microfluidics Technology 

 

Microfluidics is a multidisciplinary field that studies the behaviours 

of fluids in the microscale. It is defined as the science and technology of 

systems that process or manipulate small amounts of fluids (10
–9

-10
−18

 

litres), using channels with dimensions of tens to hundreds of micrometers. 

It is commonly referred to “Micro Total Analysis Systems” (TAS), that 

deals with miniaturized devices integrated with all necessary components 

for the analysis of a sample. Developed since the 1990s from the field of 

miniaturization and microelectronics [182, 183], μTAS offers the possibility 

to create a complete analytical microsystem by integrating different 
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functional components to a single device [184, 185]. Devices typically 

contain several components: microsensors, micropumps, microvalves. 

Microfluidic systems have been improved as tools for high-throughput 

discovery and screening studies in chemistry and materials science [186, 

187]. 

Microfluidic devices, often referred to as microfluidic chips, are fabricated 

using techniques developed in the semiconductor industry. The first 

applications of microfluidic technologies have been in chemical analysis, 

thanks to its several capabilities and abilities [188]:  

 

 to use very small quantities of samples and reagents,  

 low cost;  

 short time for the analysis;  

 

The microfluidic chips have a typical size of the order of a square 

centimetre. They are often made of silicon, glass, or polymers. 

Polydimethylsiloxane (PDMS) is widely used in microfluidic device 

fabrication  using soft lithography techniques [189].  

 “Lab-on-a-chip” (LOC) devices are microfluidic platforms that can 

handle complex chemical and biological management and analysis for many 

practical applications in the fields of life sciences, pharmaceutical research, 

etc.. These devices integrate on a single chip multiple functions that can be 

performed in the laboratory. They commonly range from a few millimeters 

to a few square centimeters in size and are capable of handling extremely 

small volumes of fluids, under the picolitres.  
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Along with chemistry, life science is the main field of use of this technology 

[190], that is promising for biomolecular separations thanks to his ability to 

manipulate fluids on the cellular length scale. LOC systems allows the 

manipulation of particles in several diagnostic and clinical applications, 

such as trapping, sorting, separation, characterization of cells, viruses, 

proteins, nano- and microparticles [191]. Various techniques have been 

developed to manipulate particles in microsystems. Among other, the one 

based on DEP is the most important methods in LOC devices. Recently 

microfluidic devices have indeed been widely recognized as a powerful 

technology that will play an important role in future medical analysis as 

diagnostic tools, and represent a promising approach to isolate cancer cells 

by processing complex cellular fluids with great simplicity, sensitivity, and 

throughput [192, 193, 194]. Microfluidic DEP based devices have many 

advantages over conventional systems to capture tumour cells [195, 196, 

197]: 

 

 label-free nature; 

 reduced size of operating systems; 

 flexibility in design; 

 less reagent consumption; 

 reduced production of wastes; 

 increased speed of analyses; 

 favorable scaling effects; 

 manageability and simplicity of the instrumentation; 

 portability.  
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These features result in high capture efficiency and cell purity [198, 199].  

Figure 5.6, which is presented again below, shows a schematic 

representation of the microfluidic channel with the geometry used in the 

simulations. 

 

 

Fig. 5.6 Schematic of the computational domain (limited for simplicity to only two 

electrodes whilst in the simulation N electrodes are considered). The electrodes (in blue) 

have a width We and are separated by a gap of width Wg. 

 

 

The following are the materials and measures typically adopted for the 

prototypes of dielectrophoretic devices with inter-digitated circuit (the Fig. 

5.6 is not drawn to scale) [200]: 

 

 the glass in widely used as a substrate, with a thickness of about 500 

𝜇𝑚; 

 the material used for the cover is typically PDMS, with a thickness 

of about 1 mm [201]; 

 the height h of the microchannel is  about 100 𝜇𝑚;  
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 the width of the electrodes and gaps between them are in the range 

20-50 𝜇𝑚; 

 the thickness of the electrodes is about 100 𝑛𝑚. 
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Appendix D 

 

Particle model 
 

In the realistic model for cells adopted in this work, the cell is 

represented by a spherical dielectric core and a spherical dielectric shell to 

account specifically for the dielectric properties (conductivity and 

permittivity) of the cytoplasm and of plasma-membrane respectively. Figure 

D.1 represent this concentric, dielectric shelled model. The permittivity and 

the conductivity of the liquid medium are 𝜀𝑚 and 𝜎𝑚 and hit complex 

permittivity therefore is: 

 

𝜀𝑚̃ = 𝜀𝑚 − 𝑖𝜎𝑚/𝜔. 

