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1 Abstract 

Change in cows’ behaviours is one of the indicators useful to 

help identifying when animals become ill. The need to analyse 

a large number of animals at a time due to the increase in the 

herd dimension in intensive farming has led to the use of 

automated systems. Among automated systems, inertial 

sensor-based systems have been utilised to distinguish 

behavioural patterns in livestock animals. 

In this field, the overall aim of this thesis work, which was 

inherent to the field of the Precision Livestock Farming, was 

to contribute to the improvement of the systems based on 

wearable sensors that are able to recognise the main 

behavioural activities (i.e., lying, standing, feeding, and 

walking) of dairy cows housed in a free-stall barn. This 

objective was achieved through different steps aimed at 

producing an advance in the state of the art. 

A novel algorithm, characterised by a linear computational 

time, was implemented with the aim to improve real-time 

monitoring and analysis of walking behaviour of dairy cows. 

The algorithm computed the number of steps of each cow 

from accelerometer data by making use of statistically 

defined thresholds. Algorithm accuracy was carried out by 

computing total error (E equal to 9.5 %) and Relative 

Measurement Error (RME between 2.4% and 4.8%).  

A new classifier was assessed to recognise the cow feeding 

and standing behavioural activities by using statistically 

defined thresholds computed from accelerometer data. The 

accuracy of the classification was assessed by computing of 

the  Misclassification Rate (MR equal to 5.56%). 

A new data acquisition system assessed in a free-stall barn 

allowed the acquisition of data from different sensor devices, 
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with a sampling frequency of 4 Hz, during the animals’ daily 

routine. It required a simple installation into the building and 

it did not need any preliminary calibration. The performance 

of this system was assessed by computing a Stored Data Index 

(DSI) that resulted equal to 83%. 

Finally, the overall design of an automated monitoring 

system based on wearable sensors was proposed. 
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2 Sommario 

L’alterazione del comportamento degli animali è uno degli 

indicatori utili per identificare l’insorgenza di malattie. La 

necessità di controllare un numero sempre maggiore di capi 

negli allevamenti intensivi ha portato all’utilizzo di sistemi 

automatizzati per il loro monitoraggio. Tra questi, i sistemi 

basati su sensori inerziali sono stati recentemente proposti 

per classificare i pattern comportamentali degli animali negli 

allevamenti. 

In questo ambito, che è inerente al campo della Precision 

Livestock Farming, il lavoro svolto durante il Dottorato di 

ricerca e descritto nella presente tesi si propone di 

contribuire al miglioramento di tali sistemi per il 

riconoscimento delle attività di lying, standing, feeding e 

walking delle bovine da latte allevate in una stalla a 

stabulazione libera. 

Sulla base di un’ampia analisi dello stato dell’arte, tale 

obiettivo è stato conseguito tramite la definizione di nuovi 

approcci di applicazione della ICT (Information and 

Communications Technology) alla zootecnia intensiva. 

In particolare, è stato realizzato un nuovo algoritmo, 

caratterizzato da un complessità computazionale lineare, che 

effettua il calcolo del numero di passi di ogni bovina dai dati 

di accelerazione, facendo uso di soglie definite 

statisticamente. L’accuratezza dell’algoritmo è stata valutata 

sulla base dell’errore totale, pari al 9.5%, e del Relative 

Measurement Error, compreso tra il 2.4% e il 4.8%. 

Inoltre, è stato definito un nuovo classificatore per 

distinguere l’attività del feeding dallo standing, utilizzando 

soglie calcolate statisticamente dai dati accelerometrici. 
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L’accuratezza della classificazione è stata valutata sulla base 

del Misclassification Rate, pari al 5.56%. 

L’applicazione in stalla di un nuovo sistema di acquisizione 

dei dati ha permesso di migliorare la raccolta dei dati da 

differenti sensori durante la routine giornaliera degli 

animali. Il sistema proposto richiede un’installazione 

facilitata e non necessita di calibrazioni preliminari. La sua 

prestazione è stata valutata mediante lo Stored Data Index 

che è risultato pari all’83%. 

Infine, viene proposto il progetto di un sistema complessivo 

per il monitoraggio in automatico dei comportamenti delle 

bovine basato su sensori indossabili. 
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3 Introduction 

3.1 Preface 

In this century, public concern over industrial methods of 
rearing animals and their impact on farm animal welfare have 
increased (Miele and Lever, 2013). At the consumers’ level, 
there is a growing realisation of a link, direct or indirect, 
between animal welfare and food safety and quality  
(Rowbotham and Ruegg, 2015). Scientific research is also 
involved in assessing whether animal welfare could influence 
productivity (Coignard et al., 2014). This growing interest 
towards animal welfare in intensive farming, which is also 
diffuse among the stakeholders, has joined with other current 
arising problems related to livestock farming management. 
Among these, the increase of herd dimension that has reduced 
the farmer’s capability of visually controlling the animals and 
the need to decrease the livestock management expenditures 
due to the labour cost. 
These issues have contributed to produce an increasingly 
spread and shared adoption of automated computational 
procedures for the analysis of animal behaviour.  
Different kinds of innovative systems and automated tools 
have been proposed or assessed for the observation of animal 
behaviours. Among these, the automated visual recognition 
of cow's lying, standing, and walking behavioural activities 
by using a computer-vision based system (Mattachini et al., 
2011; Mortensen et al., 2016; S. M. C. S. M. C. Porto et al., 
2013; Song et al., 2008), the automated sound recognition 
(Ferrari et al., 2010; Fontana et al., 2015; Vandermeulen et 
al., 2016), the outdoor animal localisation by using Global 
Positioning Systems (Barbari et al., 2006; Godsk and 
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Kjærgaard, 2015) and the in-door animal localisation by 
using Radio Frequency Identification tags (Barbari et al., 
2013; Maselyne et al., 2016; Porto et al., 2012; Voulodimos 
et al., 2010) and Ultra-Wide Band tags (Ipema et al., 2013; 
Porto et al., 2014). Some drawbacks of these systems are their 
high cost and the need to have highly specialised operators to 
calibrate them when a modification of the system within the 
monitored areas of the breeding environment or an extension 
of the system are required. 
Therefore, in recent times, innovative systems and automated 
computational procedures based on inertial wearable sensors 
have been adopted to provide effective and accurate 
monitoring and analysis of cow behaviour to improve 
animal’s health and welfare and respond to different issues 
related to the high cost of the systems, effectiveness of the 
outcomes, and completeness of the behaviours analysed. In 
these systems, the sensors attached to the animals are suitable 
to detect events or measure changes in some physical 
quantities (e.g., acceleration, pressure, air relative humidity, 
and air temperature).  
Research studies on wearable sensor-based systems can be 
broadly categorised into two groups of works, which depend 
on the system proposed. It can be a commercial system or a 
prototype built by the research team. When a commercial 
system is tested, in the work there is usually no information 
on the algorithm due to patent rights, therefore researchers 
cannot contribute to its improvement and the work is mainly 
aimed at assessing the accuracy of the results compared to 
other systems considered as the ‘golden standard’. When a 
prototype of the system is proposed, the algorithm as well as 
software and hardware specifications are usually provided 
and this facilitates comparisons with other algorithms and the 



3. Introduction 

- 12 - 

 

advance of the research in the field. With reference to 
wearable sensors, most of the studies in this field have been 
focused on hardware improvement (Darr and Epperson, 
2009; Kumar and Hancke, 2015; Nadimi et al., 2012; Pastell 
et al., 2009), while few research studies have been conducted 
to improve algorithms and implement the related software 
(Alsaaod et al., 2015; Nielsen et al., 2010). Furthermore, 
there is the need to cope with the difficulties related to the 
conduction of a thorough analysis of all the monitored 
behavioural activities of the animal.  
Therefore, challenges still exist in this field of research, in 
which the thesis work was developed and aimed at 
contributing to the increase of knowledge.    
On this basis, in the following Sections, an extensive analysis 
of literature is carried out (Section 3.2) to investigate the state 
of the art, which constitutes the knowledge base of this thesis 
work, and subsequently the objectives of the thesis work 
(Section 3.3) are described with reference to the highlighted 
issues in the field. 

3.2 State of the art 

3.2.1 Research studies on ICT applications to the analysis 

of livestock behaviour 

In past times, animal observations were carried out by skilled 
operators either directly within the breeding environment by 
filling in a checklist, or by the visual analysis of images 
acquired from video-recording systems. Certainly, when 
these tasks are performed in a continuously way for a long 
time they became costly and time consuming (Alsaaod et al., 
2015; Chanvallon et al., 2014; Nielsen et al., 2010; Robert et 
al., 2009). For these reasons, in the literature, these 
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techniques of animal observation are often used only as the 
‘golden standard’ for the validation of automated monitoring 
system of animal behaviours. 
A type of  automated  monitoring system regards the 
automated visual recognition of animal behaviours (Cangar 
et al., 2008; Mattachini et al., 2011; Mortensen et al., 2016; 
Porto et al., 2013; Song et al., 2008). 
In this field, a computer vision-based system (CVBS) was 
used and validated in two research studies (Porto et al., 2013; 
Porto et al., 2015) concerning the automated classification of 
cow's lying, standing, and feeding activities. The authors 
demonstrated the suitability of the Viola-Jones algorithm for 
image discrimination of the cow’s shape from the floor 
background. The proposed system based on automated image 
recognition required an accurate calibration phase of both the 
cameras and the algorithms that process the digital images. 
This required activity increases the complexity of the 
installation in the free-stall barn and the maintenance of the 
system when the farmer adopts any change in the observed 
breeding area. 
Another type of automated system, which analyse health 
status of animals from activities other than behaviours, used 
automated sound recognition to predict the chicken’s growth 
(Fontana et al., 2015), the monitoring of pig’s cough (Guarino 
et al., 2008) or cow’s coughing frequency to recognise 
Bovine Respiratory Disease (Ferrari et al., 2010; 
Vandermeulen et al., 2016). 
These kinds of monitoring systems do not allow the 
identification of each animal. 
Other automated systems for the monitoring of livestock 
animals allows for both identification and localisation of each 
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animal in the breeding environment and the recognition of its 
behaviours. 
When the cows are at pasture or during outdoor activities 
(e.g., transport), Global Positioning Systems (GPSs) enable 
continuous and automatic tracking of an animal’s position 
(Barbari et al., 2006; Ungar et al., 2005) and an accurate 
recognition of cow's activities (Godsk and Kjærgaard, 2015). 
However, GPSs are not easily applicable indoor due to signal 
weakening. Therefore, other kinds of monitoring systems 
have been proposed in the last decades such as those based 
on radio frequency identification (RFID) technology. They 
make use of two main electronic components (tags and 
readers) that exchange information through radio waves. 
Among automated systems based on RFID technology, those 
based on ultra-wide band (UWB) technology can identify and 
locate animal inside the livestock buildings with a higher 
accuracy then those based on high frequency (HF) and ultra-
high frequency (UHF) technologies (Ilie-Zudor et al., 2011; 
Ipema et al., 2013; Porto et al., 2014, 2012). Although these 
types of monitoring systems make it possible to track each 
animal of the herd, they have a high cost that is not always 
sustainable for farmers. Moreover, their setting up within the 
breeding environment is often complex in relation to the 
layout and building characteristics of the barn to be 
monitored. 
Recently, other monitoring systems based on wearable 

sensors have been more and more widely utilised due to their 
low cost and easy integration with other ICT devices (e.g., 
computers and wireless networks). These sensors are able to 
measure difference in physical quantity (e.g., acceleration, 
pressure, air temperature, and air relative humidity). For 
instance, accelerometer sensors implemented in smart 
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devices were used to monitor human behaviour and health 
(Mathie et al., 2004). Later, in a pilot study, they were also 
applied to livestock (Martiskainen et al., 2009) in order to 
classify dairy cow's behavioural activities by using a Support 

Vector Machine (SVM). 
In literature, the classification of standing and lying was 
already successfully assessed by using an accelerometer fixed 
to the cow’s leg (Arcidiacono et al., 2015; Darr and Epperson, 
2009). In fact, an acceleration threshold value equal to 0.5 g 
was found suitable to recognise standing from lying. 
Different systems to recognise walking and feeding are still 
currently under study, and their features will be described in 
the following sub-sections.  

3.2.2 The dairy cow's step counting through wearable 

sensors 

Concerning the monitoring of walking behaviour of dairy 
cows within free-stall barns, the most frequently adopted 
wearable sensor is the accelerometer. The pedometer attached 
to cow’s leg is the most used device that is equipped with an 
accelerometer. It provides a valuable and complete 
information (e.g., activity indices and step counting) about 
the periods spent by the animal in ‘rest’ and in ‘restless’ 
activities during its daily routine. 
It is well know that this information is relevant for early 
detection of oestrous in dairy cows (Chanvallon et al., 2014; 
Firk et al., 2002; Silper et al., 2015) as well as for lameness 
(Alsaaod et al., 2012; Mazrier et al., 2006). However, the 
analysis of walking activity by using pedometers needs 
refinement to improve the accuracy of the step count and 
obtain its real-time acquisition. Actually, the information 
provided by pedometers is not available in real time, because 
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the pedometer data is downloaded by the monitoring system 
only during the milking process (e.g., twice a day). Due to the 
current widespread use of pedometers, any technical 
improvement would be valuable for farmers and could be a 
significant step forward in the enhancement of systems based 
on wearable sensors.  
In this field, there has been an increased focus on real-time 
cow's step counting. However, technical specifications of this 
kind of systems as well as the code of the step counting 
algorithm are seldom included in the literature. 
The IceTag3DTM (IceRobotics Ltd, Edinburgh, UK) is a new 
device which is based on three-dimensional acceleration 
technology (Figure 1). 
 

Figure 1. The IceTag3D pedometer. 

 
 
It works at a sampling frequency of 16 Hz (Kokin et al., 
2014). This device was validated by Nielsen et al. (2010) and 
it provided information at 1-second intervals about the 
posture of a cow (standing vs. lying), whether the leg to 
which the sensor is attached was moving or not, and the 
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number of steps taken per time unit. The aim of their study 
was to develop an algorithm for predicting the duration of 
walking and standing periods based on a moving average of 
the output from the IceTag3DTM device. Moreover, the step 
count and lying/standing prediction of the IceTag3DTM 
device were also validated against video recordings. The 
authors reported that accurate results were achieved from 
their experiments conducted on 10 cows, yet since the 
IceTag3DTM is a commercial product supplied with a 
proprietary software, no information about the step counting 
algorithm was found. 
Likewise, in a new version of the algorithm of RumiWatch 
pedometer (ITIN+HOCH GmbH, Fütterungstechnik, Liestal, 
Switzerland), proposed by Alsaaod et al. (2015), the authors 
provided no information about the code of the algorithm, 
whereas the outcomes of the application of the proposed 
algorithm on 21 cows were reported in detail as well as other 
technical features of RumiWatch pedometer (Figure 2). 
Among these, the sampling frequency of the accelerometer 
for monitoring walking behaviour, which was equal to 10 Hz, 
was considered very high by the authors. 
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Figure 2. The RumiWatch 

pedometer. 