 

 

Fig. D.1 Spherical dielectric cell composed of cytoplasm (inner volume) and membrane (light brown 

shell). 
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It is possible to find one “effective electrical permittivity” 𝜀𝑒̃𝑓𝑓 taking into 

account the properties of the two different parts of the cell, cytoplasm and 

membrane [1, 202]. 

Consider the electric potential in three regions: Φ1 in the liquid medium, Φ2 

in the cell membrane, Φ3 in the cytoplasm. The forms of the potentials are: 

 

Φ1(𝑟, 𝜗) = −E0 𝑟 𝑐𝑜𝑠𝜗 +
𝑎̃ 𝑐𝑜𝑠𝜗

𝑟2
 𝑟 > 𝑅, 

 

Φ2(𝑟, 𝜗) = −𝑏̃𝑟 𝑐𝑜𝑠𝜗 +
𝑐̃ 𝑐𝑜𝑠𝜗

𝑟2
  𝑅 − 𝑑 < 𝑟 < 𝑅, 

 

Φ3(𝑟, 𝜗) = −𝑑̃ 𝑟 𝑐𝑜𝑠𝜗   𝑟 < 𝑅 − 𝑑. 

 

The boundary conditions at the two dielectric interfaces are: 

 

{

Φ1(𝑟 = 𝑅, 𝜗) = Φ2(𝑟 = 𝑅, 𝜗)

𝜀𝑚̃
𝜕Φ1

𝜕𝑟
= 𝜀𝑚̃𝑒𝑚

𝜕Φ2

𝜕𝑟

  at   𝑟 = 𝑅; 

 

 

{

Φ2(𝑟 = 𝑅 − 𝑑, 𝜗) = Φ3(𝑟 = 𝑅 − 𝑑, 𝜗)

𝜀𝑚̃𝑒𝑚
𝜕Φ2

𝜕𝑟
= 𝜀𝑐̃𝑦𝑡

𝜕Φ3

𝜕𝑟

 at   𝑟 = 𝑅 − 𝑑. 

 

   

With a reasoning similar to that of the Appendix B, it appears clear that only 

the constant 𝑎̃ present in the definition of Φ1 needs for determination of the 



180 
 

effective dipole moment 𝑝𝑒𝑓𝑓. From the previous conditions, 𝑎̃ assumes this 

form: 

 

𝑎̃ =

𝜀̃𝑚𝑒𝑚

(
𝑅

𝑅−𝑑
)
3
+ 2 

𝜀̃𝑐𝑦𝑡−𝜀̃𝑚𝑒𝑚
𝜀̃𝑐𝑦𝑡+2𝜀̃𝑚𝑒𝑚

(
𝑅

𝑅−𝑑
)
3
− 
𝜀̃𝑐𝑦𝑡−𝜀̃𝑚𝑒𝑚
𝜀̃𝑐𝑦𝑡+2𝜀̃𝑚𝑒𝑚

 − 𝜀̃𝑚

𝜀̃𝑚𝑒𝑚

(
𝑅

𝑅−𝑑
)
3
+ 2 

𝜀̃𝑐𝑦𝑡−𝜀̃𝑚𝑒𝑚
𝜀̃𝑐𝑦𝑡+2𝜀̃𝑚𝑒𝑚

(
𝑅

𝑅−𝑑
)
3
− 
𝜀̃𝑐𝑦𝑡−𝜀̃𝑚𝑒𝑚
𝜀̃𝑐𝑦𝑡+2𝜀̃𝑚𝑒𝑚

 + 2𝜀̃𝑚

𝑅3𝐸0.    (D.1) 

 

Comparing this expression with the Eq. (B.10), rewritten below for clarity: 

𝑎̃ =
𝜀̃𝑝−𝜀̃𝑚

𝜀̃𝑝+2𝜀̃𝑚
𝑅3𝐸0,       (B.10) 

it can be seen that 𝜀𝑝̃ is substituted by a quantity which can be identified 

with the effective complex dielectric costant 𝜀𝑒̃𝑓𝑓: 

 

𝜀𝑒̃𝑓𝑓 = 𝜀𝑚̃𝑒𝑚
(
𝑅

𝑅−𝑑
)
3
+ 2 

𝜀̃𝑐𝑦𝑡−𝜀̃𝑚𝑒𝑚

𝜀̃𝑐𝑦𝑡+2𝜀̃𝑚𝑒𝑚

(
𝑅

𝑅−𝑑
)
3
− 

𝜀̃𝑐𝑦𝑡−𝜀̃𝑚𝑒𝑚

𝜀̃𝑐𝑦𝑡+2𝜀̃𝑚𝑒𝑚

.     (D.2) 

 

The electrostatic potential outside the layered spherical particle, that is for 

𝑟 > 𝑅, is therefore indistinguishable from that generated of the equivalent, 

homogeneous dielectric sphere of radius R with permittivity 𝜀𝑒̃𝑓𝑓. The cell is 

thus replaced in this model by an equivalent and homogeneous sphere with 

a radius equal to that of the cell and with dielectric characteristics 

represented by 𝜀𝑒̃𝑓𝑓, as shown in Fig. D.2. 
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Fig. D.2 Effective equivalent homogeneous sphere model ruled by the dielectric function 

𝜀𝑒̃𝑓𝑓. 
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Appendix E 
 

MD-FEM code details 
 

In this appendix we will describe with some additional details the 

procedures in the simulation code which are only briefly discussed in the 

main text of this Thesis work (Section 4.3). The full source can be found at 

the web page: 

 

https://bitbucket.org/barolidavide/tumor_detection_dolfin/src/master/. 

  

E.1 Mesh generation 

 

A set of initialization and data exchange files is created to support 

simulations. In particular, the file Particles.xml contains, for each particle, 

the values of: 

 center coordinates;  

 velocity components; 

 acceleration components; 

 

whereas the Geometry.xml file contains the values of: 

 number and width of electrodes and separation gap between them;  

 width, depth and heigth of the box; 

 particle radius (or radii). 

 

https://bitbucket.org/barolidavide/tumor_detection_dolfin/src/master/
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The first step of the simulations is to generate the mesh for the 

computing domain relative to the initial configuration. Gmsh is used to 

create the mesh of the box and the spheres. The class “pygmsh” provides a 

Python interface for the Gmsh scripting language which can be fruitfully 

used to create the .geo Gmsh driver. Anyhow, a further adaptation must be 

considered and coded directly in python in order to generate automatically 

the electrodes’ set. To create the mesh, the files Geometry.xml and 

Particles.xml are recalled to use all the parameters contained in them.  

In general, the “subprocess” module provides an interface for working with 

additional processes and the “call()” function allows to run an external 

command without interacting with it. In the code, Subprocess.call() has been 

used to start Gmsh, which creates the mesh by the means of data contained 

in the cited  files. The topological characteristics of the mesh are contained 

in a function called MeshFunction. We note that contrarily to the rest of the 

code the mesh generation performed by Gmsh is a serial computing 

procedure. 

As well as the starting cycle of the simulations, the mesh generation is 

performed with the same procedure here indicated at the times 𝑡 =

𝑛𝐷𝐸𝑃∆𝑡𝐷𝐸𝑃, as explained in the Section 4.3. 

 

E.2 Finite elements and Function Space generation 

 

The FEniCS command “FiniteElement” creates the finite elements 

from “Unified Form-assembly Code finite element” (UFC), that is a unified 

framework assembling finite element variational forms. In the code, Pot_r 

refers to real part of electric potential scalar field, Pot_i to the imaginary one 
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and Pot_c (which is the product of Pot_r and Pot_i) to the whole complex 

potential: 

 

 

 

The command “FunctionSpace” generates a finite element function space in 

FEniCS, on the base of the mesh and of Pot_c:  

 

 

 

E.3 Boundary conditions 

 