 
 

3.2.3 The feeding behavioural activity 

According to one of the principles of animal welfare, 'good 
feeding' improves animal's comfort and well-being and 
indicates whether a management system is well designed or 
not (Burow et al., 2011; Grant and Albright, 2000; Praks et 
al., 2011).  Since changes in feeding behavioural activity are 
increasingly recognised as a useful indicator of cow's health 
and welfare, the monitoring of changes in feeding activity 
may be useful in early detection and prevention of diseases. 
The observation of feeding behaviour of animals is usually 
carried out directly by operators within the breeding 
environment or by the visual analysis of images acquired 
from video-recording systems. Since these two monitoring 
systems are usually costly and time consuming when they are 
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not automated (Abdanan Mehdizadeh et al., 2015; 
Berckmans, 2004), other kinds of systems, such as those 
based on radio frequency identification (RFID) technology, 
have been proposed in the last decades. They utilise 
transponder tags that identify each animal individually and 
localise it during the feeding activity (e.g., during the visit at 
the feeding alley). Among automated systems based on RFID 
technology, a higher accuracy is achieved by those based on 
ultra-wide band (UWB) technology compared to those based 
on high frequency (HF) and ultra-high frequency (UHF) 
technologies (Frondelius et al., 2015; Ipema et al., 2013; 
Porto et al., 2014, 2012; Schwartzkopf-Genswein et al., 1999; 
Tullo et al., 2016).  The main disadvantages of the application 
of these systems are their high cost, which is not always 
sustainable for farmers, as well as the complex setting up in 
relation to the layout and building characteristics of the barn. 
Feeding behaviour is studied also during the animal outdoor 
activities by using Global Positioning Systems (GPSs) that 
enable continuous and automatic tracking of an animal’s 
position (Ungar et al., 2005) and an accurate recognition of 
cow's activities (Godsk and Kjærgaard, 2015). However, 
GPSs are not easily applicable for the indoor analysis of 
feeding behaviour due to signal weakening. 
Recently, other monitoring systems based on wearable 
sensors are being utilised more and more widely due to their 
low cost and easy integration with other ICT devices (e.g., 
computers and wireless networks). Wearable sensors are 
suitable for detecting events related to animals (e.g., change 
in acceleration, change in angular velocity, and change in 
sound waves or pressure due to chewing activity) or changes 
in the microclimate of the animal occupied zone (e.g., air 
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temperature and relative humidity, and atmospheric 
pressure). 
With regard to the analysis of feeding behaviour of dairy 
cows, the most used wearable sensors are pressure sensors 
and accelerometers.  
With reference to pressure sensors, in two experimental tests 
that were carried out by Ruuska et al. (2015) dairy cows were 
equipped with a RumiWatch noseband sensor (Figure 3). 
 

Figure 3. RumiWatch noseband 

sensor. 

 
 
The data acquired by the sensor were compared with those 
obtained by two other monitoring systems, i.e., a system for 
continuous recording of cow's behaviours (Experimental test 
1) and a system suitable for the control of the visits to the 
automated feeders (Experimental test 2). In these tests the 
output of the RumiWatch algorithm was assessed, however 



3. Introduction 

- 21 - 

 

no information was provided about its features. Moreover, 
since the pressure sensor was placed in the noseband of the 
halter, the system was more invasive than other wearable 
sensors. 
As concerns accelerometer-based systems, Martiskainen et 
al. (2009) carried out data acquisition from an accelerometer 
fixed to the collar of 30 cows in order to classify their 
behavioural activities by using a Support Vector Machine 
(SVM). However, the use of the SVM requires a training 
phase to reach a high level of accuracy in behaviour 
recognition. 
In a later study, other researchers (Ueda et al., 2011) utilised 
a uniaxial accelerometer, named Kenz Lifecorder Ex (LCEX; 
Suzuken Co. Ltd., Nagoya, Japan), which was fixed to the 
collar of 8 Holstein dairy cows in a grazing production 
system. The feeding behavioural activity was studied by 
using the intensity of the movement recorded by the device 
in order to determine the eating time (min/d) that is one of the 
factors, together with biting rate (bite/min) and bite mass (g 
of DM/bite), utilised to compute DMI (Dry Matter Intake). In 
a recent study, Delagarde & Lamberton (2015) assessed the 
Plus version of the Lifecorder device (Figure 4) by fixing it 
to the collar of six cows in order to measure the following 
activities: grazing, ruminating and so-called ‘other activities’, 
i.e., drinking, walking without biting or searching, resting, 
and social interaction. 
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Figure 4. Lifecorder Plus activity 

monitor. 

 
 
However, no information was provided about the features of 
the algorithm and no accelerometer data were available in 
both studies (Delagarde and Lamberton, 2015; Ueda et al., 
2011).  
Differently from these studies, Oudshoorn et al. (2013) 
reported the accelerometer data related to cow's feeding 
behavioural activity. In detail, an accelerometer device 
combined with bite count was proposed to evaluate the grass 
intake of dairy cow at pasture. Acceleration threshold values 
during feeding activity were defined. However, these 
outcomes were related to grazing cows, which show different 
postures during feeding activity compared to cows bred 
inside a barn. 
According to several researchers, in the near future 
accelerometers are the most ‘promising’ sensors among the 
devices studied in the literature because they are 
commercially available and low-cost products. However, 
there is still work to be done in this field in order to design 
models and systems that fully comply with Precision 
Livestock Farming (PLF) principles (Berckmans, 2004) and 
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are suitable for discriminating all the animal’s behavioural 
activities with a good accuracy. 
Accelerometer-based monitoring systems that utilise 
acceleration threshold values to study feeding behaviour are 
valuable because they have several advantages. Among them, 
they do not require a training phase as for SVM-based 
systems, they are not invasive for the animal if the sensor is 
applied to the collar and, finally, once the thresholds values 
are determined the computational cost of the classifier for 
automated monitoring is lower. Until now, acceleration 
threshold values during the feeding activity have been 
defined only for grazing cows (Oudshoorn et al., 2013). 

3.3 Objectives of the thesis work 

The main objective of this study was to contribute to the 
improvement of the scientific knowledge in the field of ICT 
applications to livestock farming, which is essential to deal 
with the issues and challenges highlighted in the preface 
(Section 3.1). To this aim, this thesis work involved the 
design of an effective automated system suitable for the 
recognition of the main dairy cows’ behavioural activities, 
i.e., lying, standing, walking, and feeding. This objective 
(objective 1) is a relevant aspect of the Precision Livestock 

Farming (PLF), which offers the possibility to achieve 
economically, environmentally and socially sustainable 
farming through continuous automatic observation, real time 
data interpretation and active control on the smallest possible 
group of animals (Berckmans, 2011). 
The proposed automated system was not based on any 
commercial ready-to-use product specifically designed for 
PLF application. In fact, the hardware components were 
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general-purpose devices and all high-level software needed 
for data acquisition and data elaboration was developed using 
open source operating system and software library that are 
free available on the Web. 
Following this approach, a module of the proposed system 
was constituted by a new data acquisition system (DAS) 
based on low-cost technology and open-source software. 
Since DAS was designed and implemented taking into 
account the complexity of structural components, materials, 
and layout of functional areas of a free-stall barn, it 
guaranteed a simplified installation into the breeding 
environment. Two main elements, the sensors and the 
receiver, interconnected by a wireless network, composed it 
and they did not require any calibration or other preliminary 
operation before or during the registration process. 
With regard to cow's standing and lying behaviours, the 
literature concerning the recognition of these behaviours by 
using wearable sensors fixed to dairy cows’ body is already 
well-established. On the contrary, different methods and 
systems aimed at recognising walking and feeding behaviours 
are still currently under study. Undoubtedly, these two 
behavioural activities are relevant for detecting some specific 
state (oestrous and lameness) of the animal and its interaction 
with the barn building and the feeding management system. 
For instance, the increasing in walking activity when cows 
are in oestrus was reported in some studies (Firk et al., 2002; 
Chanvallon et al., 2014). Other researchers (DeVries et al., 
2003; DeVries and von Keyserlingk, 2006) studied different 
typologies of feeding management system to improve 
building characteristics of the barn. Since thermal comfort of 
the animals would also have an effect on their behaviours, 
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research on the use of new sustainable materials would be 
valuable (Barreca and Fichera, 2013a, 2013b). 
With the aim of achieving an advance in the state of the art, a 
relevant part of my research was dedicated to the study of 
cows’ walking behaviour in a free-stall barn. This analysis 
allowed the development and the implementation of an open-
source step-counting algorithm based on acceleration 
thresholds, which were statistically determined (objective 2). 
Moreover, the systematic study of cows’ feeding behaviour 
in a free-stall barn was conducted. This knowledge made it 
possible to define acceleration thresholds suitable for the 
automated discrimination of cows’ feeding activities from 
standing ones (objective 3). 
Finally, during the activities developed in my study, further 
results were achieved: 

− The performance of the sensor devices was improved 
by using a new version of the firmware. 

− The data retrieved by gyroscope sensors and the 
accelerometer sensors, during cows’ walking 
activities, was analysed and compared. 

− The data retrieved by gyroscope, barometer, and 
accelerometer sensors, during the cows’ feeding 
activities, was analysed and compared. 

3.4 Work organisation 

The materials and methods used to achieve the animal 
behaviour detection are reported in Section 3 of this thesis.  
The whole sub-section 4.1 contains detailed information and 
specifications of the new data acquisition system, while the 
case study is presented in Section 4.2. 
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Section 5 focuses on the results achieved by the novel step-
counting algorithm (sub-section 5.1) and the new classifier 
for the feeding and standing activities (sub-section 5.2). 
These subsections are followed by the overall design of the 
automated monitoring system (Section 5.3) and the results of 
a feasibility study on the gyroscope and barometer sensors 
(Section 5.4). 
In Section 6, the results are discussed and compared with 
other studies in the literature. Moreover, considerations on 
new improvements for future work are also reported. 
In the field of PLF, the advance in the state of the art achieved 
in this PhD study is highlighted in Section 7. 
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4 Materials and methods 

4.1 The data acquisition system 

A period of my PhD work was devoted to the analysis of the 
most up-to-date data acquisition systems (DAS), specifically 
on data retrieving from sensors, which are embedded in last-
generation MEMS (Micro Electro-Mechanical Systems) 
devices. It is well known that a data acquisition system, which 
is capable of converting the measure of a physical variable 
acquired by a sensor into the related numerical value in digital 
format, is implemented within MEMS smart devices and thus 
it provides data ready to be elaborated. Differently from this 
kind of embedded data acquisition system, in this study the 
term DAS refers to an high-level ICT-based system designed 
to be installed in a barn and equipped with modules that allow 
simultaneous connections between the different wearable 
devices, fixed on animal's body, and a unit for data control 
and storage. The modules that compose the system are the 
sensors, a communication channel, and the unit for data 
control and storage. 
In this phase of my PhD activity, the analysis was focused on 
the features of the most recent ICT technologies and on their 
integration, particularly taking into account the following 
aspects: 

− How it is invasive for cows, in view of ‘avoiding 

animal stress’. 
− Costs of hardware and software components. 
− Ease of installation in relation to the building 

characteristics of the barn. 
− Ease of interaction with the software. 
− Possibility to remote control the system. 
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− Reduction of the periods of disconnection, which 
cause data loss. 

− Portability of the data files between different software 
applications. 

− Consistency and usability of data, i.e., using and 
showing data in different ways without changing the 
structure.  

− Storage of log files related to the events occurred 
during data acquisition.  

− System scalability, to improve the performance of the 
system, when the monitoring of a higher number of 
animals is required or the increasing of the surface of 
the monitored area is needed. 

With regard to the communication between the devices fixed 
to the cow's body and the unit for data control and storage, 
Wireless Sensor Networks (WSN), which are currently and 
widely considered in several studies (Huircán et al., 2010; 
Kwong et al., 2012; Nadimi et al., 2012) were utilised in the 
experiments. This choice made it possible to reduce the 
invasive aspect of the system for the animals and simplified 
the system installation in the barn, still allowing for 
continuous acquisition of the data in real time. With reference 
to sensors, low-cost MEMS smart devices were selected. 
They are equipped with various sensors (accelerometer, 
gyroscope, magnetometer, thermometer, barometer, and 
hygrometer), a control unit for the internal memory 
management and data communication, and a module for the 
wireless connection. Finally, the unit for data control and 
storage was made of a single board computer that was 
suitably configured and programmed by using the Phyton 



4. Materials and methods 

- 29 - 

 

language in order to handle the connections with the smart 
devices and store the data on a non-volatile memory. 

4.1.1 The wireless network 

The wireless networks are classified according to various 
topologies. Depending on the distance to be achieved 
(extension of the network), the categories are the following: 

− Wireless Personal Area Network (WPAN), which has 
a short range (7 – 10 meters) and connects two or a 
few devices with low power consumption (IEEE 
802.15.x standards). 

− Wireless Local Area Network (WLAN), which 
consumes more power yet extends the connection to 
about 100 meters in the same building (IEEE 802.11x 
standards). 

− Wireless Metropolitan Area Network (WMAN), which 
extends the range to a larger geographic area, such as 
a city or suburb. 

− Wireless Wide Area Network (WWAN), which 
provides connectivity over a wide geographical area. 
Usually WWANs are networks used for mobile phone 
and data service and are operated by carriers. 

Since my field of study was focused on the monitoring of 
cows in a restricted area, which is the area of a free-stall barn, 
my interest was focused on WLAN and WPAN categories. 
In the WLAN field, the standard adopted from IEEE (Institute 

of Electrical and Electronic Engineers) is 802.11 and the 
term commonly used is WiFi network. The wireless networks 
(802.11, 802.11a, 802.11b, 802.11g and 802.11n) typically 
have a frequency of 2.4 GHz and the stream data rate is from 
1-2 Mbit/s to 600 Mbit/s. 
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A sub-type of wireless connection is the WPAN, in which two 
or more devices are interconnected using a low-power 
wireless technology within a range of about 10 meters. The 
most commonly used WPAN networks are Infrared Data 

Association (IrDA), ZigBee, and Bluetooth low energy (BLE 
or Bluetooth Smart). 
The IrDA protocol requires the so-called Line of Sight (LoS), 
i.e., the devices have to be in mutual visibility, and within a 
distance of few meters. Therefore, the IrDA network was not 
kept into consideration in my research activity. 
ZigBee is a wireless mesh network of low-cost and low-power 
nodes, developed to increase the battery life of the devices. 
Since each node of a network with a mesh topology is able to 
carry data for the network, the devices can transmit data over 
a long distance, from 10 to 100 m, and the availability of the 
network is assured because it can reconfigure itself around 
broken paths. Zigbee belongs to IEEE 802.15 class family 
and, typically, its radio bands is of 2.4 GHz with a data 
transfer rate from 20 Kbit/s to 250 Kbit/s. All these features 
and its low latency make the ZigBee network a good choice 
for monitoring applications. Unfortunately, during my PhD it 
was not possible to find accelerometer sensors implemented 
into a ZigBee smart device. 
BLE is a technology designed and marked by the Bluetooth 

Special Interest Group aimed at novel applications in the 
healthcare, fitness, beacons, security, and home 
entertainment industries. Compared to ‘classic’ Bluetooth, 
BLE is intended to provide considerably reduced power 
consumption and cost while maintaining a similar 
communication range. 
BLE is more efficient for transferring very small quantities of 
data, because this technology supports very short data packets 



4. Materials and methods 

- 31 - 

 

that are transferred at 1 Mbps. These and more features make 
BLE a great option for applications where the maximum bit 
rate is of just a few hundred bits-per-second, or less. 
In Table 1, a comparison between the most relevant features 
of ‘classic’ Bluetooth and BLE is reported. 
 

Table 1. A comparison between 'Classic' Bluetooth and BLE. 

Technical Specification Bluetooth BLE 

Distance/Range 

(theoretical) 
100 m 100 m 

Over the air data rate 1–3 Mbit/s 1 Mbit/s 
Active slaves 7 Not defined 
Latency (from a non-

connected state) 
Typically 100 ms 6 ms 

Minimum total time to 

send data 
100 ms 3 ms 

Power consumption 1 W 0.01 to 0.5 W 
Current consumption 

peak 
< 30 mA < 15 mA 

 
The total time of sending data is generally less than 6 ms, and 
as low as 3 ms (compared to 100 ms with ‘classic’ Bluetooth). 
This enables an application to form a connection and send 
data for a short communication burst before quickly tearing 
down the connection. 
Thanks to an increased modulation index, BLE technology 
offers a somewhat improved range with respect to ‘classic’ 
Bluetooth, theoretically up to 200 feet (60 m) and beyond. 
However, the technology is still suited for mainly small-range 
applications. Usually, in fact, the range of the BLE is used 
with the typical 30-foot (10 m) range of ‘classic’ Bluetooth. 
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4.1.2 The accelerometer sensor and the Texas Instruments 

SensorTag device 

An accelerometer is an electromechanical device that 
measures acceleration forces. These forces may be static, like 
the constant force of gravity, or they could be dynamic, 
caused by moving or vibrating the accelerometer. The 
accelerometer measures the acceleration force in meters per 
squared second (m/s2) or in G-forces (g).  
There are different types of accelerometer. One of these 
utilises the piezoelectric effect, i.e., a microscopic crystal 
structures built in the sensor that get stressed by accelerative 
force and this causes the production of a voltage. 
Another type is able to sense changes in capacitance (i.e., the 
ability of a body to store an electrical charge). In this case, 
the device contains two microstructures next to each other 
and they have a certain capacitance between them. When an 
accelerative force moves one of the structures, then the 
capacitance will change. A circuitry, which converts from 
capacitance to voltage, is needed to get a measurement of the 
acceleration. 
An accelerometer with a piezoresistive effect uses a 
semiconductor or a metal that is able to change its electrical 
resistivity when a mechanical force is applied. 
Technologically advanced methods are based on the 
detection of temperature variations due to convective heat 
exchange. They utilise an 'activation current' in the device to 
produce the development of small hot air bubbles. The 
application of a force along the accelerometer axis causes the 
bubble movement and the subsequent temperature variation, 
which is detected by the sensors. This temperature variation 
is transformed into an acceleration variation. 
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The advantages of these kind of sensors are compactness, 
weight, sensitivity to small acceleration, and low cost of 
construction. 
The development of the technology of microscopic devices, 
which contains moving parts, is increasing more and more. 
Nowadays, Microelectromechanical systems (MEMS) and 
Nanoelectromechanical systems (NEMS) are the most used 
devices in this field. 
Texas Instruments produces a specific MEMS device, named 
SensorTag, that includes several sensing unit for: air relative 
humidity, pressure, position/motion and air temperature. 
Table 2 shows an overview of its hardware. 
 

Table 2. SensorTag hardware overview. 

Component Supplier 

TMP006 Contactless IR Temperature Sensor Texas Instruments 
SHT21 Humidity Sensor Sensirion 
IMU-3000 Gyroscope Invensense 
KXTJ9 Accelerometer Kionix 
MAG3110 Magnetometer Freescale 
T5400(C953H) Barometric Pressure Sensor Epcos 
CC2541 Bluetooth Low Energy Radio SoC Texas Instruments 
TPS62730 Ultra Low Power DC/DC 
Converter 

Texas Instruments 

 
The data measured from each sensor unit can be sampled to 
different rates and it can be send via BLE to a receiver. 
Acceleration sensing is based on the principle of a differential 
in capacitance. The SensorTag has not a built-in memory 
unit, so it is not able to store data permanently. Moreover, to 
save battery live it has the ‘sleep mode’ activated in its 
firmware, i.e., after 180 seconds, without any exchange of 
data, the SensorTag is disconnected from the master device 
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and it is impossible to get a new connection without switching 
on the device by using its button. To avoid this type of 
disconnections, a new update firmware was uploaded and 
installed on each device. 

4.1.3 The single-board computers and the Raspberry Pi 

A control component, which was able to handle the 
acquisition process as well as to store consistent data from 
SensorTag devices, was needed and at this regard the single-
board computers were an excellent choice. A single-board 

computer (SBC) is a complete computer built on a single 
circuit board, with microprocessor(s), memory and 
input/output interfaces. A SBC reduces the system’s overall 
cost, by reducing the number of circuit boards required. 
Moreover, it eliminates the problems due two connectors, 
since they are source of reliability problems. 
The installation of a SBC in a free-stall barn is simplified and 
facilitated, because it has a low volume compared to a 
standard PC and its protection with a robust case is easily 
carried out when utilised in a hostile environment. Moreover, 
the installation requires only one cable, i.e., the power cable. 
The SBC adopted in the proposed data acquisition system was 
the Raspberry Pi 1 Model B (Raspberry Pi Foundation, UK). 
The Table 3 shows the hardware features of the Raspberry Pi 
Model B. 
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Table 3. Raspberry Pi hardware features. 

Component Description 
SOC Broadcom BCM2835 
CPU 700 MHz single-core ARM1176JZF-S 

GPU 

Broadcom VideoCore IV 
OpenGL ES 2.0 

1080p30 H.264 high-profile decoder and 
encoder 

Memory 512 MB 
Number of 
USB Ports 

2 

Video input 15-pin connector MIPI Camera Interface (CSI) 

Video output 
RCA connector 

HDMI 
Audio input I²S serial bus 

Audio output 
3.5 mm Jack 

HDMI 
Network Ethernet 10/100 Mbit/s 
Current 
(Absorbed power) 

700 mA (3.5 W) 

Power supply 5 V via MicroUSB 

 
The Raspberry Pi was equipped with the following software: 
Raspbian Operating System and Python v2.7.6. The BLUEZ 
v5.4 libraries and the Pexpect v3.3 Python module were 
subsequently added. This software stack was needed to run 
the Python software module that managed the BLE 
connection as specified in the following of the text. 

4.1.4 The proposed data acquisition system 

In the literature, it is widely acknowledged that the 
continuous monitoring of each animal is a fundamental issue 
in the field of PLF. To achieve this aim, a robust data 

acquisition system (DAS) was required; it acquired the data 
during all the daily behavioural activities performed by the 
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dairy cows bred in the free-stall barn. The Figure 5 shows the 
proposed data acquisition system. 
 

Figure 5. Data Acquisition System. 

 
 
To implement this system, Texas Instruments SensorTags 
were used as wearable sensors attached to cow’s body (e.g., 
leg and neck). Each SensorTag has a unique ID number that 
is used to distinguish each dairy cow during the data 
acquisition process and the next phase of the data analysis.  
Since these sensor devices have not a memory unit, they are 
not able to store the acquired data. Therefore, a second 
component is needed, i.e., a control unit that manages 
connections to the devices and stores consistent data into a 
memory storage unit by using files. Since the free-stall barn 
is a ‘hostile’ environment for the electronic devices, the SBC 

Rasberry Pi was considered in the design and in the 
implementation of the data acquisition system. 
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The ‘Wireless Connection 1’ of Figure 5 was achieved by 
BLE wireless connections because a BLE communication 
module was provided in both Raspberry Pi and TI 
SensorTags. 
Finally, the ‘Wireless Connection 2’ was implemented by 
using the WiFi-USB adapter installed on the Raspberry Pi. 
When used with a desktop computer, this wireless connection 
allowed the following tasks: 

− The managing of the Raspberry Pi, i.e., login, logout, 
restart, and shutdown; 

− The managing of the data acquisition process, i.e., 
start, stop, and monitoring of disconnected sensors;  

− The downloading of the data files (.cvs text file); 
− The downloading of the log files (.txt text file). 

The software module of the data acquisition system was 
developed using the Python programming language. This 
module, named PLFRecorder, had the following purposes:  

− establish and maintain BLE connections to SensorTag 
devices;  

− retrieve data from sensors;  
− store the received data in consistent file (.csv 

format);  
− attempt to re-establish BLE connections to 

disconnected SensorTag devices;  
− store every occurred event, for each SensorTag 

device, in a log file. 
The software module was composed by the following Python 
scripts: 

− settings.xml; 
− sensor_calcs.py; 
− PLFRecorderSettings.py; 
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− PLFRecorderSensorTag.py; 
− PLFRecorderStart.py; 
− PLFRecorderStop.py; 
− PLFRecorderDisconnectedSensors.py; 
− PLFRecorderShared.py. 

The XML (eXtensible Markup Language) file named 
settings.xml contained all the parameters needed by the 
PLFRecorder module to work correctly. A set of these 
parameters was, for instance, the duration of the registration 
(the number of seconds or an indefinite time option), the 
sample rate of the measurements, the list of all the activated 
SensorTag devices during the registration and identified by a 
MAC address (Media Access Control address), and, the 
sensors to be activated for each SensorTag. 
The Python file sensor_calcs.py was a utility library that 
performed low-level computation and numeric conversion. It 
was freely available on the Internet 
(https://github.com/mvartani76/RPi-Ble-Sensor-
Tag-Python/blob/master/sensor_calcs.py). 
PLFRecorderSettings.py is a utility script that reads the raw 
parameters from the file settings.xml and stores their values 
into well-defined variables, which are reusable by the other 
Python scripts. 
The PLFRecorderSensorTag.py was the middle component 
of this software module. Its aim was to be an interface 
between low-level tasks (e.g., contained in 
sensor_calcs.py) and the high-level script that controls the 
registration process. 
The file PLFRecorderStart.py, was the high-level main 
script. It runs the preliminary tasks, i.e., reading preference 
files, initialising global variables, and allocating memory 
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working area. Then, it starts to establish connections with the 
SensorTag devices. It managed a list of the disconnected 
SensorTag using a queue. In computer science, a queue is a 
particular kind of abstract data type with a linear structure 
where a FIFO (First In First Out) criterion is adopted. At the 
beginning (first), all of the SensorTags were registered in the 
disconnected queue. When a connection was established, the 
respective SensorTag was pulled out from the queue and the 
process started to register the data coming from the device. If 
a connection between the Raspberry Pi and a SensorTag was 
lost, the process put the SensorTag in the disconnected queue. 
During the registration process, a thread tried continuously to 
empty the disconnected sensor queue. 
Finally, three auxiliary scripts, named 
PLFRecorderStop.py, 
PLFRecorderDisconnectedSensors.py, and 
PLFRecorderShared.py, were considered. The first script 
was useful when it was necessary to stop the registration 
before the established time or stop a registration that started 
with an indefinite time. When invoked, the second script 
wrote the list of the disconnected sensors in a text file. The 
file PLFRecorderShared.py contained shared code such as 
the definitions of the global variables as well as the global 
procedures used in the others scripts. 
The performance of the DAS was computed by using the total 
quantity of data stored in the SD Card of the single board 
computer at the end of the acquisition process. This criterion 
was expressed by the indicator: 
 

��� = ∑ ���	

��
 × 100   (1) 
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where sdi is the amount of stored data during the data 
acquisition process by the i-th SensorTag and TSD is the 
Theoretical Storeable Data, which is the maximum amount 
of data that DAS can acquire during the time interval of the 
acquisition process. A SDI (Stored Data Index) equal to 
100% means that no disconnection and neither system 
latencies nor system delays occurred during the process. 

4.2 The case study 

4.2.1 The free-stall barn area under study 

The experiments were carried out during June 2015 and June-
July 2016 in a free-stall barn for dairy cow housing located in 
Sicily, in the territory of the municipality of Vittoria 
(province of Ragusa), at 234 m.a.s.l. The main building of the 
barn is 55.75 m long and 21.40 m wide (Figure 6) and it is 
completely open on three sides. Only the south-western front 
of the building is made of a load bearing masonry wall. The 
building is asymmetric with respect to the feeding passage 
from a point of view of both geometry and functionality of 
the breeding areas. 
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Figure 6. The plan of the free-stall barn. 

 
 
The area north-east of the feeding passage has an overall 
width of 10.16 m and includes the resting area, the feeding 
alley, and a service alley. During the experiment, this area 
housed 53 Holstein dairy cows. The area south-west of the 
feeding passage has an overall width of 6.71 m and includes 
five multiple pens for calves' and steers' fattening by age, a 
room for farming tools storage, a space subdivided into two 
rooms, i.e., an office and a WC, and a convex-shaped manger 
adjacent to the feeding passage. 
The barn is equipped with two different air-cooling systems, 
i.e., an evaporative one and a shower type with fans. The feed 
is supplied once a day by a mixer-wagon at about 6:30 a.m., 
and, during the day, feed that poured out is moved into the 
manger. Milking is carried out twice a day at 6:00 a.m. and 
5:00 p.m., with three shifts and an overall milking duration of 
about two hours. The cleaning of the feeding and the service 
alleys is performed once a day by a scraper.  The manure is 
stored in a manure-pit located outside the barn in front of the 
south side. 
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Within the barn there were three groups of cows that were 
composed of 20 cows, 14 cows, and 19 cows. In this study, 
the second group of 14 cows, which were bred in the central 
pen of the barn, was selected (Figure 6). 

4.2.2 The installation of the data acquisition system 

The activity described in this sub-section was included in the 
thesis work to demonstrate how easy is the installation of the 
proposed acquisition system in free-stall barns. Figure 7 
shows the area of interest, where the experimental trials were 
conducted. 
 

Figure 7. Plan of the study area (*) and the position of 

the Raspberry Pi. 

 
 
The Raspberry Pi was installed at the centre of the study area, 
fixed to a 2.5 m-high stake (see (*) on Figure 7). A power 
cable was fixed to the beams of the bearing structure of the 
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barn. It started from the office within the free-stall barn to the 
Raspberry PI position. Since the Raspberry Pi was equipped 
with a WiFi-USB adaptor, other cables were not needed to 
establish a network connection with it. 
In Figure 8 the Raspberry Pi setting is reported. 
 

Figure 8. The Raspberry Pi position. 

 
 
The computer located in the office of the barn, which was 
used as a module of the validation system (See Section 3.2.3), 
was equipped with the ‘Bitvise SSH Client’ free software. 
This software provides a free SSH (Secure Shell) client, able 
to establish a connection, between the computer in the office 
and the Raspberry Pi situated in the centre of the area of 
interest. This connection was utilised to monitor the data 
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acquisition process during the experiments, e.g., sensor 
disconnections, failures, and power-off events. Moreover, 
since the computer was provided with TeamViewer remote 
control software, it was possible to monitor the data 
acquisition system activity from the University department. 

4.2.3 The validation system 

The barn was equipped with a video-recording system 
composed of 10 IP Vivotek FD7131 video-cameras (Figure 
9), which were fixed to roof beams, two Digicom switches 
with 16 ports (including eight PoE ports), and a computer 
equipped with an Intel Core (TM) 2 Quad 2.66 GHz CPU 
Q6700 processor, Windows Vista Business 64 bit Service 
Pack 2 operative system, and 4 GB RAM. 
 

Figure 9. Vivotek FD7131 video-

camera. 

 
 
Both the video cameras and the computer were connected to 
the switches by Ethernet cables. The software installed on the 
computer allowed for the synchronised acquisition of the 10 
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snapshots recorded by the video cameras. From those 
acquired snapshots, a unique panoramic image of the area of 
interest with a 1280 × 1960 pixel resolution was generated 
(Figure 10).  
 

Figure 10. Synchronised acquisition of 

the 10 snapshots recorded by the video 

cameras. 

 
 
A panoramic top-view image of the observed area was crucial 
in order to obtain images that showed the true shape of cow’s 
body when walking activity occurred. The video-recording 
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system was successfully applied for cow lying recognition 
and the discrimination of feeding from standing by using the 
Viola-Jones algorithm (Porto et al., 2014, 2015; Porto et al., 
2013). 

4.2.4 The walking analysis and the step counting 

The experiment was carried out during June 2015. The 
duration of the experiment was established by considering the 
daily time budget usually spent by a dairy cow bred in a free-
stall barn (Grant and Albright, 2000). Since the aim of the 
proposed algorithm is to count steps of dairy cows, the data 
acquisition system was operated for about 5 hours during the 
time intervals characterised by standing or walking activities 
(Porto et al., 2016), i.e., between 13:00 and 18:00. 
Since each cow of the herd could show differences in walking 
activity, in this study five cows (named with an identification 
number, i.e.,  ID 1, ID 2, ID 3, ID 4, and ID 5, in the following 
of the text) were selected from the observed group of 14 
animals in order to consider differences in acceleration data. 
Therefore, the walking activity of each cow constituted the 
reference population from which acceleration samples were 
extracted and statistically analysed for each cow individually. 
Then a group comparison method was carried out in order to 
test any difference in acceleration data among the considered 
populations. 
The five cows were randomly selected and their behaviour 
was not forced during the experiment. These two conditions 
assured that independent samples could be extracted from the 
walking activity of each cow.  
The walking samples selected were: 25 for the cow with ID 
1, 39 for the cow with ID 2, 25 for the cow with ID 3, 37 for 
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the cow with ID 4, and 27 for the cow with ID 5; therefore,  a 
total of 153 samples were collected.  
To acquire acceleration values, a SensorTag was fixed to the 
left hind leg of each animal (Figure 11). 
 

Figure 11. SensorTag fixed at left hind 

leg. 