The command “DirichletBC” imposes the Dirichlet boundary 

conditions. For this purpose, the various parts of the domain must be 

labelled. In the code, having indicated the number of particles with 

N_particelle we have the following labelling rules: a) integer numbers 

between 1 and N_particelle label the particles, b) the number N_particelle 

+7 labels the top surface of the domain box, c) N_particelle +2 the 

subdomain of its bottom surface consisting of the odd-numbered place 

electrodes where the electrical signal is applied, d) N_particelle +1 the 

subdomain of the bottom surface consisting of the even-numbered place 

electrodes where no signal is applied. The other boundaries are indicated by 
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numbers between N_particelle +3 and N_particelle +6. The command 

contains four arguments: the function space, the value to be imposed as a 

boundary condition, the MeshFunction and the subdomain index. In the 

code, the command is written as following: 

 

where W.sub(0) and W.sub(1) refers to the subspaces relative to the real and 

imaginary electric potential, respectively, V_rms is the root mean square 

value of the applied electrical signal, mf is the MeshFunction. 

 

 

E.4 Solution of Laplace’ problem 

 

The linear form L and the bilinear form a are written as described in 

the section 3.3.1. The function u to be derived and the problem (which has 

the bilinear and linear forms, the function and the boundary conditions as 

arguments) are defined and the solution is finally obtained through the 

specific Fenics command “solve()”: 
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Through the “project” command of FEniCS, the vector solution of the 

electric field is derived from the solution of the scalar field u. The formula 

of Eq. (1.29) is finally implemented to calculate the e.mec. force due to e.m. 

field. This force is added vectorially to single particle external forces and 

the equations of motion are integrated by Velocity Verlet algorithm. Before 

starting the new cycle, the file Particles.xml is updated with new values of 

the particle centers, velocities and accelerations. As claimed, unlike the 

mesh generation, the processes here described here are parallelized. 

 

E.5 Control instructions 

 

The code includes control instructions on particle-wall and steric 

particle-particle interactions: in fact, particles must never exceed the walls 

of the simulation box in their dynamics and, moreover, must not penetrate 

each other. For each MD step, a check is carried out: if one or both of these 

events occur, it modifies the positions of the particles as explained below.  

 

 

E.5.1  Particle-wall interactions  

 

The interaction between the particles and the walls is conceived as 

an elastic impact: if the surface of a particle is found to have crossed a wall 

of the box in a MD step, its center  is associated with new values of speed 

and position. The problem is addressed in terms of components of the 

position vector expressed in Cartesian coordinates. The coordinates (x ,y ,z) 
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are related respectively to length, depth and height of the box. Let’s consider 

the y coordinate as an example. The condition is expressed as follows: if in a 

specific time step the sum of the coordinate y of the particle center  and the 

radius is greater than the depth of the simulation box, then the value of the 

component y of the velocity (𝑣𝑦) is replaced by the opposite value and the 

coordinate y is replaced by that which the particle had at the previous time 

step (called 𝑦𝑜𝑙𝑑); the same is true if the difference between the coordinate y 

and the radius is less than zero. In formula, if either of these two conditions 

occurs, the new values of velocity and position are: 

 

𝑣𝑦
′ = −𝑣𝑦,        (E.1) 

 

 𝑦′ = 𝑦𝑜𝑙𝑑.         (E.2)   

 

 

E.5.2 Overlapping between particles 

 

In the case of overlapping between particles, the check changes the 

positions of the particles, so that contact and/or penetration are prevented. 

Such measures avoid non-physical situations since the particles are 

impenetrable. Moreover the eventual overlap leads to conflicts in the 

generation of the mesh at the computational phase. 

The minimum physical distance between the centers of two spherical 

particles is obviously equal to the sum of the radii. A minimum distance has 

been defined, called control distance 𝐷𝑐, equal to the sum of the radii added 

to a small amount. The purpose of the control check is to avoid that as a 
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result of a time step of MD the two particles have the centers that are less 

distant than 𝐷𝑐, in order to prevent the contact between the two. A check is 

made on each particle pair; it consists of the following points. 