 
 
Each SensorTag was protected by inserting it into a bubble 
wrap and, in turn, into a water-resistant plastic case, which 
was equipped with a belt and a Velcro closure. An adhesive 
label, which contained the identification code of the 
SensorTag, was fixed on each case. 
The position of the SensorTag on the cow's leg was decided 
based on the findings of Firk et al. (2002). They found that, 
when the device is positioned at the collar, a higher number 
of false positives are likely to be obtained in oestrus detection 
than when it is fixed at the leg, whereas no significant 
differences were reported in their study between the choice 
of the left hind leg and that of the fore-leg. 
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Figure 11 shows the coordinate system of the SensorTag in 
relation to the cow's leg. Consequently, the leg motion during 
walking activity of the cow essentially developed in the x-y 
plane.  
Each cow was marked with a unique visible sign to enable 
visual assessment of behavioural activity by using the images 
collected by the video-recording system described above (see 
Section 4.2.3). 
Before starting the data collection, the clock of the Raspberry 
Pi was synchronised with the one of the existing video-
recording system that was utilised as validation system. 
The data acquired by the two systems, i.e., accelerometers 
and video-recording systems, were analysed at the end of the 
experiment in the barn. The walking activity of the five cows 
was extracted from the accelerometer recordings with the 
support of the video-recording system image visualisation. 
According to Alsaaod et al. (2015), a walking period was 
defined as a period of at least three consecutive steps to avoid 
that isolated movements (e.g., a flick of the leg) could be 
misinterpreted as steps. Moreover, when the time interval 
between two steps exceeded 4 s, the two steps were attributed 
to two different periods of walking. 
In order to decide which duration of walking samples is more 
suitable for cows’ walking activity, literature was analysed. 
Some authors (Nielsen et al., 2010) obtained the most 
accurate results by using walking samples of at least 5 s, 
whereas Robert et al. (2009) reported a more accurate 
behaviour classifications with samples of 3 s and 5 s than with 
samples of 10 s, for the recognition of standing, walking, and 
lying behaviours.  
Therefore, based on the literature outcomes, in this study, the 
cows’ walking activity was subdivided into samples of 5 s; 
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since the system used in this study operated at 4 Hz 
frequency, each sample included 20 instantaneous 
measurements of the acceleration. In the following 
discussion, the term 'observation' will be used to refer to a 
single measurement of acceleration. Furthermore, at each 
walking sample a univocal alphanumeric code was assigned 
by joining the cow’s ID, the symbol ‘_’, and the progressive 
number of the sample.  
In literature, different variables have been considered to study 
the accelerometer signals. In this study, according to Robert 
et al. (2009), two vector variables were utilised to measure 
the accelerometer data: the Signal Vector Magnitude (svm), 
named mod hereafter, and Signal Magnitude Area (sma). 
They were defined as follows: 
 

����� = ������ + ����� (2) 

 
����� = |����| + ������ (3) 

 
where accx and accy represent the components of acceleration in 
the x and y directions, respectively. In this study, the two variables 
modxy and smaxy were utilised independently.  
Since leg motion during this activity essentially developed in the 
x-y plane, the accelerometer data related to the z axis was neglected 
in the analysis of cow walking behaviour. 
Successively, two versions of an innovative algorithm for step 
counting, which utilises two thresholds, were developed.  
A first version, named  �� !"� hereafter, used the main threshold 
#ℎ!"�, which was an acceleration and was suitable for detecting 
the presence of a step in the sample. In this regard, the observations 
having an acceleration value ����� higher than the fixed threshold 
#ℎ!"�  were termed peaks.  A second threshold, named #ℎ"%%�&' 
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hereafter, was defined to detect if two peaks should be assigned to 
the same step or else to two different steps. Therefore, the 
parameter �((�)#(+,, +�) was defined as the number of 
observations between two peaks, +, and +�. The detailed 
description of the algorithm �� !"� is reported in Figure 12.  
 

Figure 12. The threshold-based algorithm proposed in the 

study. 

 
 
By following the same methodology, a second version of �� !"�,  
named �� �!/ hereafter, was defined. It uses the variable ����� 
instead of ����� with the corresponding thresholds #ℎ�!/ 
and #ℎ"%%�&'. 
With the aim to determine the values #ℎ!"� and #ℎ�!/, the 
walking samples were used twice to compute the variables ����� 
and �����. They constituted initial datasets of the two versions of 
the step counter algorithm.  
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Before carrying out threshold computation, for each reference 
population of walking activity it was verified that ����� values of 
the walking samples, as well as �����, were not statistically 
different among them in the time interval of data acquisition. This 
test was useful to check for ����� and ����� outliers.  
To obtain a unique acceleration threshold for each version of the 
algorithm, suitable for counting the steps of all the cows, a method 
was adopted to test the equality of accelerations obtained from the 
considered cows. Since the two variables ����� and �����  did 
not follow a normal distribution, the non-parametric Kruskal-

Wallis test was used as group comparison test. This test made it 
possible to verify the equality of acceleration medians for the 
reference populations, i.e., the walking periods of the five cows 
analysed, and produced two new datasets for �� !"�  and �� �!/. 
These new datasets were used in the analysis and testing phases of 
the algorithms. In detail, the datasets were subdivided as follows: 
75% of the walking samples constituted the datasets 
�4��5�6�_��#��)#!"� and  �4��5�6�_��#��)#�!/ which were 
used to compute #ℎ!"� and #ℎ�!/, respectively; the remaining 
25% of the walking samples composed the datasets 
#)�#_��#��)#!"� and   #)�#_��#��)#�!/, which were used to test 
the two versions of the algorithm, �� !"�  and  �� �!/. 
The threshold values #ℎ!"� and #ℎ�!/ were computed as the 
maximum of the five acceleration medians in their respective 
datasets. 
The determination of the #ℎ"%%�&' was based on considerations 
regarding the acceleration time plots. It included, for instance, the 
duration of a cow’s step and the number of observations occurring 
between two consecutive steps (typically 2 observations). The 
#ℎ"%%�&' value depended on the 4 Hz sampling frequency; in fact, 
a higher sampling frequency will cause a higher value of #ℎ"%%�&'. 



4. Materials and methods 

- 52 - 

 

In the testing phase, the number of cow’s steps (8�'&9: ) computed 
by the algorithm were compared with the number of steps observed 
in the video-recordings (8�'&9; ). 
The indicators selected to evaluate the accuracy of the two versions 
of the algorithm were the following: 
 

< = ∑ =>?@AB�
CD E>?@AB�

CF GH�
∑ >?@AB�

IH�
× 100%  (4) 

 

KL< =  M∑ >?@AB�
IH� N ∑ >?@AB�

CH� M
∑ >?@AB�

IH�
× 100% (5) 

 
where k is the number of walking samples in the datasets 
#)�#_��#��)#!"� or   #)�#_��#��)#�!/. 
The first indicator (E) takes into account the total error when an 
overestimation (8�'&9:E ) or an underestimation (8�'&9:N ) of the 
number of steps occurred. The second indicator named Relative 

Measurement Error (RME) takes into account the compensation 
between 8�'&9:E  and 8�'&9:N  and allowed the comparison with another 
study (Alsaaod et al., 2015). 
Furthermore, different values of the thresholds #ℎ!"�, #ℎ�!/, and 
#ℎ"%%�&' were applied to conduct a sensitivity analysis suitable for 
determining how different values of the thresholds affected  the 
error produced by the two versions of the algorithm. In detail, ±5% 
and ±10% variations of #ℎ!"� and #ℎ�!/ were applied and the 
values 1, 3, and 4 were considered for  #ℎ"%%�&' . 

4.2.5 The feeding classifier 

The field experiments were carried out during June 2015 in a 
free-stall barn for dairy cows located in Sicily. In this study, 
the central pen of the barn, which housed a group of 14 
primiparous cows, was selected. 
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Based on the daily time budget usually spent by a dairy cow 
breed in a free-stall barn (Grant and Albright, 2000), the data 
acquisition system was operated for about 5 hours during the 
time intervals when cows are in standing or feeding (Porto et 
al., 2016), i.e., between 13:00 and 18:00. 
The SensorTags were shielded prior to be installed on the 
animals by providing a water-proof protection, which was 
composed of a bubble wrap and a water-resistant plastic bag. 
The protected tag was inserted into a plastic case equipped 
with a Velcro closure, a belt loop, and an adhesive label, 
which contained the identification code of the SensorTag. 
Five cows of the considered group were selected for the 
experiment and a plastic case, which contained the activated 
SensorTag, was fixed to the collar of each cow through the 
belt loop (Figure 13), similarly to what done in other research 
studies (Martiskainen et al., 2009; Oudshoorn et al., 2013). 
 

Figure 13. SensorTag fixed 

to the collar of the cow. 
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The placement of the SensorTag at the collar of the cow was 
carried out in order to have the x-axis of the coordinate 
system of the SensorTag aligned with the cow's neck axis 
(Figure 14). 
 

Figure 14. Coordinate 

system of the SensorTag 

fixed to the collar. 

 
 
With the aim of monitoring the group of cows in the central 
pen of the barn, the Raspberry Pi was installed at the centre 
of the study area, fixed to a 2.5 m high stake. This height was 
suitable for maintaining the data connection in the whole area 
of interest and keeping the Raspberry Pi above the area of 
influence of the air cooling system. 
Before starting data collection, the Raspberry Pi clock was 
synchronised with that of the existing video-recording 
system, which was utilised as validation system. 
The visual recognition, carried out on the images collected by 
the video-recording system was facilitated by drawing 
different signs on cows’ back with livestock paint crayons. 
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During the experiment, changes in cows’ behaviours were not 
forced. 
Data collection for the analysis of feeding and standing 
behavioural activities of the five cows was carried out from 
the accelerometer recordings related to periods of feeding and 
periods of standing which were observed by using the video-
recording system. In this study, a ‘period of feeding’ was 
defined as an activity that began when the cow put its head 
down into the manger (Martiskainen et al., 2009; Nielsen, 
2013) and ended when the cow raised the head up for at least 
5 s. A ‘period of standing’ was defined as a ‘moment of rest’ 
in which the cow kept all its four hooves on the ground, did 
not make steps forward nor backwards, and kept its head still 
without movements or rotations (Martiskainen et al., 2009). 
In our study, the accelerometer data acquired during the 
feeding and standing periods were considered as the reference 
population. Therefore, five reference populations of feeding 
and standing activity were statistically analysed, i.e., one for 
each cow. 
Each period, both for feeding and for standing, was 
subdivided into samples of 5 s. A single instantaneous 
measurement of the acceleration data within a sample was 
named observation. Since a sample had a 5 s duration and the 
device was set at 4 Hz sample rate, there were 20 observations 
in each sample. 
Since the cows were randomly selected from the observed 
group of animals and their behaviour was not forced during 
the experiment, independent samples were extracted from the 
reference populations. 
No filtering or other pre-processing activity was carried out 
on the data acquired by the sensors, as done in other studies 
(Ruuska et al., 2015). 
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To facilitate the data management, an identification number 
was associated to each cow (Cow’s ID) and a univocal 
alphanumeric code was assigned to each of the 5-seconds 
intervals of the feeding or standing samples. This code was 
defined by joining the letter ‘F’ for feeding or the letter ‘S’ 
for standing to the symbol ‘_’, the cow’s ID, the symbol ‘_’, 
and the progressive number of the sample. 
In this study, the accelerometer data obtained from the y-z 
plane was neglected in the analysis of cow feeding behaviour, 
since the head motion during this activity essentially 
developed along  the x-axis, as already found in other studies 
(Delagarde and Lamberton, 2015; Ueda et al., 2011). This 
acceleration was named accx in the following of the text. 
Based on statistical analyses of the accelerometer data, the 
proposed method was developed in order to define thresholds 
suitable for real-time discrimination of cow feeding activity 
from standing activity by the use of a specific classifier. 
With the aim of determining an accelerometer value that 
could be used as threshold in such an automated classifier, 30 
samples from the feeding periods and 30 samples from the 
standing periods were collected for each of the 5 cow.  
Therefore, 300 samples were obtained and randomly 
subdivided into 8 datasets: 7 datasets (i.e., 210 samples) were 
used for the analysis and the computation of the threshold and 
one dataset (i.e., 90 samples) for the testing of the classifier. 
Each of the 7 analysis datasets (named AD1, …, AD7) 
included 30 randomly selected samples, obtained by selecting 
3 feeding samples and 3 standing samples for each of the 5 
cows. The same method was applied for the test dataset (TD): 
for each of the 5 cows, 9 feeding samples and 9 standing 
samples were considered. By this procedure, the two 
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behavioural activities and the five cows were equally 
represented within each dataset. 
After verifying that the variable accx did not follow a normal 
distribution, parametric tests were applied to obtain statistical 
information on the acceleration medians computed on the 7 
analysis datasets. The Kruskall-Wallis Test showed a low 
robustness since the z-value was highly variable even when 
computed on samples of the same activity.  On the contrary, 
the non-parametric Mood’s Median Test was suitable for 
providing information on each of the 7 analysis datasets. For 
each dataset AD1, …, AD7, this test computed the ‘overall 
median’ (i.e., the median of the whole dataset) and for each 
sample it provided both the number of observations having 
accx values lower or equal to the ‘overall median’ and the 
number of observations with higher values. The mean of the 
7 ‘overall medians’, named thfeed in the following of the text, 
was proposed as the acceleration threshold in order to discern 
feeding from standing. 
The classifier processed the TD as follows: for each of the TD 
samples the number of observations having accx value lower 
or equal to the thfeed value was computed. This number was 
named score. The samples having a score lower than 10, 
which is half of the number of observations, were classified 
as feeding, the remainder as standing. 
With the aim of assessing the classifier accuracy and compare 
the results with those obtained in other research studies 
(Nielsen, 2013; Porto et al., 2015), the indicators 
Misclassification Rate (MR), Sensitivity, Precision, 
Specificity, Quality Percentage (QP), Branching Factor 
(BF), and Miss Factor (MF) were considered. They are 
defined as follows: 
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LK = O>EOP
�PE�>EO>EOP × 100  (6) 

 

�)4�6#6Q6#5 = �P
�PEO> × 100  (7) 

 

RS)�6�6�4 =  �P
�PEOP × 100  (8) 

 

�+)�6(6�6#5 =  �>
�>EOP × 100  (9) 

 

TR =  �P
�PEO>EOP × 100  (10) 

 

UV = OP
�P    (11) 

 

LV = O>
�P    (12) 

 
where TP are the True Positives, FN the False Negatives, FP 
the False Positives, and TN the True Negatives. 
Furthermore, the slope, intercept, and determination 
coefficient R2, obtained by applying a linear regression 
between the real observed behaviours and those predicted by 
the classifier, were computed to allow for comparison with 
other studies. 
Finally, the classification of cow's feeding activity, obtained 
in this study, was further analysed by computing the 
frequency histograms of the two behavioural activities, i.e., 
feeding and standing, and comparing their distributions for 
the whole datasets, the TD dataset, and the dataset of each 
cow.  
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5 Results 

5.1 The walking activity and the step counting 

5.1.1 Data analysis through the modxy variable 

For each observation included in a walking sample, the 
variable ����� was computed. In Table 4, the walking 
sample number 20 of the cow with ID 5 is reported as an 
example. 
 
Table 4. Sample n. 20 of cow with ID 5. 

Cow 

sample Date Time 

acc_x 

[g] 
acc_y 

[g] 
acc_z 

[g] 
mod_xy 

[g] 

5_20 05/06/2015 17:48:18 -1.0625 0.0000 0.1250 1.0625 
5_20 05/06/2015 17:48:18 -1.0000 0.0625 0.1250 1.0020 
5_20 05/06/2015 17:48:18 -1.0625 0.1250 0.0625 1.0698 
5_20 05/06/2015 17:48:18 -1.0000 0.1250 0.1250 1.0078 
5_20 05/06/2015 17:48:19 -1.1250 0.0625 0.2500 1.1267 
5_20 05/06/2015 17:48:19 -1.0000 0.1875 0.3125 1.0174 
5_20 05/06/2015 17:48:19 -1.2500 -0.0625 0.2500 1.2516 
5_20 05/06/2015 17:48:19 -0.4375 -0.5000 1.2500 0.6644 
5_20 05/06/2015 17:48:20 -2.3750 2.9375 0.2500 3.7775 
5_20 05/06/2015 17:48:20 -1.0000 -0.4375 0.2500 1.0915 
5_20 05/06/2015 17:48:20 -1.0000 -0.3125 0.2500 1.0477 
5_20 05/06/2015 17:48:20 -1.0000 -0.1250 0.3750 1.0078 
5_20 05/06/2015 17:48:21 -1.1250 -0.2500 0.2500 1.1524 
5_20 05/06/2015 17:48:21 -1.0625 -0.7500 -0.0625 1.3005 
5_20 05/06/2015 17:48:21 -0.0625 -0.7500 0.0625 0.7526 
5_20 05/06/2015 17:48:21 -1.6250 1.8125 0.1250 2.4343 
5_20 05/06/2015 17:48:22 -1.0000 -0.4375 0.2500 1.0915 
5_20 05/06/2015 17:48:22 -1.0000 -0.2500 0.2500 1.0308 
5_20 05/06/2015 17:48:22 -1.0000 -0.0625 0.0000 1.0020 
5_20 05/06/2015 17:48:22 -0.9375 0.1875 0.3125 0.9561 
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Three walking samples of cow with ID 2 were recognised as 
outliers and discarded, since accelerations were shown to be 
statistically different by applying Kruskal-Wallis test.  
The remaining 150 samples were subject to the test for group 
comparison (Kruskal-Wallis test) and other 13 samples were 
discarded. The resulting dataset, which was composed of 137 
elements, was randomly divided into two sub-dataset. The 
first one, �4��5�6�_��#��)#!"�, contained 75% of the data 
(103 samples) and was utilised to compute the values of the 
threshold #ℎ!"� , whereas the second one, #)�#_��#��)#!"�, 
included 25% of the data (34 samples) and was utilised for 
testing the step counter algorithm �� !"�. The statistical 
analysis on the samples are reported in Table 5. 
 

Table 5. Results of group comparison test on modxy variable. 

Cow ID 

Initial 

samples 

Samples discarded by the 

Kruskal-Wallis test 

Remaining 

samples 

1 25 0 25 
2 39 3 36 
3 25 0 25 
4 37 0 37 
5 27 0 27 
Overall dataset 153 3 150 
Samples discarded by the Kruskal-Wallis test 13 
Filtered dataset 137 
Analysis dataset (75%) 103 
Test dataset (25%) 34 

 
The value of #ℎ!"� , which is necessary to establish the 
minimum acceleration intensity in order to recognise a step, 
was obtained as the maximum of the medians of the 
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�4��5�6�_��#��)#!"� samples and resulted equal to 1.198 
g. The value of #ℎ"%%�&' between two peaks was fixed to 2 on 
the basis of the sampling frequency of 4 Hz and the 
comparison between the graphs of the accelerometer signal 
of the walking samples and the corresponding sequence in the 
video-recordings. In fact, the example reported in Figure 15 
shows that four out of twenty observations were peaks. The 
peak 7 and the peak 9 have an offset(7, 9) = 1 < 2, therefore, 
they referred to two accelerations occurred in the same step. 
In this regard, the video-recordings showed that in a free-stall 
barn it is not possible for a cow in walking to make two steps 
within 0.5 s, i.e., in three observations. The same remarks 
apply for peaks 14 and 16. Instead, the peaks 9 and 14 have 
an offset(9, 14) = 4 > 2 and, thus, they belong to two different 
steps. 

 

Figure 15. Plot of Signal Vector Magnitude (modxy) of 

sample 5_20 showing threshold value 1.198 g. 
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The step counter algorithm, which was coded in Python 
language, was executed on the 34 samples of the 
#)�#_��#��)#!"�, and the results were compared with the 
number of steps obtained from the visual recognition of the 
same samples in the video-recordings (Table 6). 
 

Table 6. Performance of Algmod and Algsma algorithms in 

comparison with video recorded data. 

 

8�'&9;  8�'&9:  8�'&9:E  8�'&9:N  
Total 

errors E RME 

Algmod 84 88 6 2 8 9.5% 4.8% 

Algsma 84 82 3 5 8 9.5% 2.4% 

 
The overall number of steps observed in the video-recordings 
were 84. The algorithm �� !"� computed 88 steps and 
produced an error of ±1 step in 8 samples, with a total error 
of 8 (E = 9.5%). The compensation between overestimation 
(8�'&9:E ) and underestimation (8�'&9:N ) of the number of counted 
steps produced a difference of 4 steps compared to the 
number of steps observed in the video-recordings (8�'&9; ) and, 
therefore, a RME of 4.8%. 

5.1.2 Data analysis through smaxy variable 

The procedure of data analysis was repeated by using the 153 
samples available and substituting the variable ����� with 
the variable �����. The final dataset, which was composed 
of 146 samples, was subdivided into 110 samples (75%) for 
the analysis (�4��5�6�_��#��)#�!/) and 36 samples (25%) 
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for the testing (#)�#_��#��)#�!/) of the algorithm �� �!/ 
(Table 7). 
 

Table 7. Result of group comparison test on smaxy variable. 

Cow ID 

Initial 

samples 

Samples discarded by  

the Kruskal-Wallis test 

Remaining 

samples 

1 25 3 22 
2 39 4 35 
3 25 0 25 
4 37 0 37 
5 27 0 27 
Overall dataset 153 7 146 
Samples discarded by the Kruskal-Wallis test 0 
Filtered dataset 146 
Analysis dataset (75%) 110 
Test dataset (25%) 36 

 
The threshold value #ℎ�!/ was computed as the maximum of 
the medians of the �4��5�6�_��#��)#�!/ samples and 
resulted equal to 1.75 g. The value #ℎ"%%�&' between two 
peaks was fixed to 2. The statement 18 of the algorithm was 
substituted with the computation of the variable ����� 
(Figure 12). 
The algorithm �� �!/, coded in Python language, was 
executed on the 36 samples of the #)�#_��#��)#�!/ and the 
results were compared with the number of steps obtained 
from the video-recordings of the same samples (Table 6). 
The overall value of the steps observed in the video-
recordings was 84. The algorithm �� �!/ computed 82 steps 
and produced errors in 7 samples with a total number of 8 (E 
= 9.5%). The compensation between overestimation (8�'&9:E ) 
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and underestimation (8�'&9:N ) of the number of counted steps 
produced a difference of 2 steps compared to the number of 
steps observed in the video-recordings (8�'&9; ) and, therefore, 
a RME of 2.4%. 

5.1.3 Comparison between Algmod and Algsma 

The two versions of the algorithm, �� !"� and �� �!/, 
which were executed on two different test datasets, produced 
the same accuracy, since they made an error E = 9.5%. For 
�� !"�, the 75.0% of the total errors E corresponded to an 
overestimation of the number of steps whereas the remaining 
25.0% to an underestimation. For  �� �!/, instead, the 62.5% 
of the total errors was an underestimation of the number of 
steps and the 37.5% an overestimation. From the visual 
analysis of the video-recordings it resulted that �� !"� made 
a higher number of 8�'&9:E  , which were caused by little 
movements of the leg slightly before or after the walking 
activity. �� �!/, instead, produced a higher number of  
8�'&9:N , which occurred when the cow walking was 
characterised by steps having an acceleration intensity that 
did not exceed the fixed threshold. For �� �!/, the best 
compensation between 8�'&9:N  and 8�'&9:E  produced a value of 
the relative error RME = 2.4%, which is lower than that of 
�� !"�, equal to 4.8%. 

5.1.4 Sensitivity analysis 

In Table 8, the results of the application of the variations to 
the threshold #ℎ!"�  and the parameter #ℎ"%%�&' of the 
algorithm �� !"� are reported. The choice of #ℎ!"� =
1.198 and #ℎ"%%�&' = 2 produced the minimum number of 
total errors (E = 9.5%). The same value of E was obtained by 
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fixing the threshold variation #ℎ"%%�&' equal to 3. This value 
of #ℎ"%%�&' produced a higher compensation between 8�'&9:E  
and 8�'&9:N  with a RME value of 2.4% and determined the best 
performance of �� !"�.  Although a 5% increase of 
#ℎ!"�  produced a lower RME, equal to 1.2%, the total error 
E was higher (15.5%). 
 

Table 8. Sensitivity analysis on Algmod algorithm. 

thmod thoffset 8�'&9:  8�'&9:E  8�'&9:N  
Total 

errors E RME 

1.198 2 88 6 2 8 9.5% 4.8% 
1.078 (-10%) 2 102 19 1 20 23.8% 21.4% 
1.138 (-5%) 2 99 15 0 15 17.9% 17.9% 
1.258 (+5%) 2 83 6 7 13 15.5% 1.2% 
1.318 (+10%) 2 76 2 10 12 14.3% 9.5% 
1.198 1 104 21 1 22 26.2% 23.8% 
1.198 3 82 3 5 8 9.5% 2.4% 
1.198 4 70 1 15 16 19.0% 16.7% 

 
In Table 9, the results of the parameter variations for the 
algorithm �� �!/ are summarised. They showed that the 
initial values #ℎ�!/ = 1.75 and #ℎ"%%�&' = 2 minimised the 
number of the total errors (E = 9.5%). Although the same 
outcome was obtained by fixing #ℎ"%%�&' equal to 3, the RME 
value did not decrease (2.4%). Therefore, this version of the 
algorithm performed best with the initial threshold values. 
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Table 9. Sensitivity analysis on Algsma algorithm. 

thsma thoffset 8�'&9:  8�'&9:E  8�'&9:N  
Total 

errors E RME 

1.75 2 82 3 5 8 9.5% 2.4% 
1.575 (-10%) 2 89 7 2 9 10.7% 6.0% 
1.662 (-5%) 2 88 6 2 8 9.5% 4.8% 
1.837 (+5%) 2 80 2 6 8 9.5% 4.8% 
1.925 (+10%) 2 80 3 7 10 11.9% 4.8% 
1.75 1 104 24 4 28 33.3% 23.8% 
1.75 3 82 3 5 8 9.5% 2.4% 
1.75 4 73 2 13 15 17.9% 13.1% 

 
Finally, a further analysis on the data was carried out with the 
aim of verifying that the performance of the algorithm was 
not affected by the reduction of the dataset due to the group 
comparison test, which produced a number of discarded 
walking samples. Therefore, a new computation of both E 
and RME was carried out by randomly adding the 25% of the 
discarded walking samples to the #)�#_��#��)#!"�. In 
comparison to the previous results, which were computed 
without all the discarded walking samples Table 5, it was 
observed that a slight increase of E to 10.9% occurred, 
whereas a substantial decrease of RME to 2.2% was 
registered. This result suggested that RME is less suitable 
than E for measuring the accuracy of the step counter because 
8�'&9:E  and 8�'&9:N  compensated each other. 

5.2 The feeding activity 

5.2.1 The data analysis through accx variable 

With the objective of discerning the feeding from the 
standing samples by using the accx variable, the Mood’s 
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Median Test was conducted on the analysis datasets AD1, …, 
AD7. As an example, the results of the test on AD1 are 
reported in Table 10. 
 

Table 10. Results of the Mood Median Test on AD1 analysis 

dataset. 

Results for: MMT Analysis G1 

 

Mood Median Test: acc_x versus cow_id  

 

Mood median test for acc_x 

Chi-Square = 531,29    DF = 29    P = 0,000 

 

                               Individual 95,0% CIs 

cow_id  N≤  N>  Median  Q3-Q1  ----+---------+---------+---------+- 

F_1_10   0  20    0,69   0,11                             *-) 

F_1_18   0  19    0,75   0,06                               *-) 

F_1_21   0  21    0,69   0,06                           (-* 

F_2_1    0  20    0,75   0,11                             (-* 

F_2_28   0  20    0,81   0,06                                 *-) 

F_2_30   0  20    0,81   0,13                               (-*-) 

F_3_22   7  13    0,31   0,13              (-*--) 

F_3_28   0  20    0,56   0,05                         * 

F_3_7   13   7    0,25   0,11              *-) 

F_4_11   0  20    0,44   0,06                   (-* 

F_4_24   0  20    0,75   0,00                               * 

F_4_29   0  20    0,63   0,17                       (---* 

F_5_15   1  20    0,38   0,06                   * 

F_5_16   0  20    0,44   0,13                   (-*) 

F_5_20   0  19    0,56   0,06                       (-* 

S_1_10  20   0    0,03   0,06      (*) 

S_1_14  20   0    0,16   0,06          (*) 

S_1_25  20   0    0,16   0,06          (*) 

S_2_11  20   0    0,13   0,06        (-* 

S_2_19  20   0    0,06   0,06      (-* 

S_2_7   20   0    0,13   0,06          *-) 

S_3_10  20   0    0,00   0,00      * 

S_3_22  20   0    0,06   0,13      (-*-) 

S_3_7   20   0   -0,03   0,06    (*) 

S_4_17   7  13    0,31   0,06              (-* 

S_4_19  20   0    0,13   0,00          * 

S_4_23  20   0    0,00   0,13    (-*-) 

S_5_23  19   0   -0,06   0,00    * 

S_5_3   20   0   -0,06   0,06  (-* 

S_5_6   18   3    0,13   0,22        (-*--) 

                               ----+---------+---------+--------+- 

                                 0,00      0,30      0,60      0,90 

 

Overall median = 0,25 
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In Table 10, the ‘overall median’ of AD1 resulted equal to 
0.25 g. As it can be observed, the feeding samples are 
characterised by a high number of observations having accx 
greater than the ‘overall median’ of the dataset, whereas the 
standing samples have a high number of observations having 
accx lower or equal than the ‘overall median’ of the dataset. 
Unlike the other feeding samples, the sample with ID ‘F_3_7’ 
produced 13 observations having accx values lower or equal 
to the ‘overall median’, whereas the standing sample with ID 
‘S_4_17’ had only 7 observations having accx values lower 
or equal to the ‘overall median’. Therefore, only these two 
samples could not be discriminated by using the 'overall 
median'. 
Moreover, although all the SensorTags were set at 4 Hz, in 
some cases 3 observations or in other cases 5 were attributed 
to the same second. This occurrence was due to slight 
differences in the synchronicity between the Raspberry Pi and 
the BLE devices. This is the reason why, for instance, the 
sample ‘F_1_18’ had 19 observations, whereas the sample 
‘F_1_21’ had 21 observations. 
The Mood’s Median Test carried out on all the analysis 
datasets produced the values of the ‘overall medians’ reported 
in Table 11. 
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Table 11. Overall medians obtained by Mood’s 

Median Test on all the analysis datasets. 

Analysis dataset Overall median 

AD1 0.250 g 

AD2 0.310 g 

AD3 0.250 g 

AD4 0.250 g 

AD5 0.310 g 

AD6 0.250 g 

AD7 0.313 g 

 
In Table 11, some values of the ‘overall medians’ are 
repeated. This is due to the resolution of the sensor, equal to 
about 0.06 g, which affects the discrimination between two 
very similar angles of the cow's head.  
The mean of the medians reported in Table 11, which is equal 
to 0.276 g, constituted the acceleration threshold thfeed that 
can be applied to distinguish feeding from standing behaviour 
of cows. 
With regard to the test datasets TD, the score was computed 
on each sample (i.e., 45 feeding samples and 45 standing 
samples). The classifier correctly detected 42 samples out of 
45 feeding samples (Table 12), whereas 3 samples were 
recognised as standing. 
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Table 12. Results (‘F’ as Feeding; ‘S’ as ‘Standing’) of the classification of 

feeding samples. 

Sample Score Result Sample Score Result Sample Score Result 

F_1_13 0 F F_2_29 0 F F_4_17 8 F 
F_1_19 0 F F_2_4 0 F F_4_18 14 S 
F_1_2 0 F F_2_9 0 F F_4_19 7 F 
F_1_23 0 F F_3_11 20 S F_4_22 0 F 
F_1_25 0 F F_3_12 16 S F_4_30 0 F 
F_1_29 1 F F_3_13 9 F F_4_9 5 F 
F_1_3 0 F F_3_19 0 F F_5_18 1 F 
F_1_8 0 F F_3_2 6 F F_5_22 0 F 
F_1_9 0 F F_3_23 0 F F_5_25 0 F 
F_2_13 0 F F_3_26 0 F F_5_26 1 F 
F_2_17 0 F F_3_3 0 F F_5_29 0 F 
F_2_18 0 F F_3_5 0 F F_5_3 0 F 
F_2_19 0 F F_4_1 0 F F_5_6 0 F 
F_2_2 0 F F_4_12 0 F F_5_8 0 F 
F_2_24 0 F F_4_13 1 F F_5_9 0 F 
  Mean 1.978  SD 4.609   

 
The classifier correctly detected 43 samples out of 45 
standing samples (Table 13), whereas 2 samples were 
recognised as feeding. 
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Table 13. Results of the classification of standing samples. 