Considering the particle 1 with coordinates (𝑥1, 𝑦1, 𝑧1) and the particle 2 

with coordinates (𝑥2, 𝑦2, 𝑧2), the distance 𝐷 between the two is calculated: 

𝐷 = √(𝑥1 − 𝑥2)2+(𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2.   (E.3) 

The direction cosines are calculated as follows: 

cos(𝑟𝑥̂) =
𝑥1−𝑥2

√(𝑥1−𝑥2)2+(𝑦1−𝑦2)2+(𝑧1−𝑧2)2
; 

cos(𝑟𝑦̂) =
𝑦1−𝑦2

√(𝑥1−𝑥2)2+(𝑦1−𝑦2)2+(𝑧1−𝑧2)2
; 

cos(𝑟𝑧̂) =
𝑧1−𝑧2

√(𝑥1−𝑥2)2+(𝑦1−𝑦2)2+(𝑧1−𝑧2)2
. 

If 𝑥1 > 𝑥2, the x-coordinates of the two particles are changed according to 

the following formulas: 

𝑥1
′ = 𝑥1 +

1

2
(𝐷𝑐 − 𝐷) cos(𝑟𝑥̂),      (E.4) 

𝑥2
′ = 𝑥2 −

1

2
(𝐷𝑐 − 𝐷) cos(𝑟𝑥̂).       (E.5) 

If instead 𝑥1 < 𝑥2, the new coordinates become: 

𝑥1
′ = 𝑥1 −

1

2
(𝐷𝑐 − 𝐷) cos(𝑟𝑥̂), 

𝑥2
′ = 𝑥2 +

1

2
(𝐷𝑐 − 𝐷) cos(𝑟𝑥̂). 
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Considering for example the first case, by subtracting Eq. (E.5) from Eq. 

(E.4), the projection along the x-axis of the new distance 𝐷′ is: 

𝑥1
′ − 𝑥2

′ = 𝑥1 − 𝑥2 + (𝐷𝑐 − 𝐷) cos(𝑟𝑥̂).    (E.6) 

Similar formulas apply to the y and z coordinates of the two particles, in 

which cos(𝑟𝑦̂) e cos(𝑟𝑧̂) respectively appear: 

𝑦1
′ − 𝑦2

′ = 𝑦1 − 𝑦2 + (𝐷𝑐 − 𝐷) cos(𝑟𝑦̂),      (E.7) 

𝑧1
′ − 𝑧2

′ = 𝑧1 − 𝑧2 + (𝐷𝑐 − 𝐷) cos(𝑟𝑧̂).      (E.8) 

The new distance is:  

𝐷′ = √(𝑥1
′ − 𝑥2

′ )2 + (𝑦1
′ − 𝑦2

′)2 + (𝑧1
′ − 𝑧2

′ )2.   (E.9) 

By replacing the Eq.s (E.6), (E.7) and (E.8) in the Eq. (E.9), 𝐷′ becomes: 

𝐷′ = 𝐷𝑐.        (E.10) 

Following a check due to contact or overlap between two particles, the new 

distance is then equal to 𝐷𝑐. 
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Appendix F 

 

Re{𝑓𝐶𝑀} of MDA-MD-231 cells and B-Lymphocites 

 

In this Appendix, the shapes of the Re{𝑓𝐶𝑀} curves of MDA-MD-

231 cells and the B-Lymphocites, shown in Fig. 5.12, are commented and 

explained with particular regard to limit values. 

In Chap. 1 the following quantities was been introduced: 

 

 the definition of complex permittivity of a particle and of the liquid 

medium: 

 

𝜀𝑚̃ = 𝜀𝑚 − 𝑖
𝜎𝑚

𝜔
,              (1.10.a)

  

𝜀𝑝̃ = 𝜀𝑝 − 𝑖
𝜎𝑝

𝜔
;                          (1.10.b)

  

 the CM factor 𝑓𝐶𝑀: 

𝑓𝐶𝑀 =
𝜀̃𝑝−𝜀̃𝑚

𝜀̃𝑝+2𝜀̃𝑚
=

𝜀𝑝−𝜀𝑚−𝑖
𝜎𝑝−𝜎𝑚

𝜔

𝜀𝑝+2𝜀𝑚 −𝑖
𝜎𝑝+2𝜎𝑚

𝜔

;       (1.15) 

 

 Re{𝑓𝐶𝑀} =
(𝜀𝑝−𝜀𝑚)(𝜀𝑝+2𝜀𝑚)−

1

𝜔2
(𝜎𝑚−𝜎𝑝)(𝜎𝑝+2𝜎𝑚)

(𝜀𝑝+2𝜀𝑚)
2
+
1

𝜔2
(𝜎𝑝+2𝜎𝑚)