Sample Score Result Sample Score Result Sample Score Result 

S_1_12 17 S S_2_29 20 S S_4_15 18 S 
S_1_13 10 S S_2_4 20 S S_4_20 20 S 
S_1_19 20 S S_2_9 20 S S_4_21 19 S 
S_1_21 20 S S_3_14 19 S S_4_22 20 S 
S_1_28 18 S S_3_19 20 S S_4_3 15 S 
S_1_30 20 S S_3_2 21 S S_4_6 14 S 
S_1_4 20 S S_3_20 20 S S_5_10 20 S 
S_1_5 20 S S_3_23 21 S S_5_15 16 S 
S_1_9 16 S S_3_28 0 F S_5_20 19 S 
S_2_15 20 S S_3_30 0 F S_5_22 20 S 
S_2_17 20 S S_3_4 20 S S_5_26 20 S 
S_2_2 20 S S_3_5 17 S S_5_27 19 S 
S_2_23 20 S S_4_1 20 S S_5_28 20 S 
S_2_25 19 S S_4_11 20 S S_5_8 20 S 
S_2_28 20 S S_4_14 20 S S_5_9 20 S 
  Mean 18.178  SD 4.463   

 
With regard to TD, the following values of the indicators 
were obtained: MR = 5.56 %, Sensitivity = 93.33%, Precision 
= 95.45%, Specificity = 95.56%, QP = 89.36%, BF = 0.05, 
and MF = 0.07. 
The results of the classifications were then entered in a linear 
regression model and produced the coefficients slope = 0.89 
and intercept = 0.07, and a coefficient of determination R2 = 
78.8%. 

5.2.2 The data analysis through the frequency diagrams 

Besides the numerical analysis on the data described in 
section 3.1, data was also analysed by means of the frequency 
diagrams of the samples. The analysis of these diagrams 
confirmed the strong influence of the sensor position, in 
relation to the cow's neck axis, on the classifier accuracy.  
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In Figure 16, the comparison among the different 
distributions of the medians of standing and feeding samples 
is reported. The diagram shows a clear, though small, 
overlapping of the two distributions in the x-axis interval 
(0.15 g - 0.55 g). In Figure 17, the two distributions relative 
to TD also show an overlap. More in detail, in the x-axis 
interval (0.15 g - 0.45 g) an overlap of 12 samples is included, 
6 of them are standing samples and the other 6 are feeding 
samples. This condition would cause the failure in achieving 
a threshold suitable for correctly classifying all the 90 
samples of the TD considered.  
 

Figure 16. Distributions of the medians of standing and 

feeding samples referred to the overall data. 
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Figure 17. Distributions of the medians of the test dataset. 

 
 
Starting from these considerations, a more specific analysis 
was carried out, based on the diagrams related to the two 
behaviours for each of the five cows individually (Figure 18 
to Figure 22). 
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Figure 18. Distributions of the medians of standing and 

feeding samples for the cow with ID 1. 

 
 

Figure 19. Distributions of the medians of standing and 

feeding samples for the cow with ID 2. 
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Figure 20. Distributions of the medians of standing and 

feeding samples for the cow with ID 3. 

 
 

Figure 21. Distributions of the medians of standing and 

feeding samples for the cow with ID 4. 
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Figure 22. Distributions of the medians of standing and 

feeding samples for the cow with ID 5. 

 
 
From the comparison of these diagrams (Figure 18 to Figure 
22), it can be highlighted that there is no overlapping between 
the distributions of the medians of the standing and feeding 
samples for the cows with IDs 1, 2 , and 5, whereas 
overlapping is found for cows with IDs 3 and 4. In detail, five 
standing samples related to cow with ID 3 are contained 
within the x-axis interval (0.25 g - 0.55 g) and, therefore, they 
fall into the distribution of feeding samples. Twelve samples, 
of which six are related to the standing and six to the feeding, 
overlap in the x-axis interval (0.15 g - 0.45 g) for the cow with 
ID 4. 

5.3 The design of the automated monitoring system 

In the design of the automated system suitable for continuous 
monitoring the main behaviours of dairy cows (objective 1), 
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the phase of detection of these behaviours is based on the use 
of acceleration thresholds. In detail, the following thresholds 
were considered: 

− The acceleration threshold, named thstand hereafter, 
was determined by Darr and Epperson (2009) for 
standing and lying behaviour discrimination. 

− The acceleration thresholds, named (thmovx, thmovy, 
thmovz) and (thwalkx, thwalky, thwalkz) hereafter, were 
proposed by Arcidiacono et al. (2015) and were 
validated for the recognition of small movements of 
the cow's leg and for the recognition of walking, 
respectively. 

− The acceleration threshold thmod, computed in this 
PhD work, is suitable for step counting during the 
walking activity of the cow. 

− The acceleration threshold thfeed, computed in this 
PhD work, is suitable for feeding recognition when 
the cow is in standing. 

Besides the recognition phase, the system includes two other 
phases aimed at producing useful information for the farmer, 
by using the raw data obtained from the wearable sensors 
located on the cow's body. Each one of these phases was 
carried out by using a module of the system, which is 
described in the following sub-sections. 

5.3.1 The data acquisition system 

During my PhD studies, the first version of the data 
acquisition system proposed by Arcidiacono et al. (2015) was 
improved with new features. The new version of the 
firmware, uploaded into the SensorTag devices, make it 
possible to disable the ‘sleep mode’, which switches off the 
device after an idle period of 180 s. Furthermore, the data 
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acquisition software, initially implemented in a single Python 
script file, was totally re-engineered and developed using 
multi-files according to the principles of Software 

Engineering. Finally, the connection and re-connection 
phases were managed thorough a queue (First In First Out 
data structure), which allowed for a correct synchronisation 
of the processes. 
Table 14 shows the amounts of data, measured in Mbyte, 
acquired and stored for each SensorTag during the time 
interval of the experiment (5 hours). 
 

Table 14 . Stored data from each SensorTag and the relative 

percentage referred to the theoretical acquirable amount of data 

during the time interval of the experiment. 

 Foot 

Accelerometer 
[MByte] 

Neck 

Accelerometer 
[MByte] 

Total per cow 
[Mbyte] 

Dairy Cow ID 
1 

1.78 (51.3%) 2.79 (80.4%) 
4.57 

Dairy Cow ID 
2 

2.16 (62.2%) 2.87 (82.7%) 
5.03 

Dairy Cow ID 
3 

2.85 (82.1%) 2.89 (83.3%) 
5.74 

Dairy Cow ID 
4 

1.82 (52.4%) 2.89 (83.3%) 
4.71 

Dairy Cow ID 
5 

2.55 (73.5%) 2.96 (85.3%) 
5.51 

Total [MByte] 11.16 14.40 25.56 

 
For each device, this amount of data is also reported in 
percentage referred to the theoretical amount of stored data 
for the whole duration of the experiment (3.47 MByte for 
each device). During the lying behavioural activities, the 
signal of the SensorTags attached to the cows’ legs were often 
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absorbed by the animal’s body, therefore the amount of data 
acquired from the foot sensors is always less than the amount 
of data acquired from the related neck sensor. Since the lying 
activity affected the communication between the foot sensor 
and the single board computer for long periods, the indicator 
SDI of the performance of the data acquisition system was 
calculated by taking into account only the amounts of data 
from the collar sensors. The value of SDI was equal to 83%. 

5.3.2 The algorithm for behaviour recognition 

The values of the acceleration thresholds reported in the 
literature and those reported in this study allowed the design 
of a novel automated system for the recognition of dairy cows 
behavioural activities (i.e., lying, standing, walking, and 
feeding). The algorithm of this automated system is 
illustrated in the flow chart of Figure 23. 
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Figure 23. The algorithm of the automated system for the 

recognition of cow’s behaviours. 

 
 
In detail, let m the number of cows bred in the free-stall barn 
and DCj, j = 1 … m, the j-th cow of the herd. The algorithm 
required two 5-s samples as input for each DCj, i.e., the Fi 
sample (i-th acceleration sample acquired by the sensor fixed 
to the cow’s leg) and Ci sample (i-th acceleration sample 
acquired by the sensor fixed to the cow’s collar), where i = 1 
… n and n is the number of samples acquired during one day 
(24 h). When the algorithm ends its computation, it will give 
two outputs. They are the behavioural state (BS), attributed 
to DCj during the 5-s sample (i.e., ‘lying’, ‘standing’, 
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‘standing with minor movement’, ‘feeding’, ‘feeding with 

minor movement’, and ‘walking’) and the step count, SC, if 
the ‘walking’ behavioural state (BS = ‘walking’) was 
recognised. 
In detail, the check of the condition (1) in Figure 23, where 
(V]^_`)aaaaaaaaa is the mean value of the accelerations along the x-axis 
and thstand is equal to 0.5 g, determines if the cow is in 
standing or in lying. If the cow is in lying, the sub-sequent 
condition (2) is also verified, where b]^_`c  is the median value 
of the accelerations along the x-axis and thsleep is a threshold 
suitable to determine if the cow is in sleeping or not. This 
threshold was defined but it has not been computed yet 
(Section 6.3). 
If the cow is in standing, the condition (3) is used to detect 
minor movement of the leg (Arcidiacono et al., 2015), and the 
condition (4) is used to detect the walking of the cow 
(Arcidiacono et al., 2015). In this last case, the behaviour 
state was set to ‘walking’ (BS = “walking”) and the step 
counting algorithm is used to obtain the step count, SC, of the 
cow DCj during the sample Fi by using thmod equal to 1.198 
g. Finally, again in the case of still standing posture, the 
conditions (5) and (6) were used to recognise the feeding 
activity by using thfeed equal to 0.276 g. 

5.3.3 The overall design of the automated monitoring 

system 

After the description of the two main modules, i.e., the data 
acquisition system and the algorithm for the recognition of 
cow’s behaviours, it was possible to describe the overall 
design of the automated monitoring system (objective 1) 
through Figure 24. 
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Figure 24. The design of the automated monitoring system for a 

free-stall barn. 

 
 
In Figure 24 two other modules are the ‘Data cleaning and 

pre-processing’ and the ‘Data aggregation and reporting’. 
The ‘Data cleaning and pre-processing’ module performs 
cleaning and pre-processing activities on the flat files 
received from the data acquisition system, i.e. the data files 
in .cvs format and the log files. 
Looking at disconnection periods reported on the log files, 
this module should clean the data files from inconsistent or 
partial data. For instance, if only the acceleration data from 
the collar sensor is available, due to a disconnection of the leg 
sensor for a period of time, the module should mark the 
samples of such period as unknown behavioural activity. 
Furthermore, the second main task of this module is the pre-

processing of the data stored in the flat files to achieve the 
integration with the next module, i.e., ‘Behaviour 

recognition’. For each cow DCj, where j = 1 … m, the 
acceleration data retrieved from the SensorTag attached to the 
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cow’s leg was splitted in 5-s subsequent samples: F1, …, Fn. 
In the same way, the acceleration data retrieved from the 
SensorTag attached to the cow’s collar was splitted in 5-s 
subsequent samples: C1, …, Cn. At this point, the process 
sends the tuple (DCj, Fi, Ci) to the algorithm for cow’s 
behaviour recognition. 
Since the algorithm for behaviour recognition, reported in 
Section 5.3.2, gives as output the tuple (DCj, BSi, SCi), i.e. the 
predicted behavioural activity of the cow DCj during the i-th 
5-s sample, and this result is not a valuable information for 
the farmer, an additional module was required: ‘Data 

aggregation and reporting’. The processes of this module 
store each one of such tuples in a data structure, i.e, a table of 
a database (Table 15). 
 

Table 15. Collection of 5-s samples related to the 

predicted  behaviours for each cow. 

Cow BS SC 

… … … 
DC5 ‘standing’ 0 
DC5 ‘standing’ 0 
DC5 ‘walking’ 2 
DC2 ‘standing’ 0 
DC2 ‘standing’ 0 
DC2 ‘lying’ 0 
DC5 ‘walking’ 3 
DC2 ‘lying’ 0 
DC5 ‘feeding’ 0 
DC5 ‘feeding’ 0 
DC2 ‘lying’ 0 
DC5 ‘feeding’ 0 
… … … 
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After this phase, the aggregation of the data reported in Table 
15 is performed by grouping per cow and behaviour, as 
shown in Table 16. 
 

Table 16. Report of behaviour duration and step count for each 

cow. 

Dairy 

Cow 

Lying 

[s] 
Standing 

[s] 
Feeding 

[s] 
Walking 

[s] 
Step 

count 

… … … … … … 
DC2 15 10 0 0 0 
… … … … … … 
DC5 0 10 15 10 5 
… … … … … … 

 
In the example shown in Table 16, the duration of each 
behaviour is measured in seconds. This choice was made to 
clarify the aggregation process, which is crucial to obtain 
valuable information from the data reported in Table 15. 
Certainly, when the information reported in Table 16 is 
referred to the whole day (24 h), a measure in hours (h) and/or 
minutes (m) for the duration of each behaviour should be 
more appropriate. In this way, the information presented in 
the final report could be compared with the typical daily time 
budget for a lactating dairy cow (Grant and Albright, 2000). 

5.4 Feasibility study on gyroscope and barometer sensors 

5.4.1 The gyroscope data during cow’s walking activity 

During the phases of data acquisition and data analysis (June-
July 2016), the gyroscope sensor of the SensorTag devices, 
fixed to cows’ leg, was also considered. Figure 25 and Figure 
26 show a comparison between the accelerometer data and 
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the gyroscope data during the same walking period, from 
14:03:52 to 14:04:12, for the cow with ID 2. 
 

Figure 25. Graph of acc_smaxy variable for cow with ID 2 from 

14:03:52 to 14:04:12. 
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Figure 26. Graph of gyr_smaxy variable for the cow with ID 2 

from 14:03:52 to 14:04:12. 

 
 
The video recordings showed the cow with ID 2 executed 
exactly 8 steps during this walking period, while the step 
counting algorithm, Algsma, predicted 9 steps. Figure 26 
demonstrated that a similar statistical analysis used to define 
the accelerometer thresholds thmod and thsma, could be used for 
defining angular velocity thresholds (deg/s). For instance, by 
setting an angular velocity threshold at 100 deg/s, the 
algorithm will predict 10 steps for the reported period (Figure 
26). 
This comparison was completed with a further test regarding 
the measure of battery life duration in different configurations 
of the SensorTag (Table 17). 
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Table 17. A comparison of the battery life duration of the 

SensorTag using different combinations of sensors. 

 

Accelerometer Gyroscope 

Accelerometer 

and 

Gyroscope 

Battery 

duration (days) 
12 5 3 

 

5.4.2 The barometer data and the gyroscope data during 

cows’ feeding activity 

Since the barometer built in the SensorTag device was able 
to measure the change in atmospheric pressure, it could reveal 
change in the height of the animal head during the feeding 
activity, if it was fixed to the cow’s collar. 
The first trial was conducted in laboratory. TablesTable 18 
toTable 25 reported the Anova tests (Tukey test; CI = 95%) 
performed on 5 SensorTags placed, at the same time, at 
different heights from the ground, i.e., from 140 cm to 70 cm 
at steps of 10 cm (8 trials). All the sensors worked at 1 Hz of 
sampling frequency and for 1 min for each height. 
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Table 18. Anova tests 

(Tukey test; CI = 95%) 

performed on 5 

SensorTags placed 140 

cm high from the 

ground. 

F M G 

sAD 1000,700 A 

s54 999,900 B 

sCB 999,768 C 

s3D 999,501 D 

s2A 999,198 E 
 

Table 19. Anova tests 

(Tukey test; CI = 95%) 

performed on 5 

SensorTags placed 130 

cm high from the 

ground. 

F M G 

sAD 1000,450 A 

s54 999,534 B 

sCB 999,507 B 

s3D 999,141 C 

s2A 998,917 D 
 

Table 20. Anova tests 

(Tukey test; CI = 95%) 

performed on 5 

SensorTags placed 120 

cm high from the 

ground. 

F M G 

sAD 1000,600 A 

s54 999,687 B 

sCB 999,624 C 

s3D 999,280 D 

s2A 999,021 E 
 

Table 21. Anova tests 

(Tukey test; CI = 95%) 

performed on 5 

SensorTags placed 110 

cm high from the 

ground. 

F M G 

sAD 1000,640 A 

s54 999,730 B 

sCB 999,728 B 

s3D 999,327 C 

s2A 999,119 D 
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Table 22. Anova tests 

(Tukey test; CI = 95%) 

performed on 5 

SensorTags placed 100 

cm high from the 

ground.. 

F M G 

sAD 1000,550 A 

s54 999,692 B 

sCB 999,620 C 

s3D 999,251 D 

s2A 999,017 E 
 

Table 23. Anova tests 

(Tukey test; CI = 95%) 

performed on 5 

SensorTags placed 90 

cm high from the 

ground.. 

F M G 

sAD 1000,58 A 

s54 999,708 B 

sCB 999,634 C 

s3D 999,247 D 

s2A 999,025 E 
 

Table 24. Anova tests 

(Tukey test; CI = 95%) 

performed on 5 

SensorTags placed 80 

cm high from the 

ground.. 

F M G 

sAD 1000,60 A 

s54 999,661 B 

sCB 999,606 C 

s3D 999,241 D 

s2A 999,007 E 
 

Table 25. Anova tests 

(Tukey test; CI = 95%) 

performed on 5 

SensorTags placed 70 

cm high from the 

ground. 

F M G 

sAD 1000,55 A 

s54 999,645 B 

sCB 999,619 B 

s3D 999,217 C 

s2A 998,994 D 
 

 
The comparison of the tables shows that, in each of the eight 
trials, the five sensors did not belong to the same grouping, 
so their measures obtained at the same height are significantly 
different. 
This investigation proceeded with a further Anova test, 
performed on each SensorTag individually, at the different 
heights analysed. The Anova test grouped measures of 
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different heights by assigning the same label (e.g., in Table 
28, the measures obtained from SensorTag ‘s2A’ at 90 cm, 
120 cm, 100 cm, 80 cm and 70 were labelled with the same 
letter ‘C’) 
 

Table 26. Anova tests 

(Tukey test; CI = 95%) 

performed on SensorTag 

s54. 

F M G 

140 cm 999,900 A 

110 cm 999,730 B 

90 cm 999,708 B C 

100 cm 999,692 C D 

120 cm 999,687 C D 

80 cm 999,661 D E 

70 cm 999,645 E 

130cm 999,534 F 
 

Table 27. Anova tests 

(Tukey test; CI = 95%) 

performed on SensorTag 

sAD. 

F M G 

140cm 1000,70 A 

110cm 1000,64 B 

80cm 1000,60 C 

120cm 1000,60 C 

90cm 1000,58 C D 

70cm 1000,55 D 

100cm 1000,55 D 

130cm 1000,45 E 
 

Table 28. Anova tests 

(Tukey test; CI = 95%) 

performed on SensorTag 

s2A. 

F M G 

140cm 999,198 A 

110cm 999,119 B 

90cm 999,025 C 

120cm 999,021 C 

100cm 999,017 C 

80cm 999,007 C 

70cm 998,994 C 

130cm 998,917 D 
 

Table 29. Anova tests 

(Tukey test; CI = 95%) 

performed on SensorTag 

sCB. 

F M G 

140cm 999,768 A 

110cm 999,728 B 

90cm 999,634 C 

120cm 999,624 C 

100cm 999,620 C 

70cm 999,619 C 

80cm 999,606 C 

130cm 999,507 D 
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Table 30. Anova tests 

(Tukey test; CI = 95%) 

performed on SensorTag 

s3D. 

F M G 

140cm 999,501 A 

110cm 999,327 B 

120cm 999,280 C 

100cm 999,251 C D 

90cm 999,247 C D 

80cm 999,241 D 

70cm 999,217 D 

130cm 999,141 E 
 

 

 
Therefore, the tests performed in the laboratory proved that 
the detection of the height of the cow’s head by using the 
barometer cannot be achieved with a single measure of the 
atmospheric pressure. Instead, a better approach should take 
into account the change in the atmospheric pressure during 
behaviour transitions (i.e,, from standing to feeding or vice 
versa). 
To this aim, a test was conducted in the free-stall barn by 
using a SensorTag fixed to the cow’s collar. In detail, Figure 
27 shows 99 consecutive measures of the barometer (33 
during the feeding, 33 during the standing, and 33 during the 
walking) collected in the time interval between 13:47:21 and 
13:47:53. 
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Figure 27. A graph of atmospheric pressure data during 

transitions between different behavioural activities. 

 
 
The outcomes of the Anova test (Tukey test and CI 95%) 
conducted on the data shown in Figure 27 were reported in 
Table 31. The group of measures acquired by the barometer 
during the feeding activity was labelled with the letter ‘A’, 
whereas the letter (‘B’) was assigned to both the group of 
measures of the standing activity and the group of measures 
of the walking activity. 
 

Table 31. Anova test on the groups of measures acquired by the 

barometer. 

Behaviour N Mean Grouping 

Feeding 33 993,958 A 

Standing 33 993,920 B 

Walking 33 993,896 B 

 
The above period was also analysed through the plotting of 
the x-axis of the accelerometer (Figure 28) and the plotting of 
the x-axis of the gyroscope (Figure 29). 
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Figure 28. A graph of the accelerometer x-axis (accx) during 

different behavioural activities. 

 
 

Figure 29. A graph of the x-axis of gyroscope (gyrx) during 

different behavioural activities. 

 
 
It is evident that the x-axis of accelerometer describes the 
change in behaviour, i.e. from feeding to standing and from 
standing to walking, more clearly than the x-axis of the 
gyroscope. 
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6 Discussion 

6.1 The walking activity and the step counting 

6.1.1 Memory and time complexity analysis of the 

algorithm 

The analysis of an algorithm involves the computation of the 
required resources in terms of occupied memory and 
computational time (Cormen et al., 2001).  Concerning the 
occupied memory, it is possible to sum up the memory size, 
measured in bytes, that is occupied by each variable of the 
algorithm (Table 32). 
 

Table 32 - Algorithm memory usage. 

Variable Type 

Size 

[Byte] 

current_observation int 4 

last_peak int 4 

step_counter int 4 

acc_x float 4 

acc_y float 4 

mod_xy (or sma_xy) float 4 

Total  24 

 
The results of this computation, expressed in bytes, are 
reported in the ‘Size’ column of Table 32 and were obtained 
by the Python instructions 
‘ctypes.sizeof(ctypes.c_int)’ and 
‘ctypes.sizeof(ctypes.c_float)’. The total amount of 
occupied space resulted equal to 24 bytes.  
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The estimation of computational time T(n) is also of interest. 
This is defined as the number of statements of the algorithm 
that are executed for the output computation, in relation to the 
input dimension. By utilising the asymptotic notations 
introduced by Cormen et al. (2001), who proposed to assign 
a cost to each instruction and take into account the number n 
of times that each instruction is executed, it was found that 
the algorithm has a linear computational time for high values 
of n, i.e., d(4) = Θ(4) where Θ(4) is the asymptotic 
notation. 

6.1.2 Real-time application of the system 

Since the methodology for the identification of cow’s steps 
proposed in this study was specifically studied for possible 
applications in RTC, no data pre-processing was conducted. 
This phase could be avoided because data obtained by the 
SensorTags in the field experiment proved to be noiseless and 
without outliers. This condition avoided the application of 
filters to eliminate undesired peaks or anomalous values, 
during the data analysis. Furthermore, the sampling 
frequency of just 4 Hz reduced the amount of data to be 
processed for each SensorTag connected to the system.  This 
acquisition frequency was suitable to detect each step within 
the 5-s walking samples as verified by visual assessment of 
video recordings.  
Finally, in this study, the use of thresholds, which is a widely 
used approach in the literature, simplified the methodology in 
comparison to the use of SVM or ANN (Artificial Neural 

Network) models that require a higher computational 
complexity. Moreover, the �� �!/ offers the advantage of 
computing the intensity of the acceleration as a summation of 
the acceleration components in absolute value; at a 
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computational level, this advantage involves the execution of 
basic operations such as switching the bit related to the sign 
of the variables ���� and ���� when necessary and execute 
the sum of their values. 

6.1.3 Comparison with literature results 

The comparison with literature results proved that the 
computation of the values of the acceleration thresholds, 
within step counter algorithms, was one of the novelties of 
this study, because they have not been reported elsewhere 
until now. 
Some authors (Alsaaod et al., 2015) have recently issued the 
results of the validation of a new version of the RumiWatch 
Algorithm. Since the RumiWatch Algorithm was not 
reported in the study of Alsaaod et al. (2015), it was not fully 
possible to compare the performance of the RumiWatch 
Algorithm with that of the algorithm proposed in this study. 
The experimental activity was carried out on 21 cows, which 
were forced to walk and video-recorded for a time interval 
greater than 10 minutes in order to validate the number of 
cow steps computed by RumiWatch Algorithm. Therefore, 
their goal only partially overlapped mine because their 
objective was to count the steps of the cows without defining 
any thresholds for acceleration data. The same length of the 
time interval adopted to validate the RumiWatch Algorithm 
was not considered in this study because due to the forced 
walking activity the acceleration values were not 
representative of the daily walking activity of the cows.   
In Alsaaod et al. (2015) only the RME was considered for 
analysing the error of the algorithm. Differently from this 
study, the RME values obtained by validating the RumiWatch 
Algorithm were grouped for each cow and then averaged in 
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order to obtain an RME value equal to 6.23%. This value is 
higher than that obtained in this study for both the two 
versions of the algorithm.  
Since the RumiWatch Algorithm was not reported, it is only 
possible to make a hypothesis when comparing the RME 
value obtained by the algorithms. The lower values of RME 
obtained by the two versions of the algorithm proposed in this 
study were not affected by the group comparison test which 
discarded some walking samples from the initial dataset. This 
was proved by the results achieved in the sensitivity analysis. 
Probably, the RME values obtained in this study could be due 
to the computed thresholds which produced a higher 
compensation between 8�'&9:E  and 8�'&9:N . 
However, RME is less robust than E when measuring the 
accuracy of step counter algorithms. In fact, when adding 
samples that makes the algorithm commit a higher number of 
errors, it is expected that the values of the error indicators (E 
and RME) would increase. On the contrary, in the sensitivity 
analysis it was found that at adding discarded samples the 
RME decreased while E increased.  
In the study of Nielsen et al. (2010) the period of standing and 
walking of 10 dairy cows were quantified by utilising IceTag 
sensors fixed to the hind legs of the animals. The protocol of 
the experiment involved the succession of standing and 
walking periods in sequences of about 20 s and a time interval 
of ~ 10 minutes for each cow. The total number of walking 
periods were 139 (average duration of 15 s, SD = 9 s, and 
range of 1-50 s). The Authors utilised the video-recordings to 
validate the number of steps computed by the software 
(IceTagAnalyzer) and obtained the results reported in Table 
33. 
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Table 33. Basic statistics of the step counting obtained from the 

algorithms (IceTagAnalyzer, Algmod, Algsma ) and video-recording 

analyses; basic statistics of the distributions of the differences 

between the number of steps detected by each algorithm and 

that obtained from video-recording (efghij ). 

   Min Max Median 

IceTagAnalyzer 

Videorecorded steps 2 20 11.5 
IceTagAnalyzer steps 1 26 7 
Difference steps -2 +5 0 

Algmod 

8�'&9;  1 4 2 
8�'&9:  1 4 2.5 
Difference steps -1 +1 0 

Algsma 

8�'&9;  1 3 2 
8�'&9:  1 3 2 
Difference steps -1 +2 0 

 
A similar analysis was also conducted in this thesis work and 
the results obtained by the algorithms �� !"� and �� !"� 
are presented in Table 33. Though the duration of walking 
periods, which were utilised in the analyses reported in Table 
33, were different, it is remarkable to observe that 
IceTagAnalyzer, �� !"�, and �� �!/ obtained medians 
equal to zero for the difference between the number of 
detected steps and corresponding ones in the video-
recordings. Therefore, since the distributions of this 
difference had a similar central tendency, the three algorithms 
showed a similar accuracy. 

6.2 The feeding activity 

6.2.1 Behaviour misclassification 

The visual analysis of the video-recordings related to the 
cases of feeding misclassification, i.e., samples F_3_1, 
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F_3_12, and F_4_18, highlighted the following concurrent 
events for the cows with IDs 3 and 4. In the video-recordings, 
it was observed that cow’s head was maintained slightly 
higher than the bottom of the manger; the sensor position in 
relation to the cow's body axis was modified compared to the 
initial position, and the cow rotated its head during the 
feeding activity. These factors affected the acceleration along 
the x axis (accx) and, therefore, most of the observations of 
these samples had lower values than the fixed threshold. 
In the cases of standing misclassification (samples S_3_28 
and S_3_30), the cows maintained their head down and, 
therefore, most of the observations of these samples had 
higher values than the fixed threshold. 
The results described in Figure 16 and Figure 17, where all 
the cows were considered, showed that an acceleration 
threshold could not be determined without making any 
misclassification. In this experiment, this was determined by 
some standing samples that overlapped some feeding samples 
for cows n. 3 and n. 4, as the analysis of Figures Figure 18 to 
Figure 22 showed. This occurrence was thought to be 
depended on a modification of the acceleration values due to 
a slightly rotation of the sensor compared to its initial 
position. Actually, in Figure 30 there is evidence of this 
rotation of the sensor fixed to the collar of the cow with ID 4. 
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Figure 30. Slightly rotated position of the sensor 

compared to its initial position. 

 
 
The modification in the direction of the x-axis of the sensor 
determined a lower sensibility of the device along this axis, 
which was able to cause an overlap of the two behaviours in 
some cases. Therefore, this would explain how most of the 
classifier’s errors occurred for the behaviours of cows with 
IDs 3 and 4. 
At this regard, Oudshoorn et al. (2013) observed that slight 
movements of the accelerometer device could increase errors 
and solved the problem by fixing a threshold for each cow, 
for the estimation of grazing time. In mine experiment, this 
choice would not have thoroughly solved the problem since 
the distributions, reported in Figure 20 and Figure 21, would 
not allow for fixing a suitable threshold for the samples. 
Based on these considerations, the aim of achieving a higher 
accuracy of behaviour classification would be facilitated by 
selecting a cow's collar capable of avoiding or at least 
reducing the rotations of the sensor relative to cow's neck.  
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6.2.2 Comparisons with the research studies in the field 

Several studies have regarded the recognition of cow's 
feeding activity, however the different environmental 
conditions of the experiments, different typologies and 
configurations of the adopted devices make difficult to 
perform a direct comparison. The experiments were often 
carried out on grazing animals, i.e., out of a free-stall barn, 
which was instead considered in this study. Furthermore, in a 
number of studies stationary systems were utilised, whereas 
in other studies that considered accelerometer sensors data 
were acquired with higher sampling frequencies than that 
proposed in this study (4 Hz). 
By using an accelerometer sensor located at the cow's neck 
and a sampling frequency of 10 Hz, the model presented by 
some authors (Martiskainen et al., 2009) for the recognition 
of behavioural patterns obtained lower values of Sensitivity 
and Precision, respectively equal to 75% and 81% for 
feeding, compared to the values found for this model. In their 
experiment, one sensor for each cow was utilised to classify 
the various behaviours (standing, lying, ruminating, feeding, 
walking normally and lame walking) by means of a SVM. In 
this field of application where modularity of the system is 
usual, the use of an SVM could reduce the flexibility of the 
system. For instance, in the hypothesis of utilising two 
sensors, e.g., one fixed at the collar and the other to the hind 
leg, the aim of improving the precision of the recognition 
could be achieved only by training the SVM again. Instead, 
the choice of a classifier that utilises accelerometer 
thresholds, as the one proposed in this study, would simplify 
the use and management of two sensors used to obtain a 
higher accuracy for the results.  
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With regard to the utilisation of uniaxial accelerometer 
devices, Ueda et al. (2011) applied the Kenz Lifecorder EX 
commercial device (LCEX; Suzuken Co. Ltd., Nogoya, 
Japan) to eight grazing cows subdivided into three groups. 
The device, which costs about 245 $, has a sampling 
frequency of 32 samples/s and produces an output of activity 
levels from 0 to 10, through a 11-values proprietary scale. 
The researchers utilised the level 1 (AL_1) as a threshold for 
‘eating’ activity and obtained, in the best case, a 
misclassification of 5.5%. Therefore, the MR of the model 
proposed in this study was comparable to the best 
performance of device used by Ueda et al. (2011). 
Oudshoorn et al. (2013) determined the accelerometer 
threshold values based on the analysis of the acceleration 
time series related to the horizontal forward axis. The 
experiments were conducted on dairy cows at pasture and the 
resulted thresholds ranged from -0.40 to -0.48 g with an 
average value of -0.445 ± 0.025. These results are slightly 
different from those obtained in this study (thfeed = 0.276 g). 
The opposite sign was due to the different orientation of the 
x-axis of the sensor when applied to the collar while the 
difference in acceleration threshold value caused by the 
dissimilar position of the cow’s head in the two experiments. 
Specifically, in this study during the feeding activity cow's 
head position was higher than for grazing cows due to the 
building characteristics of the barn. In fact, in the barn there 
is a difference in the height between the ground of the feeding 
area, where the cow was in feeding, and the ground of the 
manger, where the feed was located. The higher position of 
the head of the cows considered in this study determined a 
lower value of the acceleration threshold than those obtained 
by Oudshoorn et al. (2013). 
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In the study by Ruuska et al. (2015), a new system based on 
a commercial pressure sensor, named RumiWatch noseband 
(Itin + Hoch GmbH, Liestal, Switzerland) was assessed by 
estimating the duration of the ‘eating’, ‘rumination’ and 
‘drinking’ activities of dairy cows. The results of the ‘eating’ 
activity obtained in the experiment 1 showed a coefficient of 
determination R2 = 94% which is higher than that computed 
in our study. However, since the classified behavioural 
activities were different from those analysed in this work, it 
was not fully possible to make a direct comparison of the 
results. Although Rumiwatch noseband sensor is designed for 
the classification of cow's behavioural activities that involve 
chewing and swallowing (eating, rumination and drinking), it 
could be integrated with other types of sensors to recognise 
other behaviours such as standing, lying, and walking. 
However, the implementation of a system that utilises a 
number of sensors of the same typology to recognise the 
different behaviours, as the system proposed in this study, 
would surely be facilitated since it would require a lower 
effort in the development of the software for the 
communication module.  
By applying a different approach, Porto et al. (2015) carried 
out a study on the discrimination between feeding and 
standing activities by using an image recognition system. In 
this work, the animals did not wear sensors and the 
recognition of the two behavioural activities was performed 
by the automated elaboration of the digital images acquired 
through a video-recording system. The accuracy of the 
system was assessed by computing the indicators Sensitivity, 
QP, BF, and MF. The values of these indicators for the two 
systems are compared in Table 34. 
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Table 34 – Indicators for the image recognition system and the 

sensor-based system. 