2 ;                (1.16) 

    

 the limits of Re{𝑓𝐶𝑀} for low and high frequencies:   
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lim𝜔→∞ Re{𝑓𝐶𝑀} =
𝜀𝑝−𝜀𝑚

𝜀𝑝+2𝜀𝑚
,                    (1.19) 

 

lim𝜔→0 Re{𝑓𝐶𝑀} =
𝜎𝑝−𝜎𝑚

𝜎𝑝+2𝜎𝑚
.                   (1.20) 

In the previous equations, if a dielectric particle of a given material is 

considered, the values 𝜀𝑝, 𝜎𝑝, 𝜀𝑚, 𝜎𝑚 are constant. In Chap. 5, the effective 

permittivity 𝜀𝑒̃𝑓𝑓 (Eq. (5.7)) was introducted within the shelled model 

adopted for the cells, explaining that in this case the permittivity 𝜀𝑝̃ must be 

replaced with 𝜀𝑒̃𝑓𝑓. By comparing the Eq. (1.10b) with the expression: 

 

𝜀𝑒̃𝑓𝑓 = Re{𝜀𝑒̃𝑓𝑓} + 𝑖Im{𝜀𝑒̃𝑓𝑓},  

 

the following replacements must be carried out:                            

 

 𝜀𝑝  →  Re{𝜀𝑒̃𝑓𝑓}; 

 

 𝜎𝑝  →  −𝜔 Im{𝜀𝑒̃𝑓𝑓}. 

 

It is important to note that both Re{𝜀𝑒̃𝑓𝑓} and Im{𝜀𝑒̃𝑓𝑓} are frequency 

dependent. Consequently, unlike the case of a dielectric particle of a given 

material (characterized by constant parameters 𝜀𝑝 and 𝜎𝑝 ), within the shell 

model the quantities concerning the particle depend on the frequency. Figure 

F.1 and F.2 show Re{𝜀𝑒̃𝑓𝑓} and the quantity −𝜔 Im{𝜀𝑒̃𝑓𝑓} (which is here 

called effective conductivity and indicated by 𝜎𝑒𝑓𝑓 ) of MDA-MD-231 and 

of the B-Lymphocities. 
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Fig. F.1 Re{𝜀𝑒̃𝑓𝑓} of MDA-MD-231 and of the B-Lymphocites.  
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Fig. F.2 𝜎𝑒𝑓𝑓  of MDA-MD-231 and of the B-Lymphocites. 

To explain the shapes of Re{𝑓𝐶𝑀} of MDA-MB-231 and of B-Lymphocites 

shown in Fig 5.12, it is necessary to enter the high frequency limit of 

Re{𝜀𝑒̃𝑓𝑓} in Eq. (1.19) in the place of 𝜀𝑝 and the low frequency limit of 

effective conductivity 𝜎𝑒𝑓𝑓  in Eq. (1.20) in the place of 𝜎𝑝  (as already 

highlighted, 𝜀𝑚 = 79 𝜀0 and 𝜎𝑚 = 0.03 𝑆/𝑚 do not depend on the 

frequency and are constant). These values are:  

 

 MDA-MB-231: lim𝜔→∞ Re{𝜀𝑒̃𝑓𝑓} ≈ 49.8  𝜀0  

 B-Lymphocites lim𝜔→∞ Re{𝜀𝑒̃𝑓𝑓} ≈ 58.2  𝜀0       

 MDA-MB-231: lim𝜔→0 𝜎𝑒𝑓𝑓 ≈ 6.2 ∙ 10−5 S/m 

 B-Lymphocites lim𝜔→0 𝜎𝑒𝑓𝑓 ≈ 3.3 ∙ 10
−4 S/m.  

 

As a result, according to the Fig. 5.12, these replacements give the 

following results: 

 

 MDA-MB-231:  

lim𝜔→∞ Re{𝑓𝐶𝑀} ≈ −0.14; 

lim𝜔→0 Re{𝑓𝐶𝑀} ≈ −0.096; 

 

 B-Lymphocites : 

lim𝜔→∞ Re{𝑓𝐶𝑀} ≈ −0.498; 

lim𝜔→0 Re{𝑓𝐶𝑀} ≈ −0.496.  
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