  Sensitivity QP BF MF 

Porto et al. (2015) 
Image recognition system 

87.00% 81.00% 0.08 0.15 

This study 
Sensor-based system 

93.33% 89.36% 0.05 0.07 

 
The higher Sensitivity and QP of the sensor-based system 
compared to those of the stationary system indicated that a 
higher number of TP was found in relation to the real number 
of samples of the considered behaviour and to the number of 
classified samples as that behaviour, respectively. The lower 
BF and MF implied that a lower number of FP and FN was 
respectively found in relation to the TP. Therefore, the 
sensor-based system had a higher accuracy in detecting cow's 
feeding activity. 
Besides a higher accuracy, the proposed system allows for the 
identification of the animals individually, whereas the image 
recognition system was unable.  

6.3 The automated system proposed 

In the literature, several approaches assessed wearable 
sensors, e.g. the accelerometer, to recognise dairy cows’ 
behaviours. Frequently, such studies aimed at recognising 
specific behaviours (e.g., standing or lying; standing or 
feeding; walking analysis) by fixing the sensors to the 
animal’s leg or to the animal’s head or neck. Rarely, they 
attempted to recognise all the main behaviours as done by 
Martiskainen et al. (2009). Likely, the use of only one sensor 
per each cow makes difficult to deal with this challenge. For 
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instance, the accelerometer fixed to the cow’s leg did not give 
valuable information about the feeding activity, instead its 
data was very useful to detect the standing and the lying 
cow’s postures, the period of walking activity, and the step 
counting. On the other hand, the accelerometer fixed to the 
animal’s head was successfully utilised for the feeding 
analysis, even if it was not able to detect with accuracy the 
posture of the animal, i.e., standing or lying, or the step 
counting. For all these reasons, the automated monitoring 
system reported in this study was based on two accelerometer 
sensors per cow. 
During the research activities in the free-stall barn, a novel 
data acquisition system was assessed. It revealed robustness 
and user-friendliness, in fact the installation in a free-stall 
barn was simpler in comparison to other systems (e.g., 
systems based on UWB technology), and no calibration was 
needed. The hardware was not expensive since a cost of about 
350 € is evaluated for the monitoring of five cows by using 
two sensors for each of them (in all, ten sensors). Moreover, 
the Python libraries, which were free available on the Web, 
made easier the implementation of the BLE communication 
within the software. 
The data acquisition system was used with ten SensorTags, 
which were operating at the same time. No experiment was 
carried out with a greater number of these devices. At this 
regards, the scalability of the system is an important feature: 
in fact, when a greater number devices is required, another 
single board computer could be added to this system. The two 
single board computers should cooperate by subdividing the 
tasks needed to retrieve data from a larger number of devices. 
Moreover, the scalability should also involve the increase of 
the area of the free-stall barn covered by the BLE network. In 
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this way, when a cow is moving away from the receiver and 
the devices attached to its body lose the connection with the 
single board computer, a new connection with another single 
board computer, closer to the animal, should be established.  
Due to the low sampling frequency (4 Hz) of the data 
acquisition, the memory occupation of the proposed system 
was not high. For instance, by using the results reported in 
Table 14, the required memory for storing raw data acquired 
by the ten sensors, which operate simultaneously, for one day 
(24 h) is around 170 MByte. Therefore, the proposed system 
allows for a continuous data acquisition for around 30 days 
by using these settings and an 8 GByte SD Card into the 
single board computer, where about 3 GByte was already 
allocated for the operating system. Furthermore, Table 14 
shows that for each cow the amount of data acquired by the 
accelerometer sensor attached to the collar is greater than the 
amount of data acquired by the accelerometer sensor attached 
to the leg. This difference was due to two aspects. The first 
one regards the effect of cow's body on system 
communication; when the cow was in lying on the its left 
side, its body absorbed the SensortTag signal, avoiding the 
communication with the Raspberry Pi. The second one 
regards pen crowding in intensive farming; when the cow is 
in standing, the body of the other cows could absorb the 
signal along the line of sight between the SensorTag fixed to 
its leg and the Raspberry Pi, thus interrupting the 
communication.  
Of course, some feature of the system can be improved. The 
ZigBee network, assessed by (Huircán et al., 2010; Nadimi et 
al., 2012, 2008), appeared to be more robust than the BLE 
network for this kind of application. Specifically, in a mesh 
network each node is able to carry data for the network, 
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therefore the devices can transmit data over a longer distance, 
from 10 to 100 m, and the availability of the network is 
assured because it can reconfigure itself around broken paths. 
Another improvement could be obtained by reducing the 
sampling frequency of the accelerometer sensor fixed to the 
cow’s collar. In fact, since it was used only to detect the 
inclination of the animal’s head and the data was not used in 
other analysis, the 4 Hz frequency sample could be decreased 
to 1 – 2 Hz. This improvement will reduce of around 25 % 
the memory usage required by the data acquisition system, 
but also speed-up the next data elaboration performed by the 
‘Behaviour recognising’ module. 
In Section 5.3.3 the overall design of the proposed system 
was reported. The algorithm for behaviour recognition 
(Figure 23) used in this system was able to detect the main 
cow’s behaviours (i.e., lying, standing, feeding, and walking) 
by using acceleration thresholds, which were previously 
determined through a statistical method. In the literature, such 
an algorithm was not reported until now. The values of the 
thresholds (thstand, thmovx, thmovy, thmovz, thwalkx, thwalky, thwalkz, 
thmod, thfeed) were reported either in literature (Darr and 
Epperson 2009; Arcidiacono et al. 2015) or in this study. 
However, the value of the threshold thsleep has not been 
computed yet. At this regard, some authors (Hokkanen et al., 
2011) developed a small, neck-based, wireless accelerometer 
system, fixed to the collar of 10 calves, suitable for measuring 
the sleep and lying time of calves. The authors extracted 7 
feature from each epoch (20 s) and they used a support vector 
machine classifier (SVM) to predict different sleep stages 
(REM and NREM) and lying behaviour based on behavioural 
observations. According to the authors, ‘NREM sleep’ is 
when the calf was resting head up, being still, and ‘REM 
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sleep’ is when the calf was resting neck relaxed, with the head 
against the floor or flank. Total sleep was a sum of REM and 
NREM. These definitions could be the basis of a new study 
for the determination of a new acceleration threshold, thsleep, 
able to recognise a resting activity with the head against the 
floor. To achieve this recognition, the branch of the algorithm 
in Figure 23 will involve the condition (1), with the threshold 
thstand, to predict the lying posture and then the condition (2), 
related to thsleep, to determinate the ‘REM sleep’ activity. 
In the design of the overall system reported in Figure 24, a 
‘black-box approach’ was used to describe each module of 
the system. Some further considerations can be added about 
the assessment of an effective hardware setting of the system. 
Definitely, the setting-up of a single board computer in the 
data acquisition module was the better choice, considering 
both the structural and the environmental characteristic of a 
free-stall barn. The remaining modules, drawn with a blue 
line, were allocated in a desktop computer sited in another 
building, e.g. an office room. The desktop computer should 
receive the data files from the single board computer through 
a WiFi connection. Nevertheless, with the aim of reducing the 
cost of the system, another setting up could be considered. In 
the case of monitoring few animals (a small herd), where the 
data acquisition process do not require high computational 
resources, it could be possible to implement the ‘Data 

cleaning and pre-processing’, ‘Behaviour recognising’, and 
‘Data aggregation and reporting’ modules into the single 
board computer. In this case, the desktop computer is not 
needed for data elaboration and the ‘Data aggregation and 

reporting’ module should present the information by 
publishing the reports in a ‘web service’ installed in the SBC. 
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The farmer should use a mobile device or its own desktop 
computer to browse these reports. 
Finally, an additional discussion could be done for the ‘Data 

aggregation and reporting’ module.  
As shown in Figure 24, it receives atomic information, such 
as a tuple for each 5-s sample per cow, from the ‘Behaviour 

recognising’ module, and then it performs an aggregation 
process to obtain valuable information. The granularity of the 
data aggregation has a high relevance for the farmer, who 
carries out actions and processes to maintain a good health 
state of the dairy cows. Undoubtedly, the daily (24 h) report 
produces accurate information on the daily animal routine 
when compared to the typical daily time budget for a lactating 
dairy cow (Grant and Albright, 2000), but other time intervals 
for data aggregation could be considered. For instance, the 3 
h – 6 h reporting could be useful for the following objectives: 

− Detect a very long resting activity of the animal (e.g., 
lying) due to any illness or disease (e.g., lameness); 

− Detect an intensive and increasing restlessness of the 
animal due to the arising of a physiological state (e.g., 
oestrus) or social interactions with other cows. 

In all these situations, the system should send an alert (i.e., a 
mobile phone message or an e-mail message) to the farmer. 

6.4 The gyroscope and the barometer sensors 

The gyroscope sensor and the barometer sensor were also 
investigated during my PhD activity (June-July 2016). The 
graphs reported in Figure 25 and  Figure 26 show the signal 
SMA computed on the x-axis and y-axis of the acceleration 
data and the angular velocity data during the cow’s walking 
activity, respectively. The graph of Figure 26 shows that the 
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gyroscope data appears suitable to detect the steps of a dairy 
cow. Unfortunately, this sensor device has a higher power 
consumption than the accelerometer and it is likely that for 
this reason no study was reported in the literature on the use 
of a step counting algorithm based on the gyroscope sensor. 
With the aim to investigate the use of the barometer sensor 
for achieving the recognition of different heights of the cow’s 
head during the feeding and standing activities, an 
experimental data analysis was conducted (Table 31). The 
results of the statistical test, i.e. group comparison test 
(Anova test), show a different labelling between the ‘feeding 
group’ and the ‘standing group’. Of course, this single test 
cannot demonstrate that the barometer sensor is able to 
recognise the feeding activity from the standing activity, yet 
these results encourage for a further more extensive statistical 
analysis on the data coming from the barometer sensor. 
Finally, the graph reported in Figure 29 shows the data 
acquired from the x-axis of the gyroscope sensor during the 
same period. It can be observed that angular velocity 
variations during feeding activity are similar to the angular 
velocity variation during walking activity and this similarity 
made unsuitable the use of gyroscope sensor for detecting the 
‘feeding’ activity from other standing activities (i. e., ‘still 
standing’ and ‘walking’).  
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7 Conclusions 

The main objective of the research activity, which was 
conducted during my PhD studies, consisted in the design of 
an automated system for continuous monitoring of dairy 
cow's behaviours in free-stall barns. It was achieved through 
the definition of new ICT approaches. 
A new data acquisition system, which was based on 
accelerometer sensors fixed to the dairy cows’ body (i.e., 
neck and hind leg), was developed and assessed in a free-stall 
barn located in Sicily. It allowed the acquisition of data from 
different sensors (accelerometer, gyroscope, and barometer), 
with a sampling frequency of 4 Hz, during the animals’ daily 
routine.  The performance index (SDI) of this system was 
equal to 83 %. Moreover, it required a simple installation into 
the building and it did not need any preliminary calibration. 
During the data acquisition process the sensor devices did not 
cause any stress to the animals and their behavioural activities 
were not forced or influenced by the researchers or by other 
farm operators.  
The walking activity of the dairy cows was analysed by 
applying rigorous statistical methods on the data that 
described the change in acceleration values of the cows‘ leg. 
This phase of the research made it possible to develop a novel 
step counting algorithm, based on acceleration thresholds, 
which was reported in an open source code. The indicator of 
the total committed error of the algorithm was equal to 9.5%. 
The same rigorous approach was repeated to the analysis of 
the feeding activity of the dairy cows, using the acceleration 
values of the animals’ neck. This phase allowed the definition 
of a classifier, based on acceleration threshold, able to 
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recognise the feeding activity from the standing activity. The 
misclassification rate of the classifier was equal to 5.56%. 
The automated system for continuous monitoring of dairy 
cow, proposed in this thesis work, was designed by using low 
cost devices, such as wearable sensors and single board 
computers, and open source software. These features of the 
system would have a crucial relevance in developing 
countries. Furthermore, the application of two accelerometer 
sensors per each dairy cow allowed for the recognition of the 
main behaviours (lying, standing, feeding, and walking). 
Instead, systems based on the use of a pedometer are not 
suitable for acquiring accurate information about the feeding 
activity. Similarly, other systems based on wearable sensors 
attached to the cow’s head, though attempting to give 
information on walking activity, do not generally give 
accurate information and are not suitable for step counting. A 
unique system able to monitor different behaviours would 
give relevant benefits to the farmer. Among the main 
advantages of this kind of systems, the ability of the system 
to acquire and store useful data as well as send alerts for the 
early detection of any unusual event or disease would provide 
a reduction of the time spent for observing the animal and a 
decrease of the management costs. The criticalities of a 
unique system would regard the discrimination of other 
specific behaviours, such as chewing with bite counting, 
rumination, and drinking. Future enhancements of a unique 
system would regard the recognition of these specific 
behaviours. Further improvements of the proposed system 
would involve the utilisation of a different wireless 
communication protocol. 
In this thesis work, ICT was applied to livestock farming by 
exploiting the integration of my knowledge in Computer 
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Science with the research studies in the PhD course of 
‘Agricultural, food and environmental science’. In multi-
disciplinary studies in this fields, other scenarios open up, 
such as the new emerging computing concept, based on a new 
level of networking, i.e., machine-to-machine (M2M) 
communications. In these scenarios, smart objects and a wide 
variety of devices will be able to exchange information and 
share computing services. Sensors, actuators, RFID tags, 
Real-Time Location Systems, and mobile devices will 
become the resources for new uses, new computation 
approaches, and a new way of farming. Since the animal 
welfare and quality of livestock production take primary 
relevance in PLF, new ICT services as well as micro/nano 
electronic devices will support the decisions of the farmer and 
other stakeholders to achieve the requested standards. In this 
context, the research activity that I developed and completed 
during my PhD is tightly connected to the most up-to-date 
applications of ICT to animal housing. It attempted to provide 
elements of innovation and make advances in the field by 
addressing the most crucial issues of the stakeholders and the 
needs of the farmers. 
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